
Randomised Algorithms Supervision 4
Spectral graph theory: Solution Notes

1 Linear Algebra

Exercise 1 [Properties of dagger] Prove the following properties of the conjugate transpose, defined
for any x ∈ Cn as

x† = (x∗
1, . . . , x

∗
n).

(a) For any two vectors x, y ∈ Cn, it holds that x†y = (y†x)†.

(b) For any vector x ∈ Cn, it holds that x†x ≥ 0.

(Answer)
(a) By writing out the definition of the two vectors, we have that

(y†x)† = (y†x)∗ =

(
n∑

i=1

y∗i xi

)∗

=

n∑
i=1

(y∗i xi)
∗ =

n∑
i=1

yix
∗
i = x†y.

(b) For any vector x ∈ Cn,

x†x =

n∑
i=1

x∗
i xi =

n∑
i=1

|xi|2 ≥ 0.

Extended Note 1 A matrix A ∈ Cn×n is Hermitian if A† = A. The notation A† means the complex
conjugate of A, i.e., A† = (AT )∗. If you prefer you can attempt the following exercises, by assuming that
A is a matrix with real entries and then A† = AT = A, meaning that the matrix is symmetric.

Exercise 2 [Real eigenvalues] Consider a Hermitian matrix A ∈ Rn×n, then all its eigenvalues are
real.

(Answer) Let A be a Hermitian matrix. Then, for any vector x ∈ Cn, it holds that

(Ax)†x = x†A†x = x†(Ax). (1)

Assuming that x is an eigenvector corresponding to eigenvalue λ, i.e., Ax = λx. Then, we have that

(Ax)†x = (λx)†x = λ∗x†x

and
x†(Ax) = x†λx = λx†x

By 1, we have that
λx†x = λ∗x†x ⇒ (λ− λ∗)x†x = 0.

Hence, since x†x > 0 (as x ̸= 0), we have that λ = λ∗ and hence λ is real.

Exercise 3 [Orthogonal eigenvectors] Consider a Hermitian matrix A ∈ Cn×n and let x, y ∈ Cn be
two eigenvectors corresponding to different eigenvalues λ ̸= λ′. Then, x⊥y.

(Answer) Since A is Hermitian, we have that

(Ax)†y = x†A†y = x†Ay = x†(Ay).
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Exercise 4 [Spectral theorem] Let A ∈ Rn×n be a symmetric matrix.
(a) Let k ≤ n− 1 and let x1, . . . , xk be orthogonal eigenvectors of A. Then, there exists an eigenvector

xk+1 that is orthogonal to x1, . . . , xk.

(b) Prove the spectral theorem,

(c) Argue that A can be written as XDX−1 for some matrix X and a diagonal matrix D.

Exercise 5 [Inverse matrix] Let A ∈ Rn×n be a symmetric matrix with (orthonormal) eigenvectors
x1, . . . , xn corresponding to eigenvalues λ1, . . . , λn. Prove that:

(a) Let x ∈ Rn be arbitrary. By writing x = (xTx1)x1 + . . .+ (xTxn)xn, show that

x1x
T
1 + . . . xnx

T
n = I.

(b) By writing Ax = AIx, show that

A = λ1x1x
T
1 + . . . λnxnx

T
n .

(c) Show that if λ1 ̸= 0, . . . , λn ̸= 0, then

A−1 =
1

λ1
x1x

T
1 + . . .+

1

λn
xnx

T
n .

Exercise 6 [Power of a matrix] Consider a real symmetric matrix A ∈ Rn×n with eigenvectors
x1, . . . , xn and eigenvalues λ1, . . . , λn. Then, for any k ∈ N≥1, the eigenvectors of Ak are x1, . . . , xn and
the eigenvalues λk

1 , . . . , λ
k
n.

Exercise 7 [Trace of a matrix] The trace of a matrix is defined as

tr(A) =

n∑
i=1

Aii.

(a) Show that for any two matrices X and Y , we have that tr(XY ) = tr(Y X).

(b) Show that for any real symmetric matrix A, tr(A) =
∑n

i=1 λi.

(Answer)
(a) Using the definition of the trace, we have that

tr(XY ) =

n∑
i=1

(XY )ii =

n∑
i=1

n∑
j=1

XijYji =

n∑
j=1

n∑
i=1

XijYji =

n∑
j=1

n∑
i=1

YjiXij = tr(Y X).

(b) By writing A = XDX−1, we have that

tr(XDX−1) = tr(XX−1D) = tr(ID) = tr(D) =

n∑
i=1

λi.

Exercise 8 [Determinant of symmetric matrix] Consider a real symmetric matrix A. Show that

det(A) =

n∏
i=1

λi.

Hint: Use the property that det(AB) = det(A) · det(B).
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(Answer) By writing A = XDX−1 we have that

det(A) = det(XDX−1) = det(X)det(D)det(X−1) = det(D) =

n∏
i=1

λi,

using that det(X−1) = (det(X))−1 and that the determinant of a diagonal matrix is just the product of the
entries of the diagonal.

2 Graph matrices

2.1 Adjacency matrix

Exercise 9 [Basic properties] Consider the adjacency matrix of an undirected graph.
(a) Show that deg(vi) =

∑n
j=1 Aij .

(b) Show that the adjacency matrix of a d-regular graph has eigenvalue d.

Exercise 10 [Counting paths] Consider the adjacency matrix A of a graph G.
(a) Show that if (Ak)ij > 0 for some integer k > 0 then there is a path of length k connecting i and j.

(b) Show that (Ak)ij also gives the number of paths connecting i and j with k hops.

(c) Interpret tr(Ak) > 0.

Exercise 11 [Bipartite graphs] Show that for any bipartite graph G with adjacency matrix A, if λ > 0
is an eigenvalue then −λ is also an eigenvalue.

(Answer) Let G be a bipartite graph where the left part has k vertices and the right part has n−k. We re-index
the n nodes of the graph such that the vertices of the left part are 1, . . . k and the vertices of the right part are
k + 1, . . . , n. Then, the adjacency matrix can be written as

A =

[
0 B
BT 0

]
.

Let
[
x
y

]
be the eigenvector of A with eigenvalue λ, then

A

[
x
y

]
=

[
0 B
BT 0

] [
x
y

]
=

[
Bx
BT y

]
= λ

[
x
y

]
.

By considering the vector z′ =

[
−x
−y

]
and λ′ = −λ, then we have that

Az′ = A

[
−x
−y

]
= −

[
0 B
BT 0

] [
x
y

]
= −λ

[
x
y

]
= λ′z′.

Exercise 12 [Converse for bipartite graphs]
(a) Argue that a graph with no odd length cycle is bipartite.

(b) Show that the statement “a graph has no odd length cycle” is equivalent to “for every odd k,
tr(Ak) = 0”.

(c) Deduce that if for every eigenvalue λ of A, there is another eigenvalue −λ, then the graph is
bipartite.

(Answer)
(a)

(b)
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(c) Consider any odd power k, then

tr(Ak) =

n∑
i=1

λk
i = 0.

Hence, by Exercise 10 (c), we have that the graph has no cycle of odd length and so it is bipartite by (a).

Exercise 13 On Lecture 11/slide 10 (Example 1) we determined the spectrum of the adjacency matrix
A for the complete graph (a.k.a. clique) of size 3. Here we would like to generalise this to any complete
graph of size n > 3. Prove that the spectrum consists of eigenvalues n− 1 (with multiplicity 1) and −1
(with multiplicity n− 1).

Exercise 14 [Perron-Frobenius] Let G by a connected graph with adjacency matrix A with eigenvec-
tors x1, . . . , xn and eigenvalues λ1, . . . , λn, then show that

(a) λ1 ≥ −λn,

(b) λ1 > λ2,

(c) There exists an eigenvector x1 which has all its entries > 0.

2.2 Laplacian matrix

Exercise 15 [Factorisation] Consider the unormalised Laplacian matrix L = D − A and the incident
matrix M ∈ Rn×m defined as Mue = 1u∈e (i.e., indicates which edges contain which vertices). Show that

L = MTM.

Exercise 16 Consider an undirected, d-regular graph G and the matrices AG and LG.
(a) Show that the two matrices have the same eigenvectors.

(b) Describe the correspondence between their eigenvalues.

(Answer) Assume that x is an eigenvector and λ is its corresponding eigenvalue. Then,

Ax = λx.

Then,

Lx =

(
I − 1

d
A

)
x = x− λ

d
x =

(
1− λ

d

)
x.

So x is still an eigenvector and 1− λ/d is an eigenvalue.

Exercise 17 Consider a d-regular graph and its Laplacian matrix L.
(a) Using the quadratic form, show that for any vector x ∈ Rn (with x ̸= 0),

xTLx

xTx
≤ 2.

(b) Deduce that λn ≤ 2.
Prove that for any d-regular graph, the largest eigenvalue of the Laplacian L satisfies λn ≤ 2.

Exercise 18 Show that if G is an undirected, d-regular, connected and bipartite graph, then the largest
eigenvalue λn of the Laplacian matrix satisfies λn = 2 (this proves one direction of the fourth statement
in the Lemma from Lecture 11/slide 14).

Exercise 19 Redo Exercise 18 without assuming that the graph is not d-regular.
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Exercise 20 Consider the transition matrix of a lazy random walks P̃ = (P + I)/2 on a d-regular graph
(here I is the n× n identity matrix and P is the transition matrix of a simple random walk).

(a) Using Exercise 16 and that the eigenvalues of L are in [0, 2], argue that the eigenvalues of A are in
[−d, d].

(b) Prove that all eigenvalues of P̃ are non-negative.

3 Conductance

Exercise 21 [Conductance of graphs]
(a) Compute the conductance of the complete graph Kn.

(b) Compute the conductance of the cycle Cn.

(c) Compute the conductance of a path Pn.

(d) Compute the conductance of a 2D grid.

(e) (+) Compute the conductance of a 3D grid.

Exercise 22
(a) Prove that for every n > 2 there is an unweighted, undirected n-vertex graph with conductance 1.

(b) (+) Can you characterise all graphs with that property?

Exercise 23 Prove that for any d-regular graph with n → ∞ being large, the conductance satisfies
Φ(G) ≤ 1

2 + o(1).
Hint: Use the probabilistic method to construct a set S with the required conductance. First obtain bounds
for ||S| − n/2| and then for |E(S, Sc)− |E|/2|.

Exercise 24 Consider an undirected, and d-regular graph G = (V,E) with conductance Φ > 0. In this
exercise, you will show that the diameter of the graph is at most O( logn

Φ ).
(a) Consider an arbitrary vertex u ∈ V and let S0 := {u} and Si := B≤i(u), the set of nodes at a

distance of at most i from u. Show that for any Si with |Si| ≤ n/2, it holds that

|E(Si, S
c
i )| ≥ Φ · |Si| · d,

and that
|Si+1| ≥ |Si| · (1 + Φ).

(b) Using that log(1 + z) ≥ (1/2) · z (for any z ∈ [0, 1]), deduce that |Si| > n/2 for i > 2 · logn
Φ .

(c) Deduce that there is no pair of vertices at a distance > 4 logn
Φ .
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