Randomised Algorithms Supervision 4 Spectral graph theory: Solution Notes

1 Linear Algebra

Exercise 1 [Properties of dagger] Prove the following properties of the conjugate transpose, defined for any $x \in \mathbb{C}^n$ as

$$x^{\dagger} = (x_1^*, \dots, x_n^*).$$

- (a) For any two vectors $x, y \in \mathbb{C}^n$, it holds that $x^{\dagger}y = (y^{\dagger}x)^{\dagger}$.
- (b) For any vector $x \in \mathbb{C}^n$, it holds that $x^{\dagger}x \ge 0$.

(Answer)

(a) By writing out the definition of the two vectors, we have that

$$(y^{\dagger}x)^{\dagger} = (y^{\dagger}x)^{*} = \left(\sum_{i=1}^{n} y_{i}^{*}x_{i}\right)^{*} = \sum_{i=1}^{n} (y_{i}^{*}x_{i})^{*} = \sum_{i=1}^{n} y_{i}x_{i}^{*} = x^{\dagger}y.$$

(b) For any vector $x \in \mathbb{C}^n$,

$$x^{\dagger}x = \sum_{i=1}^{n} x_i^* x_i = \sum_{i=1}^{n} |x_i|^2 \ge 0.$$

Extended Note 1 A matrix $A \in \mathbb{C}^{n \times n}$ is *Hermitian* if $A^{\dagger} = A$. The notation A^{\dagger} means the complex conjugate of A, i.e., $A^{\dagger} = (A^T)^*$. If you prefer you can attempt the following exercises, by assuming that A is a matrix with real entries and then $A^{\dagger} = A^T = A$, meaning that the matrix is *symmetric*.

Exercise 2 [Real eigenvalues] Consider a Hermitian matrix $A \in \mathbb{R}^{n \times n}$, then all its eigenvalues are real.

(Answer) Let A be a Hermitian matrix. Then, for any vector $x \in \mathbb{C}^n$, it holds that

$$(Ax)^{\dagger}x = x^{\dagger}A^{\dagger}x = x^{\dagger}(Ax). \tag{1}$$

Assuming that x is an eigenvector corresponding to eigenvalue λ , i.e., $Ax = \lambda x$. Then, we have that

$$(Ax)^{\dagger}x = (\lambda x)^{\dagger}x = \lambda^* x^{\dagger}x$$

and

$$x^{\dagger}(Ax) = x^{\dagger}\lambda x = \lambda x^{\dagger}x$$

By 1, we have that

$$\lambda x^{\dagger} x = \lambda^* x^{\dagger} x \Rightarrow (\lambda - \lambda^*) x^{\dagger} x = 0.$$

Hence, since $x^{\dagger}x > 0$ (as $x \neq 0$), we have that $\lambda = \lambda^*$ and hence λ is real.

Exercise 3 [Orthogonal eigenvectors] Consider a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ and let $x, y \in \mathbb{C}^n$ be two eigenvectors corresponding to different eigenvalues $\lambda \neq \lambda'$. Then, $x \perp y$.

(Answer) Since A is Hermitian, we have that

$$(Ax)^{\dagger}y = x^{\dagger}A^{\dagger}y = x^{\dagger}Ay = x^{\dagger}(Ay)$$

Exercise 4 [Spectral theorem] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

- (a) Let $k \leq n-1$ and let x_1, \ldots, x_k be orthogonal eigenvectors of A. Then, there exists an eigenvector x_{k+1} that is orthogonal to x_1, \ldots, x_k .
- (b) Prove the spectral theorem,
- (c) Argue that A can be written as XDX^{-1} for some matrix X and a diagonal matrix D.

Exercise 5 [Inverse matrix] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with (orthonormal) eigenvectors x_1, \ldots, x_n corresponding to eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that:

(a) Let $x \in \mathbb{R}^n$ be arbitrary. By writing $x = (x^T x_1)x_1 + \ldots + (x^T x_n)x_n$, show that

$$x_1 x_1^T + \dots x_n x_n^T = I$$

(b) By writing Ax = AIx, show that

$$A = \lambda_1 x_1 x_1^T + \dots \lambda_n x_n x_n^T.$$

(c) Show that if $\lambda_1 \neq 0, \ldots, \lambda_n \neq 0$, then

$$A^{-1} = \frac{1}{\lambda_1} x_1 x_1^T + \ldots + \frac{1}{\lambda_n} x_n x_n^T.$$

Exercise 6 [Power of a matrix] Consider a real symmetric matrix $A \in \mathbb{R}^{n \times n}$ with eigenvectors x_1, \ldots, x_n and eigenvalues $\lambda_1, \ldots, \lambda_n$. Then, for any $k \in \mathbb{N}_{\geq 1}$, the eigenvectors of A^k are x_1, \ldots, x_n and the eigenvalues $\lambda_1^k, \ldots, \lambda_n^k$.

Exercise 7 [Trace of a matrix] The trace of a matrix is defined as

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}.$$

- (a) Show that for any two matrices X and Y, we have that tr(XY) = tr(YX).
- (b) Show that for any real symmetric matrix A, $tr(A) = \sum_{i=1}^{n} \lambda_i$.

(Answer)

(a) Using the definition of the trace, we have that

$$\operatorname{tr}(XY) = \sum_{i=1}^{n} (XY)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij} Y_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} X_{ij} Y_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} Y_{ji} X_{ij} = \operatorname{tr}(YX).$$

(b) By writing $A = XDX^{-1}$, we have that

$$tr(XDX^{-1}) = tr(XX^{-1}D) = tr(ID) = tr(D) = \sum_{i=1}^{n} \lambda_i.$$

Exercise 8 [Determinant of symmetric matrix] Consider a real symmetric matrix A. Show that

$$\det(A) = \prod_{i=1}^{n} \lambda_i.$$

Hint: Use the property that $det(AB) = det(A) \cdot det(B)$.

(Answer) By writing $A = XDX^{-1}$ we have that

$$\det(A) = \det(XDX^{-1}) = \det(X)\det(D)\det(X^{-1}) = \det(D) = \prod_{i=1}^{n} \lambda_i,$$

using that $\det(X^{-1}) = (\det(X))^{-1}$ and that the determinant of a diagonal matrix is just the product of the entries of the diagonal.

2 Graph matrices

2.1 Adjacency matrix

Exercise 9 [Basic properties] Consider the adjacency matrix of an undirected graph.

- (a) Show that $\deg(v_i) = \sum_{j=1}^n A_{ij}$.
- (b) Show that the adjacency matrix of a d-regular graph has eigenvalue d.

Exercise 10 [Counting paths] Consider the adjacency matrix A of a graph G.

- (a) Show that if $(A^k)_{ij} > 0$ for some integer k > 0 then there is a path of length k connecting i and j.
- (b) Show that $(A^k)_{ij}$ also gives the number of paths connecting i and j with k hops.
- (c) Interpret $tr(A^k) > 0$.

Exercise 11 [Bipartite graphs] Show that for any bipartite graph G with adjacency matrix A, if $\lambda > 0$ is an eigenvalue then $-\lambda$ is also an eigenvalue.

(Answer) Let G be a bipartite graph where the left part has k vertices and the right part has n-k. We re-index the n nodes of the graph such that the vertices of the left part are $1, \ldots k$ and the vertices of the right part are $k+1, \ldots, n$. Then, the adjacency matrix can be written as

$$A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

Let $\begin{bmatrix} x \\ y \end{bmatrix}$ be the eigenvector of A with eigenvalue λ , then

$$A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} 0 & B\\ B^T & 0\end{bmatrix}\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} Bx\\ B^Ty\end{bmatrix} = \lambda\begin{bmatrix} x\\ y\end{bmatrix}.$$

By considering the vector $z' = \begin{bmatrix} -x \\ -y \end{bmatrix}$ and $\lambda' = -\lambda$, then we have that

$$Az' = A \begin{bmatrix} -x \\ -y \end{bmatrix} = - \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -\lambda \begin{bmatrix} x \\ y \end{bmatrix} = \lambda' z'.$$

Exercise 12 [Converse for bipartite graphs]

- (a) Argue that a graph with no odd length cycle is bipartite.
- (b) Show that the statement "a graph has no odd length cycle" is equivalent to "for every odd k, $\mathrm{tr}(A^k)=0$ ".
- (c) Deduce that if for every eigenvalue λ of A, there is another eigenvalue $-\lambda$, then the graph is bipartite.

(Answer)

- (a)
- (b)

(c) Consider any odd power k, then

$$\operatorname{tr}(A^k) = \sum_{i=1}^n \lambda_i^k = 0.$$

Hence, by Exercise 10 (c), we have that the graph has no cycle of odd length and so it is bipartite by (a).

Exercise 13 On Lecture 11/slide 10 (Example 1) we determined the spectrum of the adjacency matrix A for the complete graph (a.k.a. clique) of size 3. Here we would like to generalise this to any complete graph of size n > 3. Prove that the spectrum consists of eigenvalues n - 1 (with multiplicity 1) and -1 (with multiplicity n - 1).

Exercise 14 [Perron-Frobenius] Let G by a connected graph with adjacency matrix A with eigenvectors x_1, \ldots, x_n and eigenvalues $\lambda_1, \ldots, \lambda_n$, then show that (a) $\lambda_1 \ge -\lambda_n$,

- (b) $\lambda_1 > \lambda_2$,
- (c) There exists an eigenvector x_1 which has all its entries > 0.

2.2 Laplacian matrix

Exercise 15 [Factorisation] Consider the unormalised Laplacian matrix L = D - A and the incident matrix $M \in \mathbb{R}^{n \times m}$ defined as $M_{ue} = \mathbf{1}_{u \in e}$ (i.e., indicates which edges contain which vertices). Show that

$$L = M^T M.$$

Exercise 16 Consider an undirected, d-regular graph G and the matrices A_G and L_G .

- (a) Show that the two matrices have the same eigenvectors.
- (b) Describe the correspondence between their eigenvalues.

(Answer) Assume that x is an eigenvector and λ is its corresponding eigenvalue. Then,

$$Ax = \lambda x.$$

Then,

$$Lx = \left(I - \frac{1}{d}A\right)x = x - \frac{\lambda}{d}x = \left(1 - \frac{\lambda}{d}\right)x.$$

So x is still an eigenvector and $1 - \lambda/d$ is an eigenvalue.

Exercise 17 Consider a d-regular graph and its Laplacian matrix L.

(a) Using the quadratic form, show that for any vector $x \in \mathbb{R}^n$ (with $x \neq 0$),

$$\frac{x^T L x}{x^T x} \le 2$$

(b) Deduce that $\lambda_n \leq 2$.

Prove that for any d-regular graph, the largest eigenvalue of the Laplacian L satisfies $\lambda_n \leq 2$.

Exercise 18 Show that if G is an undirected, d-regular, connected and bipartite graph, then the largest eigenvalue λ_n of the Laplacian matrix satisfies $\lambda_n = 2$ (this proves one direction of the fourth statement in the Lemma from Lecture 11/slide 14).

Exercise 19 Redo Exercise 18 without assuming that the graph is not *d*-regular.

Exercise 20 Consider the transition matrix of a lazy random walks $\tilde{P} = (P+I)/2$ on a *d*-regular graph (here *I* is the $n \times n$ identity matrix and *P* is the transition matrix of a simple random walk).

- (a) Using Exercise 16 and that the eigenvalues of L are in [0, 2], argue that the eigenvalues of A are in [-d, d].
- (b) Prove that all eigenvalues of \tilde{P} are non-negative.

3 Conductance

Exercise 21 [Conductance of graphs]

- (a) Compute the conductance of the complete graph K_n .
- (b) Compute the conductance of the cycle C_n .
- (c) Compute the conductance of a path P_n .
- (d) Compute the conductance of a 2D grid.
- (e) (+) Compute the conductance of a 3D grid.

Exercise 22

- (a) Prove that for every n > 2 there is an unweighted, undirected *n*-vertex graph with conductance 1.
- (b) (+) Can you characterise all graphs with that property?

Exercise 23 Prove that for any *d*-regular graph with $n \to \infty$ being large, the conductance satisfies $\Phi(G) \leq \frac{1}{2} + o(1)$.

Hint: Use the probabilistic method to construct a set S with the required conductance. First obtain bounds for ||S| - n/2| and then for $|E(S, S^c) - |E|/2|$.

Exercise 24 Consider an undirected, and *d*-regular graph G = (V, E) with conductance $\Phi > 0$. In this exercise, you will show that the diameter of the graph is at most $\mathcal{O}(\frac{\log n}{\Phi})$.

(a) Consider an arbitrary vertex $u \in V$ and let $S_0 := \{u\}$ and $S_i := B_{\leq i}(u)$, the set of nodes at a distance of at most *i* from *u*. Show that for any S_i with $|S_i| \leq n/2$, it holds that

$$|E(S_i, S_i^c)| \ge \Phi \cdot |S_i| \cdot d,$$

and that

$$|S_{i+1}| \ge |S_i| \cdot (1+\Phi).$$

- (b) Using that $\log(1+z) \ge (1/2) \cdot z$ (for any $z \in [0,1]$), deduce that $|S_i| > n/2$ for $i > 2 \cdot \frac{\log n}{\Phi}$.
- (c) Deduce that there is no pair of vertices at a distance $> \frac{4 \log n}{\Phi}$.