Randomised Algorithms Supervision 4 Spectral graph theory

1 Linear Algebra

Exercise 1 [Properties of dagger] Prove the following properties of the conjugate transpose, defined for any $x \in \mathbb{C}^{n}$ as

$$
x^{\dagger}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)
$$

(a) For any two vectors $x, y \in \mathbb{C}^{n}$, it holds that $x^{\dagger} y=\left(y^{\dagger} x\right)^{\dagger}$.
(b) For any vector $x \in \mathbb{C}^{n}$, it holds that $x^{\dagger} x \geq 0$.

Extended Note 1 A matrix $A \in \mathbb{C}^{n \times n}$ is Hermitian if $A^{\dagger}=A$. The notation A^{\dagger} means the complex conjugate of A, i.e., $A^{\dagger}=\left(A^{T}\right)^{*}$. If you prefer you can attempt the following exercises, by assuming that A is a matrix with real entries and then $A^{\dagger}=A^{T}=A$, meaning that the matrix is symmetric.

Exercise 2 [Real eigenvalues] Consider a Hermitian matrix $A \in \mathbb{R}^{n \times n}$, then all its eigenvalues are real.

Exercise 3 [Orthogonal eigenvectors] Consider a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ and let $x, y \in \mathbb{C}^{n}$ be two eigenvectors corresponding to different eigenvalues $\lambda \neq \lambda^{\prime}$. Then, $x \perp y$.

Exercise 4 [Spectral theorem] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.
(a) Let $k \leq n-1$ and let x_{1}, \ldots, x_{k} be orthogonal eigenvectors of A. Then, there exists an eigenvector x_{k+1} that is orthogonal to x_{1}, \ldots, x_{k}.
(b) Prove the spectral theorem,
(c) Argue that A can be written as $X D X^{-1}$ for some matrix X and a diagonal matrix D.

Exercise 5 [Inverse matrix] Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with (orthonormal) eigenvectors x_{1}, \ldots, x_{n} corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove that:
(a) Let $x \in \mathbb{R}^{n}$ be arbitrary. By writing $x=\left(x^{T} x_{1}\right) x_{1}+\ldots+\left(x^{T} x_{n}\right) x_{n}$, show that

$$
x_{1} x_{1}^{T}+\ldots x_{n} x_{n}^{T}=I
$$

(b) By writing $A x=A I x$, show that

$$
A=\lambda_{1} x_{1} x_{1}^{T}+\ldots \lambda_{n} x_{n} x_{n}^{T}
$$

(c) Show that if $\lambda_{1} \neq 0, \ldots, \lambda_{n} \neq 0$, then

$$
A^{-1}=\frac{1}{\lambda_{1}} x_{1} x_{1}^{T}+\ldots+\frac{1}{\lambda_{n}} x_{n} x_{n}^{T}
$$

Exercise 6 [Power of a matrix] Consider a real symmetric matrix $A \in \mathbb{R}^{n \times n}$ with eigenvectors x_{1}, \ldots, x_{n} and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then, for any $k \in \mathbb{N}_{\geq 1}$, the eigenvectors of A^{k} are x_{1}, \ldots, x_{n} and the eigenvalues $\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}$.

Exercise 7 [Trace of a matrix] The trace of a matrix is defined as

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

(a) Show that for any two matrices X and Y, we have that $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$.
(b) Show that for any real symmetric matrix $A, \operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.

Exercise 8 [Determinant of symmetric matrix] Consider a real symmetric matrix A. Show that

$$
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}
$$

Hint: Use the property that $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.

2 Graph matrices

2.1 Adjacency matrix

Exercise 9 [Basic properties] Consider the adjacency matrix of an undirected graph.
(a) Show that $\operatorname{deg}\left(v_{i}\right)=\sum_{j=1}^{n} A_{i j}$.
(b) Show that the adjacency matrix of a d-regular graph has eigenvalue d.

Exercise 10 [Counting paths] Consider the adjacency matrix A of a graph G.
(a) Show that if $\left(A^{k}\right)_{i j}>0$ for some integer $k>0$ then there is a path of length k connecting i and j.
(b) Show that $\left(A^{k}\right)_{i j}$ also gives the number of paths connecting i and j with k hops.
(c) Interpret $\operatorname{tr}\left(A^{k}\right)>0$.

Exercise 11 [Bipartite graphs] Show that for any bipartite graph G with adjacency matrix A, if $\lambda>0$ is an eigenvalue then $-\lambda$ is also an eigenvalue.

Exercise 12 [Converse for bipartite graphs]

(a) Argue that a graph with no odd length cycle is bipartite.
(b) Show that the statement "a graph has no odd length cycle" is equivalent to "for every odd k, $\operatorname{tr}\left(A^{k}\right)=0 "$.
(c) Deduce that if for every eigenvalue λ of A, there is another eigenvalue $-\lambda$, then the graph is bipartite.

Exercise 13 On Lecture 11/slide 10 (Example 1) we determined the spectrum of the adjacency matrix A for the complete graph (a.k.a. clique) of size 3. Here we would like to generalise this to any complete graph of size $n>3$. Prove that the spectrum consists of eigenvalues $n-1$ (with multiplicity 1) and -1 (with multiplicity $n-1$).

Exercise 14 [Perron-Frobenius] Let G by a connected graph with adjacency matrix A with eigenvectors x_{1}, \ldots, x_{n} and eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then show that
(a) $\lambda_{1} \geq-\lambda_{n}$,
(b) $\lambda_{1}>\lambda_{2}$,
(c) There exists an eigenvector x_{1} which has all its entries >0.

2.2 Laplacian matrix

Exercise 15 [Factorisation] Consider the unormalised Laplacian matrix $L=D-A$ and the incident $\operatorname{matrix} M \in \mathbb{R}^{n \times m}$ defined as $M_{u e}=\mathbf{1}_{u \in e}$ (i.e., indicates which edges contain which vertices). Show that

$$
L=M^{T} M
$$

Exercise 16 Consider an undirected, d-regular graph G and the matrices A_{G} and L_{G}.
(a) Show that the two matrices have the same eigenvectors.
(b) Describe the correspondence between their eigenvalues.

Exercise 17 Consider a d-regular graph and its Laplacian matrix L.
(a) Using the quadratic form, show that for any vector $x \in \mathbb{R}^{n}($ with $x \neq 0)$,

$$
\frac{x^{T} L x}{x^{T} x} \leq 2
$$

(b) Deduce that $\lambda_{n} \leq 2$.

Prove that for any d-regular graph, the largest eigenvalue of the Laplacian L satisfies $\lambda_{n} \leq 2$.

Exercise 18 Show that if G is an undirected, d-regular, connected and bipartite graph, then the largest eigenvalue λ_{n} of the Laplacian matrix satisfies $\lambda_{n}=2$ (this proves one direction of the fourth statement in the Lemma from Lecture 11/slide 14).

Exercise 19 Redo Exercise 19 without assuming that the graph is not d-regular.

Exercise 20 Consider the transition matrix of a lazy random walks $\tilde{P}=(P+I) / 2$ on a d-regular graph (here I is the $n \times n$ identity matrix and P is the transition matrix of a simple random walk).
(a) Using Exercise 17 and that the eigenvalues of L are in [0,2], argue that the eigenvalues of A are in $[-d, d]$.
(b) Prove that all eigenvalues of \tilde{P} are non-negative.

3 Conductance

Exercise 21 [Conductance of graphs]

(a) Compute the conductance of the complete graph K_{n}.
(b) Compute the conductance of the cycle C_{n}.
(c) Compute the conductance of a path P_{n}.
(d) Compute the conductance of a 2D grid.
(e) $(+)$ Compute the conductance of a 3D grid.

Exercise 22

(a) Prove that for every $n>2$ there is an unweighted, undirected n-vertex graph with conductance 1 .
(b) (+) Can you characterise all graphs with that property?

Exercise 23 Prove that for any d-regular graph with $n \rightarrow \infty$ being large, the conductance satisfies $\Phi(G) \leq \frac{1}{2}+o(1)$.
Hint: Use the probabilistic method to construct a set S with the required conductance. First obtain bounds for $||S|-n / 2|$ and then for $\left|E\left(S, S^{c}\right)-|E| / 2\right|$.

Exercise 24 Consider an undirected, and d-regular graph $G=(V, E)$ with conductance $\Phi>0$. In this exercise, you will show that the diameter of the graph is at most $\mathcal{O}\left(\frac{\log n}{\Phi}\right)$.
(a) Consider an arbitrary vertex $u \in V$ and let $S_{0}:=\{u\}$ and $S_{i}:=B_{\leq i}(u)$, the set of nodes at a distance of at most i from u. Show that for any S_{i} with $\left|S_{i}\right| \leq n / 2$, it holds that

$$
\left|E\left(S_{i}, S_{i}^{c}\right)\right| \geq \Phi \cdot\left|S_{i}\right| \cdot d
$$

and that

$$
\left|S_{i+1}\right| \geq\left|S_{i}\right| \cdot(1+\Phi)
$$

(b) Using that $\log (1+z) \geq(1 / 2) \cdot z$ (for any $z \in[0,1]$), deduce that $\left|S_{i}\right|>n / 2$ for $i>2 \cdot \frac{\log n}{\Phi}$.
(c) Deduce that there is no pair of vertices at a distance $>\frac{4 \log n}{\Phi}$.

