
Randomised Algorithms Supervision 2
Markov Chains

1 Properties of Markov Chains

Exercise 1 [Chapman-Kolmogorov equations] Consider a Markov chain (ρ0, P ) with state space Ω.
Let ρt ∈ R be such that ρti = Pr [Xt = i ] for any i ∈ Ω. Then, show that for any t ≥ 0,

ρt = ρ0 · P t.

Exercise 2 [Two-state MC] Consider the Markov Chain with state space Ω = {0, 1} and transition
matrix

P =

[
1− p p
q 1− q

]
,

for some p, q ∈ (0, 1). By induction or otherwise, prove that

Pn =
1

p+ q
·
[
q + p(1− p− q)n p− p(1− p− q)n

q − q(1− p− q)n p+ q(1− p− q)n

]
.

Show that
lim
n→∞

Pn =
1

p+ q
·
[
q p
q p

]
.

1.1 Communicating states

Exercise 3 Consider a Markov chain with transition matrix P and state space Ω. Let G = (Ω, E) be
the graph where there is an edge (x, y) ∈ E iff P (x, y) > 0. State x is accessible from state y if there is
a path from x to y in G. We say that i and j communicate (and write i ↭ j) iff i is accessible from j
and the other way round. Prove that for any i, j, k ∈ Ω

(a) i ↭ i (reflexive).

(b) If i ↭ j, then also j ↭ i (symmetric).

(c) If i ↭ j and j ↭ k, then i ↭ k (transitive).

Exercise 4 [Connection to Strongly Connected Components] Consider a finite state Markov
chain. Argue that the communicating classes are exactly the strongly connected components of the graph
with vertices Ω and edges uv ∈ E iff P t

uv.

Exercise 5 (optional) How do the communicating classes of the Markov chain (or equivalently the
induced strongly connected components of the graph) relate to recurrent states, i.e. states that will be
visited infinitely often?

1.2 Periodic/Aperiodic Markov Chains
The following exercises explore some core properties of periodicity of Markov chains, but they are not very easy
to prove (relying on number theory) and can be skipped.

Exercise 6 (++) Consider an irreducible finite Markov chain with state space Ω and transition matrix
P . Let T (x) = {t ≥ 1 : P t(x, x) > 0} be the set of all time steps that a Markov chain can return to x,
having started at x. Then, the period of x is defined as gcdT (x).
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Show that for any x, y ∈ Ω, it holds that gcdT (x) = gcdT (y).

Exercise 7 (++) For any aperiodic and irreducible Markov chain with state space Ω and transition matrix
P , there exists r ≥ 0 such that for any x, y ∈ Ω,

P r(x, y) > 0.

Exercise 8 Prove that in any periodic graph with period k it is possible to split the vertices into k
disjoint sets C0, . . . , Ck−1 such that each edge (u, v) ∈ E satisfies u ∈ Ci and v ∈ C(i+1) mod k.

1.3 Stationary distributions

Exercise 9 [Non-unique stationary distribution] Show that there is a non-irreducible Markov chain
with more than one stationary distributions.

Exercise 10 [Exact convergence] Most Markov chains covered in this course never reach a stationary
distribution exactly, but only get arbitrarily close. Can you find an irreducible Markov chain with n
states such that for any starting state x there is an integer t such that P t

x = π?

Exercise 11 [Singleton cut-set] Show that for any finite state Markov chain with stationary distribu-
tion π, we have that for any state x ∈ Ω∑

y∈Ω:y ̸=x

πyPy,x =
∑

y∈Ω:x ̸=y

πxPx,y.

Exercise 12 [Cut-set of Markov chain] (+) Consider a finite, irreducible and aperiodic Markov chain.
Then, for any S ⊆ Ω, we have that,∑

x∈S

∑
y∈Sc

πxPxy =
∑
y∈S

∑
x∈Sc

πyPyx.

This means that the probability that the chain leaves the set S is equal to the probability that the chain
enters S.

Exercise 13 [Time-reversible Markov chains] The following property is very useful for determining
the stationary distribution of a Markov chain (see Exercises 20, 23, 43, 32).
Consider a finite irreducible Markov chain with transition matrix P . Assume that for some π̃ with∑

x∈Ω π̃x = 1 and π̃x ≥ 0, we have that for any x, y ∈ Ω

π̃xPxy = π̃yPyx.

Then, π̃ is the stationary distribution of the Markov chain.

Extended Note 1 [Verifying the stationary distribution] Exercise 13 gives us a way to quickly
verify that a probability vector is the stationary distribution of an irreducible Markov chain: we just
have to verify that it satisfies πxPxy = πyPyx, for any two states x and y.

Exercise 14 [Time-reversal] This exercise explains where the name time-reversal comes from (cf. Prob-
ability & Computing Ex. 7.13).
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Consider a finite Markov chain with stationary distribution π and transition matrix P . Imagine starting
the chain at time 0 and running it for m steps, obtaining the sequence X0, . . . , Xm. Consider the states
in reverse order, Xm, Xm−1, . . . , X0.

(a) Argue that given Xk+1, the state Xk is independent of Xk+2, . . . , Xm. Thus the reverse sequence
is Markovian.

(b) Argue that for the reverse sequence, the transition probabilities Qx,y are given by

Qx,y =
πyPy,x

πx
.

(c) Prove that if the original Markov chain is time reversible, so that πxPx,y = πyPy,x, then Qx,y = Px,y.

(d) Based on your answer in (c), argue about the name time-reversible.

Exercise 15 [Ehrenfest Chain] Recall the Ehrenfest Chain defined on Lecture 4 slide 3.
(a) Draw the Ehrenfest Chain for d = 5.

(b) What is the stationary distribution of the Ehrenfest Chain?

(c) Does the Ehrenfest Chain converge to the stationary distribution?

Exercise 16 Let Xn be the sum of n independent rolls of a fair die. Show that for any k ≥ 2,

lim
n→∞

Pr [Xn is divisible by k ] =
1

k
.

Exercise 17 Consider a Markov chain on the states Ω = {0, 1, . . . , n}, where for i < n we have Pi,i+1 =
1/2 and Pi,0 = 1/2. Also, Pn,n = 1/2 and Pn,0 = 1/2. This process can be viewed as a random walk on
a directed graph with vertices {0, 1, . . . , n}, where each vertex has two directed edges: one that returns
to 0 and one that moves to the vertex with the next higher number (with a self-loop at vertex n).

(a) Find the stationary distribution of this chain.

(b) (optional) What does this say about random walks in directed graphs?

Exercise 18 Let (Xn)n≥1 be a Markov chain on the states {0, 1, 2} with transition matrix

P =

 0 0 1
0 1− p p

1− p p 0

 ,

where p ∈ (0, 1).
(a) Draw the state space diagram for the Markov Chain Xn.

(b) Explain why Xn is an irreducible and aperiodic Markov Chain.

(c) Determine the stationary distribution of the Markov Chain.

[Source: [2017P6Q8]]

Exercise 19 Attempt [2022P8Q12 (a),(b)(i)].

Exercise 20 [Top-to-Random] Consider the Top-to-Random shuffle defined on Lecture 4 slide 23.
(a) Define the Markov chain corresponding to the shuffle.

(b) Argue that the Markov chain is irreducible.

(c) Argue that the Markov chain is aperiodic.
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(d) Find the stationary distribution of the chain.

Exercise 21 [Riffle shuffle] Consider the riffle shuffle defined on Lecture 4 slide 24.
(a) Define the state space of the Markov chain.

(b) (+) Consider the riffle operation. Given two decks of cards A and B with a and b cards, at each
step, the next card is chosen from A with probability a

a+b and otherwise from B. Prove that when
starting with n cards in total, drawing n cards using the above operation results into a uniform
distribution over all permutations such that the subsequences of cards in A (and in B, respectively)
are ordered increasingly.

(c) Deduce the transition probabilities of the Markov chain.

(d) Argue that the Markov chain is irreducible.

(e) Find the stationary distribution of this chain.

1.4 Omitted proofs

Further Reading 1 [Theorems for finite MCs] This paper contains relatively short proofs for the
major theorems for finite Markov chains: (i) existence, (ii) uniqueness and (iii) convergence.

Further Reading 2 [2D and 3D Random walks] See Lecture 6 in Part IB Markov Chains course
from the Maths department, to find out why a drunk person finds his way home, but not a drunk bird.

2 Classical Markov Chains

Exercise 22 [Birth-Death chains] The birth-death Markov chains have state space Ω = N and tran-
sition probability matrix P satisfying

Pi,i−1 = p for i = 1, 2, . . .

Pi,i+1 = 1− p for i = 0, 1, . . .

P0,0 = p,

for some parameter p ∈ (0, 1).
(a) Draw the first 3 states of the Markov chain. Why is it called a birth-death MC?

(b) Show that the chain is irreducible.

(c) Show that the chain is aperiodic.

(d) For any p > 1/2, find the stationary distribution.

[Source: [2009P4Q10 (a)]]

Exercise 23 [Bernoulli-Laplace Chain] Consider two urns one with j balls and the other with k
balls, having in total r red balls (and the other being red). In each step, we select uniformly at random
one ball from each urn and swap them.

(a) Design a Markov chain for X the number of red balls in urn 1, giving the state space and the
transition matrix.

(b) Prove that the chain is irreducible.

(c) Prove that the chain is aperiodic.

4

https://www.cl.cam.ac.uk/teaching/2223/RandAlgthm/lec4_markov_chains.pdf#page=171
https://math.uchicago.edu/~may/REU2017/REUPapers/Freedman.pdf
http://www.statslab.cam.ac.uk/~rrw1/markov/M.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p4q10.pdf


(d) (+) Using Exercise 13 or otherwise, prove that the stationary distribution π is given by

πx =

(
r
x

)
·
(
j+k−r
k−x

)(
j+k
k

) .

Exercise 24 [Gambler’s ruin] In the Gambler’s ruin game there are two players A and B, starting
with fortunes a and b respectively. In each step player A wins 1 with probability p and looses 1 with
probability 1 − p. Let Xt be the amount that player A has lost after t rounds (so X0 = 0). Player A
will get broke when Xt = −a, while player B will get broke when Xt = b.
In this exercise, we are interested in the expected length ℓ(x) of a game starting with player A having
lost x games.

(a) Define the Markov chain for this problem.

(b) Show that for p = 1/2 and ℓ(x) satisfying for any −a < x < b,

ℓ(x) =
1

2
ℓ(x− 1) +

1

2
ℓ(x+ 1) + 1.

(c) Show that for p = 1/2,
ℓ(x) = (x+ a) · (b− x).

(d) (+ optional) Find a similar recurrence relation for p ̸= 1/2, and deduce the expected length.

3 Applications

3.1 Algorithms

Exercise 25 [2-SAT] Prove rigorously the claim made in lecture that the expected time for RAND
2-SAT to find a given solution is at most the hitting time h(0, n) of the random walk on a path.

Exercise 26 [3-SAT]
(a) Design an algorithm for the 3-SAT problem similar to the one for 2-SAT described in the lectures.

(b) Let hj be the number of expected steps to output a solution given that j of the literals are correct.
Then, show that hj satisfies

hn = 0,

hj =
2

3
hj−1 +

1

3
hj+1 + 1, 1 ≤ j ≤ n− 1,

h0 = h1 + 1.

(c) Prove by induction or otherwise that hj = 2n+2 − 2j+2 − 3(n− j).

(d) Does the resulting algorithm have a good running time?

Exercise 27 [k-SAT]
(a) Generalise the algorithm for the 2-SAT problem to k-SAT.

(b) (+) What is the expected running time as a function of k? How does this compare to the brute
force algorithm?

Exercise 28 [Faster 3-SAT] (+) Read 176-178 in “Probability and Computing” to see how to improve
the expected running time for the 3-SAT algorithm (of Exercise 26) to O(n3/2 · (4/3)n) time.
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Exercise 29 [3-Colourability] A colouring of a graph is an assignment of a colour to each of its vertices.
A graph is k-colourable if there is a colouring of the graph with k colours such that no two adjacent
vertices have the same colour. Let G be a 3-colourable graph.

(a) Show that there exists a colouring of the graph with two colours such that no triangle is monochro-
matic. (A triangle of a graph G is a subgraph of G with three vertices which are all adjacent to
one another).

(b) Consider the following algorithm for colouring the vertices of G with two colours so that no triangle
is monochromatic. The algorithm begins with an arbitrary 2-colouring of G. While there are any
monochromatic triangles in G, the algorithm chooses one such triangle and changes the colour of a
randomly chosen vertex of that triangle. Derive an upper bound on the expected number of such
recolouring steps before the algorithm finds a 2-colouring with the desired property.

Exercise 30 [Reachability in log-space] The reachability problem is the following: Given an undi-
rected graph G = (V,E) and a pair of vertices s, t ∈ V , we want to determine if there is a path from s
to t in G.

(a) Argue that the standard DFS/BFS solution requires Θ(n) space.

(b) Argue that running a random walk with at most nk (with constant k) steps, requires Θ(log n)
space.

(c) Design an algorithm based on random walks which is able to answer the reachability problem with
high probability.

Exercise 31 [Randomised perfect bipartite matching] In Part IA algorithms, you learnt about
solving the maximum flow problem using the Ford-Fulkerson algorithm. You also learnt how to apply
the algorithm to find a perfect matching in a bipartite graph in O(mn) time.
A recent result states that if you find the flow paths in Ford-Fulkerson using random walks (instead of
using just BFS), then you can find a perfect matching in O(n log n) time. You can read about the details
here.

3.2 Sampling

Exercise 32 [MCMC] In this exercise, you will show that modifying the random walk by adding self-
loops with appropriate probability, we obtain a Markov chain with the uniform stationary distribution.
In particular, given a graph G = (V,E) and letting N(u) be the set of neighbours of u ∈ V , show that
the Markov chain with transition matrix

Pu,v =


1/M if u ̸= v and v ∈ N(u),

0 if u ̸= v and v /∈ N(u),

1−N(u)/M if u = v,

for any M ≥ |V | has the uniform stationary distribution. Hint: You may want to use Exercise 13.

Exercise 33 [Sampling an independent set] In this exercise, you will analyse the Markov chain
algorithm for sampling an independent set (Lecture 4 slide 26).

(a) Define the Markov chain for this setting.

(b) Argue that the chain is irreducible. Hint: Is there a state that can be reached from all states?

(c) Argue that the chain is aperiodic.

(d) Using Exercise 32, argue that the uniform distribution is the stationary distribution of the Markov
chain.
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Exercise 34 [Metropolis Algorithm] In this exercise, we will generalise Exercise 32, so that given a
connected graph G = (V,E) and a distribution π over V , we create a Markov chain over V to have π as
its stationary distribution.
Show that the chain with transition matrix

Pu,v =


(1/M) ·min(1, πv/πu), if u ̸= v and v ∈ N(u),

0, if u ̸= v and v /∈ N(u),

1−
∑

v ̸=u Pu,v, if u = v.

Why would we want to do this?

Exercise 35 Combining Exercises 33 and 34, design a Markov chain whose stationary distribution is
the exponential distribution over the independent sets I of a graph G = (V,E), where for any I ∈ I

πI =
eλ|I|∑

I′∈I eλ|I′| ,

for any λ ∈ R. What is the main advantage of this algorithm?

4 Random walks

4.1 Properties

Exercise 36 [Periodicity]
(a) Prove that a simple random walk on a graph is periodic if the graph G is bipartite.

(b) (+) Can you also prove that the random walk is aperiodic if G is not bipartite?

Exercise 37 [Stationary distribution]
(a) Verify that π(u) = 2deg(u)

2|E| is a stationary distribution of a simple random walk.

(b) Verify that the lazy random walk has the same stationary distribution.

(c) Does this hold for any graph?

Exercise 38 [Concrete Example] Suppose that G has eight vertices and undirected edges as shown
in the figure below.

(a) Find the stationary distribution for the Markov Chain on G.

(b) Determine the relative proportions of time spent at each of the eight vertices.

[Source: [2007P4Q5 (c)]]
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4.2 Variation distance

Exercise 39 Prove that the total variation distance between two distributions over a finite probability
space Ω is a value in [0, 1].

Exercise 40 Consider a finite Markov chain (µ, P ) with state space Ω. Show that

∥P t
µ − π∥TV ≤ max

x∈Ω
∥P t

x − π∥TV

Exercise 41 Let P be a transition matrix of a Markov chain with state space Ω and µ and ν be two
probability distributions on Ω. Prove that

∥µP − νP∥TV ≤ ∥µ− ν∥TV

Exercise 42 Consider a state space Ω and for any probability p distribution over Ω, define for any set
A ⊆ Ω, p(A) =

∑
ω∈A p(ω). Then, for probability distributions µ and ν

∥µ− ν∥TV = max
A⊆Ω

|µ(A)− ν(A)| .

Exercise 43 Consider the Ehrenfest Markov Chain P with state space Ω = {0, 1, . . . , d}, and assume
that the chain starts from state 0.

(a) Define a Markov chain Q with state space Ω′ = {0, 1}d, where x ∈ Ω′ gives the colours of the
particles.

(b) Relate the stationary distribution πP to πQ.

(c) In the Markov chain of (a), show that starting from state 0, then for any x1, x2 ∈ Ω′ with the same
number of 1s, satisfy

Qt
0,x1

= Qt
0,x2

.

(d) Can you relate the variation distance ∥P t
0 − πP ∥ in the Ehrenfest chain to the variation distance

∥Qt
0d − πQ∥ in the hypercube? Hint: Use some symmetry argument.

4.3 Mixing times

Exercise 44 Attempt [2022P8Q12 (b)(ii),(iii)].

Exercise 45 This question asks you to prove lower bounds on the mixing time of some lazy random
walks on graphs.

(a) Let G = (V1 ∪ V2, E) be a graph made of two disjoint complete graphs of n vertices, supported
respectively on V1 and V2, connected by a single edge. This is called the Barbell graph. Consider
a lazy random walk on G. Prove that tmix(1/4) = Ω(n2).

(b) Suppose now we add s < n edges to the Barbell graph, where each edge has one endpoint in V1

and the other endpoint in V2. What happens to tmix(G)?

(c) Consider now a version of the Barbell graph where |V1| = n, |V2| = ⌊log n⌉ and there exists only
an edge between V1 and V2. What is the mixing time of this graph?
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4.4 Cover times

Extended Note 2 [Cover times] The cover time of a random walk is defined as the expected time for
a random walk to visit all vertices of a graph, starting from the worst possible vertex.

Exercise 46 [Cover time of clique] Analyse the cover time of a simple random walk on the complete
graph (clique), i.e., the graph where each pair of vertices is connected by an undirected edge. Hint: Use
coupon collector.

Exercise 47 [Cover time of path] Consider a path Pn with vertex set {0, 1, . . . , n} for even n. Can
you determine the cover time? Hint: use Exercise 24.

Exercise 48 [Cover time of cycle] What is the cover time of a cycle Cn? Hint: use Exercise 24.

Exercise 49 [Cover time using mixing time] Consider any regular graph G = (V,E). In this
exercise, we will derive an upper bound on the cover time based on the mixing time t := tmix(1/(2n))
which is O(t · n log n).

(a) Let Tu := min{t ≥ 1 : Xt = u}. Show that starting from any vertex X0 = u, we have that

Pr [Tv ≤ t | X0 = u ] ≥ 1

2n
.

(b) Using probability amplification and the union bound, show that

Pr

[
max
u∈V

Tu ≤ 4nt log n

]
≥ 1− n−2.

(c) Bound the expectation of the cover time.
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