Randomised Algorithms: Expectation and Concentration Bounds

May 29, 2024

1 Basic techniques

Exercise 1 [In expectation vs whp]
(a) Why would one want to use randomness in an algorithm?

(b) Explain the difference between guarantees that come “in expectation” and guarantees that come
“with high probability”.

(¢) Compare quantitatively the outputs of the following python programs:

import numpy as np

ans = []
for _ in range (20):
m =1
while np.random.random() < 0.8:
m += 1
ans .append (m)
print (ans)

and

import numpy as np

ans = []
for _ in range (20):
n = 10000
m=n
loads = np.zeros(n)
for _ in range(m):
il = np.random.randint(0, n - 1)
i2 = np.random.randint(0, n - 1)
i_min = i1 if loads[il] < loads[i2] else i2

loads[i_min] += 1

ans.append (np.max (loads) - m / n)
print (ans)

Exercise 2 [For sufficiently large n] In several settings, we only care about what happens for suffi-
ciently large n. Convince yourself that the following inequalities hold for sufficiently large n:

o 6n +n? < 2n?,
e 3n2 —6n> 2n2,

e 5nlog®n + 3n — 2nlogn > 4nlog? n.

Exercise 3 [High probability events combine well] In this exercise, you will see that high probability
events combine well. (This may make more sense after you have seen a few examples where we combine
high probability events)
(a) Let A and B be two events with Pr[{A] > 1—n"¢and Pr[B] > 1 —n"¢ for some constant ¢ > 0.
Then Pr[ANB]>1-2n"¢.

(b) How would you interpret in words the result in [(a)]?
(¢) More generally for events E1, ..., E,, with Pr[E;] > 1—n~° we have that

m

[

i=1

Pr >1—nc-m.

(d) Let A and B be two events such that Pr[A | B] > 1—n"¢and Pr[B] > 1—n"¢ for some constant
¢>0. Then, Pr[A] >1—2n"°.

(e) How would you interpret in words the result in [(d)f
(f) Generalise the result in [(d)}

Extended Note 1 [Indexed sets] Sometimes you will see (E;)!" , instead of En,...,E, or (E;)%,
instead of E1, Fs,.... This is just for notational convenience.

Exercise 4 [Probability amplification] Consider an algorithm A for a minimisation problem. Further,
assume that A succeeds in finding the minimum solution with probability at least p > 0, otherwise
produces a solution with larger value.
We define the algorithm A’ which repeats algorithm A, ¢ := (% -logn] times for some constant ¢ (and
n being a parameter of the given problem) and returns the minimum of these values. Then, A’ has a
success probability of at least 1 — n=¢.

1.1 Common asymptotics

The following exercise demonstrates the general approach for bounding (discrete) sums using integrals. You
may find it simpler to first attempt the bound on the harmonic numbers and then come back to this.

Exercise 5 [General approach] Let f : [a—1,b+1] — R be a monotonically decreasing and integrable
function for a,b € Z. Using the two figures below argue that

b+1

b b
f@)de <3 £6) < / @) da,

a

Lower bound Upper bound
I I I I I
f(a) f(a)
B f(a+1) | f(a+1) a
fla+2 f(a+2
o ‘ f(b) S £(b)
a a+1a+2 --- b—1 b b+1 a—1 a a+4+1a+2 --- b—1 b

Exercise 6 [Harmonic numbers| The n-th harmonic number H, is defined as H, = > | +. Show

that for any n > 1,
Inn< H, <Ilnn+ 1.

Further Reading 1 [Euler—Mascheroni constant] For most applications in algorithms a ©(logn)
bound is sufficient for H,, (let alone a logn + O(1) bound). In case you want to look it up,

lim H, =logn+ v =logn+ 0.577..,

n—oo

where 7 is known as the Euler-Mascheroni constant.

Exercise 7 [Factorial inequalities]
(a) Using Exercise [5| show that

nlogn —n+1<In(n!) <nlogn —n+ 1+ logn,

n n n n
e~(7) §n!§e~n~(f) .
e e

(b) (optional) By drawing a figure and using the concavity of the log(-) function, argue that

and deduce that

2 log(i — 1) + log i
/ logxdxzw,
1—1

By aggregating over all ¢ = 1,...,n show that

n! <eyvn- (Z)n

Further Reading 2 [Stirling’s approximation formula] Stirling’s approximation formula says that

n

nl ~n"e "V2mn,

and the following bounds hold for all n,

!
el/(12n+1) < n. < el/(12n),
nte~"\/2mw

1.2 Inequalities and Taylor estimates
In the course, you have often used the inequality 1 4+ x < e®. In this section you wil prove that this inequality

holds using a general (and simple) methodology.

Extended Note 2 Assuming that we want to prove the inequality
g9(z) < f(z),
for all values = in some range [a, b].

e Step 1: Define the function
h(z) := f(z) — g(z).

e Step 2: Determine the minimum value of this function h(z*).

e Step 3: Deduce that

If h(z*) > 0, then the inequality holds. Otherwise, for z* the inequality fails.

Exercise 8 Prove the inequality 1 4+ z < e* for any x € R.

Extended Note 3 [Inequalities via Taylor estimates] Another way to derive inequalities for suffi-

ciently small z is via Taylor estimates. For instance,
2 3
T _ rr
e =142z + o + 3l + ...
Then by truncating the series at a certain point, e.g.,
2
x
B dll
etz

we can obtain upper and lower bounds for sufficiently small x by changing the constant in the last term.
For instance, we can obtain the inequalities,

e <14z + 22,

and
az 1 2
e 21—&—35—1—196.

for any |z| < 1/2.

Exercise 9 [Birthday paradox] In this exercise, you will prove that with (positive) constant probability
you need to take ©(y/n) samples until a collision occurs. Let &; be the event that the first collision occurs
in the first ¢ samples.

(a) Show that the probability that the first ¢ samples are distinct is

Pr[é‘i]:(1_i>.(1_i)-,.,-<1_i;1).

(b) Using the inequality 1 + = < e* and choosing a constant C' > 0 appropriately show that

Pr[&cm] <1/2.

(c) Using the inequality e® <1+ 2 + 22 (for < 1) show that e—u—u’ <1—wuforu<1/2
(d) By choosing a constant ¢ > 0 appropriately show that

Pr [Ec\/g] >1/e.

(e) State and deduce the birthday paradox. Why might it not (always) apply in the real-world?

(f) (Maybe) Looking at the crsids of the students that signed up for “Randomised algorithms”, what
can the birthday paradox say?

Exercise 10 [Lower bounding ratios| In this exercise, we will prove a simple inequality that is useful
for bounding ratios, for instance in approximation algorithms.
For any e € (—1,1), it holds that

(a) Prove the inequality.

(b) Consider a maximisation problem P. Assume you have proven that the optimal solution is at
most n? 4+ 10n and your algorithm returns a solution at least n? — 3nlogn. Then prove that your
algorithm has an approximation ratio of at most 1 + o(1).

(c) Repeat the previous exercise when the lower bound is %ng — 3nlogn,

Exercise 11 [Bernoulli’s inequality] Prove that for any n € N and for any = € [—1, +00), we have
that
(1+2)" > 1+ nz.

1.3 Indicator random variables

Exercise 12 [Basic properties| Let A, B be two events in a sample space €. Then, prove the following
properties for the indicators of these events:
(a) E[14]=Pr[A],
) lanp =14 15,
) 1oa=1—14,
d)].AuB =].A 4=]-B -]-AOBJ
(e) Var[14]=Pr[A]-(1-Pr[A]),
(f) E[(14)*] =Pr[A] for any k > 0.

Exercise 13 [Inequalities]|
(a) Argue that for random variables X and Y such that X <Y (and have finite expectations), we also
have that E[X | < E[Y].

(b) (Markov’s inequality) Let X be a non-negative random variable, then show that for any a > 0,

E| X
Pr(X >a] < []
a
Hint: Consider the indicator r.v. of the event {X > a}.

(¢) (Union bound) Consider n events &, ..., &, in a sample space 2. Then,

ogi] §iPr[&-].

=1

Pr

Hint: See |Lecture 1 slide 12.

Exercise 14 [Fixed points of random permutation] The n passengers of an airplane take a seat
uniformly at random.
(a) What is the number of passengers X that sit in their assigned seat in expectation?

(b) What is the variance of X?

(c) (optional +) Assume that n is divisible by 6, the passengers have arrived in n/2 pairs and there are
n/6 rows of seats each with 6 seats. What is the expected number of pairs that will seat next to
each other?

Exercise 15 [Inversions in a random permutation] Consider a permutation 7 of the set [n] :=
{1,...,n}. An inversion is a pair (¢, 7) such that ¢ < j and m; > m;. Intuitively, it captures the pairs of
indices that are out of order.

Show that if 7 is chosen uniformly at random, then the expected number of inversions N, satisfies

n-(n—l).

E[N] =20

How does this quantity relate to insertion sort?

https://www.cl.cam.ac.uk/teaching/2223/RandAlgthm/lec1_intro.pdf#page=12

Exercise 16 [Records of a random permutation] Given a random permutation 7 of the set [n] :=
{1,...,n}, how many times does line |5/ in the following code execute?

1: function FINDMIN(z1, ..., x,)
2: m < o0

3 fori=1 to n do
4 if z; < m then
5: m < x;

6: end if

7 end for

8 return m

9: end function

Exercise 17 [Local max in random permutation| In a sequence z,..., 2, a local maximum is an
index 7 such that z; is at least as large as its (at most two) neighbours z;_; and z;41.
Compute the expected number of local maxima in expectation for a random permutation of the elements

[n] :={1,...,n}.

Exercise 18 [Number of cycles in random permutation] In this exercise, you will bound the
number of cycles in a random permutation of the elements of the set [n] := {1,...,n}.
(a) Consider a set of distinct elements {41,...,4;} of [n]. Prove that the probability they form a cycle

is
1 1

1
nn-1"n—k+1l

(b) Prove that the expected number of cycles of length k in a random permutation is 1/k.

(¢) Deduce that the total number of cycles is Inn + ©(1).

Exercise 19 [Monte-Carlo Estimation] In Monte-Carlo estimation algorithms, the goal is to estimate
the volume of a body by sampling. For instance, to estimate the value of m, we can randomly sample
points in the [—1, 1] square and count which ones are within the circle of radius 1 centred at the origin.
Then we report the area to the be the count over four times the number of samples taken.

(a) Show that this algorithm produces the correct answer in expectation.

(b) What kind of guarantees can you get by applying Markov’s inequality?
(
(d

(e) How would you modify the algorithm so that you only sample from the square [0, 1]2?

)
¢) What kind of guarantees can you get by applying Chebyshev’s inequality?
) What kind of guarantees can you get by applying the Chernoff bound?

)

Exercise 20 [3-CNF| We are given a CNF formula consisting of m clauses, i.e., an expression of the
form Cy ACoAN...ANCp, with C; = X;, V...V Xic,.- Consider a simple algorithm that randomly assigns
a value to each of the literals X;.

m

(a) Show that when ¢; = 3 for all i € [m], then the output contains g* satisfied clauses in expectation.

(b) Find a similar expression for the general case.

Exercise 21 [Pattern Matching] Consider a fixed pattern P = (p1,...,px) with characters from an
alphabet 3. We want to find the expected number of times that this pattern occurs in a string X of
length n whose characters are chosen uniformly at random from X. (For instance, the pattern “abba”
appears three times in “abaabbabbacabbacc”)

Exercise 22 [LCS Expectation] Consider two strings X and Y of length n whose characters are
generated uniformly at random from the alphabet X. Show that the expected length of the LCS of these

two strings is O(n).

Exercise 23 [LIS Expectation Lower bound] In this exercise, you will prove that the length of the
longest increasing subsequence in a random permutation of [n] := {1,...,n} is Q(y/n).
(a) Consider any sequence X of length n. Further, let ¢; be the length of the LIS ending at character
7 and similarly u; be the length of the longest decreasing subsequence ending at 7.
i. Show that for any ¢ < j we must have that (4;,u;) # (4;,u;).

ii. By considering the pairs with values (¢;,u;) such that 0 < ¢;,u; < \/n/2, argue that there
must be an increasing or decreasing sequence with length at least /n/2.

(b) Deduce that in a random permutation, the length L of the longest common subsequence satisfies

1.4 Useful identities

Exercise 24 [Expectation as sum of probabilities]
(a) Consider a discrete random variable X > 0. Prove that

E[X]=) Pr[X >i].
i=1
(b) Use the above formula to derive the expectation of the geometric random variable X ~ Geom(p).

1.5 More inequalities

Exercise 25 [Reverse Markov’s inequality] Consider a random variable X satisfying deterministi-
cally X < b for some fixed c. Show that for any a < E[X].
E[X]-
Pr(X >a]> M.
b—a

1.6 Coupon collector

Exercise 26 [Expectation] We consider the coupon collecting problem with n coupons. Prove that it

takes n -y 1, % days in expectation to collect all coupons.

Exercise 27 [High Probability] We consider the coupon collecting problem with n coupons. Deduce

C

that the probability it takes more than nlogn + cn days is at most e~°.

2 Probabilistic Method

Exercise 28 Show that every graph G = (V, E) contains a bipartite subgraph with at least |E|/2 edges.

3 Various Algorithms

Exercise 29 Design a randomised algorithm for the following problem. The input consists of an n x n
matrix A with entries in {0,1} and a vector z of length n with entries in the real interval [0, 1]. The goal
is to return a vector y of length n with entries in {0, 1} such that

Pr| max [(Az); — (Ay);| <2y/nlogn | >1—-n"2

i=1,...,n

Hint: Your algorithm should have the property that E[A; ;- y;] =E[A4; ;- z;] for any 1 <i,j <n.

Exercise 30 [Matrix Multiplication Verification] Given three n x n matrices A, B, C, we want to
check if A x B = C. The best known matrix multiplication algorithm takes time Q(n?-37), so we would
like to do the verification faster than that. For simplicity assume that the matrices are binary (i.e.,
their entries are just 0, 1) and the operations are those modulo 2. Consider the algorithm that randomly
samples a vector v € {0,1}" and outputs 1 iff (A x B)v = Cw.

(a) Argue that the check (A x B)v = Cv can be performed more efficiently than matrix multiplication.

(b) Show that the algorithm succeeds with probability > 1/2.
(¢) How would you improve the success probability?
)

(d) How would you apply the algorithm for other inputs?

Exercise 31 [Randomised Min-Cut] In this exercise, you will analyse a simple randomised algorithm
for finding the minimum cut in an undirected graph. The algorithm proceeds by sampling a random edge
(u,v) in the graph and contracting its endpoints. The figures below give two examples of contractions:

)R gh:

The algorithm makes n — 2 contractions until there are two vertices remaining. The number of edges
between the two vertices will the answer for the minimum cut.
(a) Show that if the minimum cut in the graph has size M, then each vertex has degree at least M.

(b) Fix a minimum cut C. Let E; be the event that in the i-th step the algorithm did not contract an
edge of C'. Show that

2 ' 2
Pr[E{]|>1—— d Pr | E; E,|>1————
r[E] > ~ an r ﬂ p

(c) Prove that

n—2
2
P E:l1>21———.
g JQ o n-(n—1)

(d) Using amplification, design an algorithm with success probability at least 1 — n~! of finding a
minimum cut. What is the running time of your algorithm?

Exercise 32 [All min-cuts]|
(a) Using Exercise argue that any graph can have at most (Z) min cuts.

(b) (optional) Show that there is a graph with this number of cuts.
(c) Modify the algorithm from Exercise [28 to return all minimum cuts for the given graph.

Exercise 33 [Karger-Stein algorithm]| (++) Consider the following improvement to the algorithm in
Exercise For convenience we define the function Contract(G,t) to perform ¢ random edge contractions
on graph G.
1: function FASTERMINCUT(G = (V, E))
2: if |V| < 6 then
return BruteForceMinCut(G)
else
te [1+[VI/V2]
G1 ¢ Contract(G,t)
G4 < Contract(G,t)
end if
9: return min(FasterMinCut(G), FasterMinCut(G>))
10: end function

(a) Show that the running time of FasterMinCut(G) for a graph with n vertices satisfies:

T(n) =27 ([1+n/V3]) + O(n?).

(b) Show that T'(n) = O(n?logn).

(c¢) Show that a lower bound P(n) on the probability of success for a graph with n vertices, satisfies

the following recurrence
1
P(n)=1— (1 - 5P ([1 +n/\/§1)> .

(d) (++) Show that P(n) = Q(logn).

(e) Obtain an algorithm for min-cut with success probability at least 1 — n~! and running time
O(nlog®n).

Exercise 34 [Random subsets] You are given a finite set S = {s1,...,8,}.
(a) Give an algorithm to generate a random subset of S.

(b) Let X and Y be two random subsets of S.
i. What is the probability that X C Y7
ii. What is the probability that X UY = S7?
iii. What is the expected size of X UY?
iv. What is the expected size of X NY?

Exercise 35 [Reservoir sampling] We are given a stream of N values, where N is large and unknown.
The values will be presented one by one and we can only store one value at each step (perhaps because
we have limited memory).
We want to sample from this stream one value uniformly at random.

(a) How would you sample the value if N was known?

(b) Consider an algorithm that stores the first value in memory and then for the k-th value aj with
probability 1/k it replaces the value in memory with aj and otherwise it keeps it unchanged.

Show that this algorithm produces a uniform sample from the stream.

(c) Generalise the previous algorithm so that it samples M values uniformly at random from the
stream. At each point in time your algorithm can keep at most M values in memory.

Exercise 36 [Algorithm L] Read about the |Algorithm L|for reservoir sampling and answer the following
questions:
(a) Explain how this algorithm works (without having knowledge of the number of elements in the
stream).

(b) In What sense is it better than the algorithm described in Exercise

Exercise 37 [Algorithm A-Res| Read about Algorithm A-Res|and answer the following questions:
(a) Describe the reservoir problem with weights.

(b) Explain how this algorithm works and prove its correctness.

Exercise 38 [Searching a Random Hash Table] In the Lecture 2 slide 12, it was shown that if we
throw n balls into n bins, then the maximum load of any bin is at most 4-logn/loglog n with probability
at least 1 —n~1.
In this exercise, we are interested in upper bounding the number of operations required for inserting n
(random) elements in a hash table. The additional work is that when we insert an element v to a bin
¢ with X; elements, then we need to go over all of its elements to check if v is present. Therefore, this
requires O(X;) time.

(a) Using the analysis in the lecture, argue that the total time to insert » random keys to a hash table

is O(n - (logn/loglogn)?) with high probability.

(b) Prove that for a binomial r.v. N ~ BIN(n, p),
E[NQ] =n-p+n-(n—1)-p_

(c) Using[(b)} show that the amortised insert time is O(n) in expectation.

Concentration inequalities

Exercise 39 [Chernoff Bound for Balls-into-Bins] Use the following Chernoff bound

Pr(X > (1+6)-B[x]] sep (-T2,

with an appropriate choice of to show that when allocating m balls into n bins uniformly at random,
with m > nlogn, then the the maximum load of any bin is at most > + O(,/%* - log n) with probability

at least 1 — n—2.

Exercise 40 [Number of inversions Concentration] In Exercise you proved that for a random
permutation of elements [n] := {1,...,n}, the number of inversions X is 1 - n(n — 1) in expectation. In
this exercise, you will apply McDiarmid’s inequality to obtain a concentration bound.
(a) Argue that one can generate a random permutation of [n] by sampling n independent values from
U[0,1] and then replacing each with their rank (e.g., (0.1,0.41,0.23,0.21) would correspond to
(1,4,3,2),

(b) Let f be the function that counts the number of inversions in a given permutation. Prove that f
is Lipschitz with parameter n.

(¢) Use McDiarmid’s inequality to deduce that

1
Pr HX — 1 -n(n — 1)‘ < \/n3logn} >1-2n"2

10

https://en.wikipedia.org/wiki/Reservoir_sampling#Optimal:_Algorithm_L
https://en.wikipedia.org/wiki/Reservoir_sampling#Algorithm_A-Res
https://www.cl.cam.ac.uk/teaching/2223/RandAlgthm/lec2_concentration.pdf#page=12

Exercise 41 [Number of Records Concentration] In Exercise you proved that the expected
number of records in a random permutation of elements in [n] is logn + O(1) in expectation. In this
exercise, you will prove concentration.
(a) Let &; be the event that element i is smaller than all previous elements. Then for any ¢ # j the
events & and &; are independent.

(b)

Exercise 42 [Local Maxima Concentration] In Exercise you proved that the expected number
of local maxima in a random permutation of [n] := {1,...,n} is (n +1)/3.
Prove that the number of local maxima is concentrated around this mean.

Exercise 43 [Longest Increasing Subsequence Concentration (I)] In this exercise, you will prove
that the length of the longest increasing subsequence is O(y/n) with high probability.
(a) Let X,, ; be the number of increasing subsquences of length k. Show that

(b) Using Exercise |7} show that

(¢) By arguing that
Pr(L>k]<E[X,],

and using Markov’s inequality, show that for any constant C > 2, we have that

1)206\/ﬁ

Pr[L>Cey/n| < (C

(d) Deduce that E[L] = O(y/n).

Exercise 44 [Longest Increasing Subsequence Concentration (II)] In Exercise you proved
that the length of the longest subsequence in a random permutation of [n] is ©(y/n) in expectation. As
an alternative, use McDiarmid’s inequality to prove that it is concentrated around the expectation.

Exercise 45 [Pattern Matching Concentration] In Exercise we found the expectation for the
number of occurrences N of pattern P (of length k) in a random string X (of length n).
(a) Prove that N is concentrated around its mean.

(b) For which values of N and & does your bound make sense?

Exercise 46 [Searching a Random Hash Table Concentration] In Exercise you proved that
the insertion time of n random elements in a hash table takes amortised O(n) time in expectation.
Let X; be the loads of the bins after the n elements have been allocated, Y; = X? and Y/ = min(Y;, log® n).
Further let Y = > " Y, and Y’ = >"" | V/.

(a) Using Exercise argue that E[Y'] = O(n).

(b) Argue that Y is (5logn)-Lipschitz with respect to the n elements being inserted.
(¢) Prove that Y’ is concentrated around its mean.
)

(d) Deduce that Y is concentrated.

11

Exercise 47 [LCS Concentration| In Exercise[22] you proved that the length n of the longest common
subsequence between two random strings X and Y is ©(n).
Prove that L is concentrated around its mean.

Exercise 48 [Chromatic Number Concentration| The chromatic number x(G) of a graph is the
minimum number of colours to colour the vertices of GG such that no two adjacent vertices have the same
colour.

Consider an undirected graph G where each edge is inserted independently with probability p. Show
that

Pr[|[x(G) —E[X(@)]| > tvn] <2-e7*.

Exercise 49 [Isolated vertices] Consider a graph sampled uniformly at random from the set of graphs
with n vertices and cn edges for ¢ > 0 being constant. Let X be the number of vertices that are isolated,
i.e., have zero degree.

(a) Compute the expected value of X.

(b) Prove concentration for X.

Exercise 50 [Max-Cut Concentration] Consider an undirected, regular graph with degree d, i.e.,
every vertex has exactly d neighbours. Apply the McDiarmid’s inequality in order to prove concentration
for the randomised Max-Cut algorithm. What is the problem of applying it to an arbitrary graph?

Derandomisation

Exercise 51 [Derandomise Max-Cut] Derandomise the Max-cut algorithm that you saw in Lecture
1.

Exercise 52 [Derandomise 3-CNF] Derandomise the algorithm for the 3-CNF problem presented in
Exercise 201

Randomised data structures

Exercise 53 [Randomised Binary Search Trees| In Part IA, you saw that Binary Search Trees
without some balancing mechanism (e.g., rotations) can lead to depths that are Q(n) in size.
In this exercise you will analyse the expected time complexity for a BST where the input values are
random.

(a) What is the expected number of comparisons when building a RBST?

(b) What is the expected number of comparisons when searching for a random element in the RBST?

Exercise 54 [SkipList] The SkipList is a data structure like lists, but it aims to support O(logn) access
time to every element with high probability and it can also serve as a BST.

The idea is that when inserting an element x we also add a random number of pointers, generated by
sampling a GEOM(1/2) (the 1/2 not being important). For instance, here is a randomly generated skip
list, where element 14 has 3 pointers. To search for an element we start from the top left and follow the
pointers as long as we are before our target element.

12

~+

tielelels]

2

?‘0‘0‘

[elelelelelele]
tielelelelels]

L] B L] Do) L] L] L] [2] [[=] [=] [=]

(a) Show that for all of the n items have at most O(logn) levels with probability at least 1 — n=2.

(b) By arguing backwards from the target element to the root, show that the search algorithm needs
O(logn) heads in ©(logn) coin flips and prove that this happens with high probability.

(c) (optional +) Argue that in total this data structure uses O(n) memory.

7 Chernoff Bounds

Exercise 55 [For Geometric r.vs.] Consider n independent geometric random variables X7, ..., X,
with X; ~ GEOM(p).
(a) Prove that for any ¢ > 0,

Ele]< P (1_t)1.

p
(c) Compute the Chernoff bound for X := """ | X; and optimise the choice of ¢ to get for any § > 0,

Pr(X > (140)E[X]] < e (@~ n+d)

8 Puzzles

8.1 Generating Random Variables

Exercise 56 You are given a biased coin which produces heads with probability p and tails with proba-
bility 1 — p, for some unknown p € (0, 1).

e Design an algorithm that uses samples from this biased coin and produces an unbiased binary
value.

e How efficient is your algorithm, i.e. how many biased samples does it need in expectation to
generate an unbiased one (as a function of p)?

Exercise 57

e How would you use a (unbiased) random binary variables to generate random integers in the set
{0,1,...,n}

e What is the expected running time of your algorithm?

Further Reading 3 You can find more problems of this sort here.

13

http://www.eecs.harvard.edu/~michaelm/coinflipext.pdf

Exercise 58 [Random permutation] Design an algorithm that samples a permutation of n elements
uniformly at random. How efficient is your algorithm?

14

	Basic techniques
	Common asymptotics
	Inequalities and Taylor estimates
	Indicator random variables
	Useful identities
	More inequalities

	Probabilistic Method
	Various Algorithms
	Concentration inequalities
	Derandomisation
	Randomised data structures
	Chernoff Bounds
	Puzzles
	Generating Random Variables

