Intro to Probability Solution Notes for Example Sheet 3

1 Sum of distributions

Extended Note 1 [Computing the random variables] Consider two discrete independent random variables X and Y with pmfs f_{X} and f_{Y}. Then, we want to compute the pmf for the random variable $Z=X+Y$.
In order to do this we sum up the probabilities for all ways of making the sum z.

$$
\begin{aligned}
f_{Z}(z) & =\operatorname{Pr}[Z=z]=\sum_{k=-\infty}^{\infty} \operatorname{Pr}[X=k, Y=z-k]=\sum_{k=-\infty}^{\infty} \operatorname{Pr}[X=k] \cdot \operatorname{Pr}[Y=z-k] \\
& =\sum_{k=-\infty}^{\infty} f_{X}(k) \cdot f_{Y}(z-k)
\end{aligned}
$$

Using this formula we can compute the pmf for Z.
For continuous random variables X and Y with pdfs f_{X} and f_{Y}, the formula becomes

$$
f_{Z}(z)=\int_{k=-\infty}^{\infty} f_{X}(k) \cdot f_{Y}(z-k) d k
$$

This type of summation is also known as convolution and it is used in several places, like signal processing, computer vision or efficient computation (see this video if you would like to learn more).

Exercise 1 [Sum of Poisson r.vs.] Consider two independent Poisson r.vs. $X \sim \operatorname{Poi}(\mu)$ and $Y \sim \operatorname{Poi}(\lambda)$. Show that $Z=X+Y \sim \operatorname{Poi}(\mu+\lambda)$.
(Answer) Using the above formula we have that

$$
\begin{aligned}
f_{Z}(z) & =\sum_{k=-\infty}^{\infty} f_{X}(k) \cdot f_{Y}(z-k) \\
& =\sum_{k=0}^{z} \frac{e^{-\mu} \cdot \mu^{k}}{k!} \cdot \frac{e^{-\lambda} \cdot \lambda^{z-k}}{(z-k)!} \\
& =e^{-\mu-\lambda} \sum_{k=0}^{z} \frac{\mu^{k}}{k!} \cdot \frac{\lambda^{z-k}}{(z-k)!} \\
& =\frac{1}{z!} \cdot e^{-\mu-\lambda} \sum_{k=0}^{z} \frac{z!}{k!(z-k)!} \cdot \mu^{k} \cdot \lambda^{z-k} \\
& =\frac{1}{z!} \cdot e^{-\mu-\lambda} \sum_{k=0}^{z}\binom{z}{k} \cdot \mu^{k} \cdot \lambda^{z-k} \\
& =\frac{e^{-\mu-\lambda} \cdot(\mu+\lambda)^{z}}{z!}
\end{aligned}
$$

using in the last step the Binomial sum formula, i.e., $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$. Therefore, $Z \sim \operatorname{Poi}(\mu+\lambda)$.
Exercise 2 [Sum of uniform distributions] Consider three independent uniform distributions $X_{1}, X_{2}, X_{3} \in \mathcal{U}[0,1]$.
(a) Determine the pdf for $S_{2}=X_{1}+X_{2}$.
(b) Determine the pdf for $S_{3}=X_{1}+X_{2}+X_{3}$.
(a) Using the formula, we have that

$$
f_{S_{2}}(z)=\int_{k=-\infty}^{\infty} f_{X_{1}}(k) \cdot f_{X_{2}}(z-k) d k=\int_{k=0}^{1} f_{X_{2}}(z-k) d k
$$

Case $\mathbf{A}[z \in[0,1]$: Here k can be in $[0, z]$, so

$$
f_{S_{2}}(z)=\int_{k=0}^{z} 1 d k=\left.k\right|_{0} ^{z}=z
$$

Case B $[z \in[1,2]]:$ Here k can be in $[z-1,1]$, so

$$
f_{S_{2}}(z)=\int_{k=z-1}^{1} 1 d k=\left.k\right|_{z-1} ^{1}=2-z
$$

Combining these cases, we deduce that

$$
f_{S_{2}}(z)= \begin{cases}z & \text { if } z \in[0,1] \\ 2-z & \text { if } z \in(1,2] \\ 0 & \text { otherwise }\end{cases}
$$

(b) For three random variables, we are going to use the pdf for $S_{2}=X_{1}+X_{2}$,

$$
f_{S_{3}}(z)=\int_{k=-\infty}^{\infty} f_{X_{1}+X_{2}}(z-k) \cdot f_{X_{3}}(k) d k=\int_{k=0}^{1} f_{X_{1}+X_{2}}(z-k) d k
$$

We now consider three cases based on the value of z :
Case $\mathbf{A}[z \in[0,1]]$: Here k can be in $[0, z]$, so

$$
f_{S_{3}}(z)=\int_{k=0}^{z}(z-k) d k=\left.\left(z k-k^{2} / 2\right)\right|_{0} ^{z}=\frac{z^{2}}{2}
$$

Case B $[z \in[1,2]]$: Here k can be in $[0,1]$ and we break the integral depending on whether $z-1=1$ or not. So,

$$
\begin{aligned}
f_{S_{3}}(z) & =\int_{k=0}^{z-1} f_{X_{1}+X_{2}}(z-k) d k+\int_{k=z-1}^{1} f_{X_{1}+X_{2}}(z-k) d k \\
& =\int_{k=0}^{z-1}(2-z+k) d k+\int_{k=z-1}^{1}(z-k) d k \\
& =(2-z) \cdot(z-1)+(z-1)^{2} / 2+z-1 / 2-(z-1) \cdot z+(z-1)^{2} / 2 \\
& =-z^{2}+3 z-\frac{3}{2}
\end{aligned}
$$

Case C $[z \in[2,3]]$: This case is symmetric to Case A. Therefore,

$$
f_{S_{3}}(z)=\frac{1}{2} \cdot(3-z)^{2} .
$$

Exercise 3 Given the following pmf for random variables X and Y, compute the pmf for $Z=X+Y$.

	1	2	3	4
$\operatorname{Pr}[X=x]$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{2}{6}$
$\operatorname{Pr}[Y=y]$	0	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

(Answer)

	1	2	3	4	5	6	7	8
$\operatorname{Pr}[X+Y=z]$	0	0	$\frac{1}{24}$	$\frac{2+2}{24}$	$\frac{1+4+1}{24}$	$\frac{2+2+2}{24}$	$\frac{4+1}{24}$	$\frac{2}{24}$

Question 1: How would you compute the pmf for $X-Y$?
Question 2: How would you recover the marginal distributions given the pmf for $X+Y$ and $X-Y$?

2 Minimum/Maximum of random variables

Extended Note 2 [Computing the distribution function] Given two independent random variables X and Y with cummulative distribution functions F_{X} and F_{Y}, we want to compute the cummulative distribution function F_{Z} for $Z=\max \{X, Y\}$.
The main observation is to see that $\max \{X, Y\} \leq z$ iff both $X \leq z$ and $y \leq z$ (Why?). Then, we obtain

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}[Z \leq z]=\operatorname{Pr}[\max \{X, Y\} \leq z]=\operatorname{Pr}[X \leq z, Y \leq z]=\operatorname{Pr}[X \leq z] \cdot \operatorname{Pr}[Y \leq z] \\
& =F_{X}(z) \cdot F_{Y}(z)
\end{aligned}
$$

Similarly for $Z=\min \{X, Y\}$ we have that

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}[Z \leq z]=1-\operatorname{Pr}[Z>z]=1-\operatorname{Pr}[\min \{X, Y\}>z]=1-\operatorname{Pr}[X>z, Y>z] \\
& =1-\operatorname{Pr}[X>z] \cdot \operatorname{Pr}[Y>z]=1-\left(1-F_{X}(z)\right) \cdot\left(1-F_{Y}(z)\right) .
\end{aligned}
$$

Exercise 4 [Minimum of uniform r.vs.] Consider n independent uniform random variables $X_{1}, \ldots, X_{n} \sim \mathcal{U}[0,1]$.
(a) Determine the cummulative distribution function for $Z=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
(b) Determine the probability density function for Z.
(c) Determine the expectation for Z.
(Answer)
(a) Using the above technique for n random variables we have that for any $z \in[0,1]$,

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}[Z \leq z]=\operatorname{Pr}\left[\max \left\{X_{1}, \ldots, X_{n}\right\} \leq z\right] \\
& =\operatorname{Pr}\left[X_{1} \leq z\right] \cdot \ldots \cdot \operatorname{Pr}\left[X_{n} \leq z\right] \\
& =z \cdot \ldots \cdot z \\
& =z^{n} .
\end{aligned}
$$

Therefore,

$$
F_{Z}(z)= \begin{cases}0 & \text { if } z<0 \\ z^{n} & \text { if } z \in[0,1] \\ 1 & \text { otherwise }\end{cases}
$$

(b) By differentiating, we get the pdf for Z :

$$
f_{Z}(z)=\frac{d}{d z} F_{Z}(z)= \begin{cases}0 & \text { if } z<0 \\ n \cdot z^{n-1} & \text { if } z \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

(c) For the expectation of Z, we have that

$$
\begin{aligned}
\mathbf{E}[Z] & =\int_{z=0}^{1} f_{Z}(z) \cdot z d z \\
& =\int_{z=0}^{1} n \cdot z^{n-1} \cdot z d z \\
& =\int_{z=0}^{1} n \cdot z^{n} d z \\
& =\left.n \cdot \frac{z^{n+1}}{n+1}\right|_{0} ^{1} \\
& =\frac{n}{n+1} .
\end{aligned}
$$

Exercise 5 [Minimum of Exponential r.vs.] Consider two independent Exponential r.vs. $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$. Find the cummulative distribution of $Z=\min \{X, Y\}$.
(Answer) Recall that the cdf of an Exponential r.v. is given by

$$
F_{X}(x)=\left\{\begin{array}{ll}
1-e^{-\lambda x} & \text { if } x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad F_{Y}(y)= \begin{cases}1-e^{-\mu y} & \text { if } y \geq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Therefore, for any $z \geq 0$, we have that

$$
F_{Z}(z)=1-\left(1-F_{X}(z)\right) \cdot\left(1-F_{Y}(z)\right)=1-e^{-\lambda z} \cdot e^{-\mu z}=1-e^{-(\lambda+\mu) \cdot z}
$$

Therefore, Z follows $\operatorname{Exp}(\lambda+\mu)$.
Exercise 6 [Minimum of geometric r.vs.] Consider two independent Geometric r.vs. $X \sim$ Geom (p) and $Y \sim \operatorname{Geom}(q)$. Find the cummulative distribution of $Z=\min \{X, Y\}$.
(Answer) Recall that the cdf of a Geometric r.v. is given by

$$
F_{X}(x)=\left\{\begin{array}{ll}
1-(1-p)^{x} & \text { if } x \geq 0 \\
0 & \text { otherwise },
\end{array} \quad \text { and } \quad F_{Y}(y)= \begin{cases}1-(1-q)^{y} & \text { if } y \geq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Using the formula above, we have that

$$
F_{Z}(z)=1-\left(1-F_{X}(z)\right) \cdot\left(1-F_{Y}(z)\right)=1-(1-p)^{z} \cdot(1-q)^{z}=1-(1-p-q+p q)^{z}
$$

Therefore, Z follows Geom $(p+q-p q)$.

3 Joint and marginal distributions

Exercise 7 The joint probability density function of X and Y is given by

$$
f(x, y)=c \cdot\left(y^{2}-x^{2}\right) \cdot e^{-y}, \quad-y \leq x \leq y, 0<y<\infty .
$$

(a) Find c.
(b) Find the marginal densities of X and Y.
(c) Find $\mathbf{E}[X]$.
(Answer) See solution to problem 9 here.
Exercise 8 The joint probability density function of X and Y is given by

$$
f(x, y)=e^{-x-y}, \quad 0 \leq x<\infty, 0 \leq y<\infty
$$

(a) Find $\operatorname{Pr}[X<Y]$.
(b) Find $\operatorname{Pr}[X<a]$.
(Answer) See solution to problem 10 here.
Exercise 9 The joint probability density function of X and Y is given by

$$
f(x, y)=12 x y(1-x), \quad 0<x<1,0<y<1
$$

(a) Are X and Y independent?
(b) Find $\mathbf{E}[X]$ and $\mathbf{E}[Y]$.
(c) Find $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$.
(Answer) See solution to problem 23 here.

Exercise 10 Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined as follows:

$$
f(x, y)= \begin{cases}c|x+y|, & x=-1,0,1 \text { and } y=-1,0,1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine:
(a) Determine c.
(b) Determine $\operatorname{Pr}[X=0, Y=1]$ and $\operatorname{Pr}[X=1]$.
(c) Determine $\operatorname{Pr}[|X-Y|<1]$.
(Answer) See solution to problem 1 here.
Further Reading 1 [Further exercises] You can find more exercises with solutions here and here.

4 Computing the variance

Exercise 11 [Hats] There are n people taking their hats randomly. Let N be the total number of people that got the correct hat back.
(a) Show that $\mathbf{E}[N]=1$.
(b) Show that $\operatorname{Var}[N]=1$.
(c) Use Chebyshev's inequality to deduce bounds on N.

(Answer)

(a) Let X_{i} be the indicator of the event $\mathcal{E}_{i}=\{$ Person i got their hat back $\}$. Then

$$
\mathbf{E}\left[X_{i}\right]=\operatorname{Pr}\left[\mathcal{E}_{i}\right]=\frac{1}{n}
$$

By linearity of expectation, we have that

$$
\mathbf{E}[N]=\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=n \cdot \frac{1}{n}=1
$$

(b) Using the formula for the variance

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
& =\mathbf{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]-1 \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[X_{i} X_{j}\right]
\end{aligned}
$$

We distinguish two cases for $\mathbf{E}\left[X_{i} X_{j}\right]$:

- Case $[i=j]$: Since $X_{i} \in\{0,1\}$ we have that $X_{i}=X_{i}^{2}$, so

$$
\mathbf{E}\left[X_{i}^{2}\right]=\mathbf{E}\left[X_{i}\right]=\frac{1}{n}
$$

- Case $[i \neq j]$: This one is a bit more involved:

$$
\begin{aligned}
\mathbf{E}\left[X_{i} X_{j}\right] & =\operatorname{Pr}\left[X_{i} X_{j}=1\right]=\operatorname{Pr}\left[X_{i} X_{j}=1 \mid X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1\right] \\
& =\operatorname{Pr}\left[X_{j}=1 \mid X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1\right] \\
& =\frac{1}{n-1} \cdot \frac{1}{n}
\end{aligned}
$$

since given that person i got the correct hat back, there are $n-1$ remaining items in $n-1$ slots, so the probability that j also got the correct hat back is $1 /(n-1)$.

By combining the two cases, we have that

$$
\operatorname{Var}[X]=n \cdot \frac{1}{n}+n \cdot(n-1) \cdot \frac{1}{n \cdot(n-1)}-1=1
$$

Exercise 12 [Max-Cut] In Part IA Algorithms, you saw the Min-Cut problem, where given a graph $G=(V, E)$ the goal is to find a subset $S \subseteq V$ such that the number of the edges crossing S and $V \backslash S$ is minimised. In this exercise, we will look at the problem of maximising the number edges crossing the cut.
Consider the algorithm that goes through the vertices one by one and adds it to S independently with probability $1 / 2$.
(a) Show that the exected size C of the cut produced is $|E| / 2$. Argue that this is within a factor 2 of the optimal.
(b) Compute the Var $[C]$.
(c) Use Chebyshev's inequality to deduce bounds on C.

(Answer)

(a) For each edge $e \in E$, let X_{e} be the indicator of the event $\mathcal{E}_{e}=\{$ edge e crosses the cut $\}$. Then, for edge $e=(u, v)$, then

$$
\mathbf{E}\left[X_{e}\right]=\operatorname{Pr}\left[\mathcal{E}_{e}\right]=\operatorname{Pr}[u \in S, v \notin S]+\mathbf{P r}[u \notin S, v \in S]=\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2}
$$

Therefore, by linearity of expectation

$$
\mathbf{E}[C]=\mathbf{E}\left[\sum_{e \in E} X_{e}\right]=\sum_{e \in E} \mathbf{E}\left[X_{e}\right]=|E| / 2
$$

The maximum cut can have at most $|E|$ edges, therefore, this simple algorithm gives a 2-approximation for max-cut in expectation.
(b) Using the formula for the variance

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
& =\mathbf{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]-|E|^{2} / 4 \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left[X_{i} X_{j}\right]-|E|^{2} / 4 .
\end{aligned}
$$

We distinguish two cases for $\mathbf{E}\left[X_{i} X_{j}\right]$:

- Case $[i=j]:$ Since $X_{i} \in\{0,1\}$ we have that $X_{i}=X_{i}^{2}$, so

$$
\mathbf{E}\left[X_{i}^{2}\right]=\mathbf{E}\left[X_{i}\right]=\frac{1}{2} .
$$

- Case $[i \neq j]$: This one is a bit more involved

$$
\begin{aligned}
\mathbf{E}\left[X_{i} X_{j}\right] & =\operatorname{Pr}\left[X_{i} X_{j}=1\right]=\operatorname{Pr}\left[X_{i} X_{j}=1 \mid X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1\right] \\
& =\operatorname{Pr}\left[X_{j}=1 \mid X_{i}=1\right] \cdot \operatorname{Pr}\left[X_{i}=1\right]
\end{aligned}
$$

Now we consider further subcases based on the number of common vertices between edges $i=$ $\left(u-1, v_{1}\right)$ and $j=\left(u_{2}, v_{2}\right)$,

- Case $\left[u_{1} \neq u_{2}, v_{1} \neq v_{2}\right]$: The two edges are independent so

$$
\mathbf{E}\left[X_{i} X_{j}\right]=\frac{1}{2} \cdot \frac{1}{2} .
$$

- Case $\left[u_{1} \neq u_{2}, v_{1}=v_{2}\right]$: The two edges share a vertex. They both cross the cut iff the two different vertices are in the oposite sets, which again happens with probability $1 / 2$

$$
\mathbf{E}\left[X_{i} X_{j}\right]=\frac{1}{2} \cdot \frac{1}{2}
$$

By combining the cases, we have that

$$
\operatorname{Var}[X]=|E| / 2+|E| \cdot(|E|-1) / 4-|E|^{2} / 4=|E| / 4
$$

