Intro to Probability Example Sheet 3

1 Sum of distributions

Extended Note 1 [Computing the random variables] Consider two discrete independent random variables X and Y with pmfs f_{X} and f_{Y}. Then, we want to compute the pmf for the random variable $Z=X+Y$.
In order to do this we sum up the probabilities for all ways of making the sum z.

$$
\begin{aligned}
f_{Z}(z) & =\operatorname{Pr}[Z=z]=\sum_{k=-\infty}^{\infty} \operatorname{Pr}[X=k, Y=z-k]=\sum_{k=-\infty}^{\infty} \operatorname{Pr}[X=k] \cdot \operatorname{Pr}[Y=z-k] \\
& =\sum_{k=-\infty}^{\infty} f_{X}(k) \cdot f_{Y}(z-k)
\end{aligned}
$$

Using this formula we can compute the pmf for Z.
For continuous random variables X and Y with pdfs f_{X} and f_{Y}, the formula becomes

$$
f_{Z}(z)=\int_{k=-\infty}^{\infty} f_{X}(k) \cdot f_{Y}(z-k) d k
$$

This type of summation is also known as convolution and it is used in several places, like signal processing, computer vision or efficient computation (see this video if you would like to learn more).

Exercise 1 [Sum of Poisson r.vs.] Consider two independent Poisson r.vs. $X \sim \operatorname{Poi}(\mu)$ and $Y \sim \operatorname{Poi}(\lambda)$. Show that $Z=X+Y \sim \operatorname{Poi}(\mu+\lambda)$.

Exercise 2 [Sum of uniform distributions] Consider three independent uniform distributions $X_{1}, X_{2}, X_{3} \in \mathcal{U}[0,1]$.
(a) Determine the pdf for $S_{2}=X_{1}+X_{2}$.
(b) Determine the pdf for $S_{3}=X_{1}+X_{2}+X_{3}$.

Exercise 3 Given the following pmf for random variables X and Y, compute the pmf for $Z=X+Y$.

	1	2	3	4
$\operatorname{Pr}[X=x]$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{2}{6}$
$\operatorname{Pr}[Y=y]$	0	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

2 Minimum/Maximum of random variables

Extended Note 2 [Computing the distribution function] Given two independent random variables X and Y with cummulative distribution functions F_{X} and F_{Y}, we want to compute the cummulative distribution function F_{Z} for $Z=\max \{X, Y\}$.
The main observation is to see that $\max \{X, Y\} \leq z$ iff both $X \leq z$ and $y \leq z$ (Why?). Then, we obtain

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}[Z \leq z]=\mathbf{P r}[\max \{X, Y\} \leq z]=\operatorname{Pr}[X \leq z, Y \leq z]=\operatorname{Pr}[X \leq z] \cdot \operatorname{Pr}[Y \leq z] \\
& =F_{X}(z) \cdot F_{Y}(z)
\end{aligned}
$$

Similarly for $Z=\min \{X, Y\}$ we have that

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}[Z \leq z]=1-\operatorname{Pr}[Z>z]=1-\operatorname{Pr}[\min \{X, Y\}>z]=1-\operatorname{Pr}[X>z, Y>z] \\
& =1-\operatorname{Pr}[X>z] \cdot \operatorname{Pr}[Y>z]=1-\left(1-F_{X}(z)\right) \cdot\left(1-F_{Y}(z)\right) .
\end{aligned}
$$

Exercise 4 [Minimum of uniform r.vs.] Consider n independent uniform random variables $X_{1}, \ldots, X_{n} \sim \mathcal{U}[0,1]$.
(a) Determine the cummulative distribution function for $Z=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
(b) Determine the probability density function for Z.
(c) Determine the expectation for Z.

Exercise 5 [Minimum of Exponential r.vs.] Consider two independent Exponential r.vs. $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$. Find the cummulative distribution of $Z=\min \{X, Y\}$.

Exercise 6 [Minimum of geometric r.vs.] Consider two independent Geometric r.vs. $X \sim \operatorname{Geom}(p)$ and $Y \sim \operatorname{Geom}(q)$. Find the cummulative distribution of $Z=\min \{X, Y\}$.

3 Joint and marginal distributions

Exercise 7 The joint probability density function of X and Y is given by

$$
f(x, y)=c \cdot\left(y^{2}-x^{2}\right) \cdot e^{-y}, \quad-y \leq x \leq y, 0<y<\infty
$$

(a) Find c.
(b) Find the marginal densities of X and Y.
(c) Find $\mathbf{E}[X]$.

Exercise 8 The joint probability density function of X and Y is given by

$$
f(x, y)=e^{-x-y}, \quad 0 \leq x<\infty, 0 \leq y<\infty
$$

(a) Find $\operatorname{Pr}[X<Y]$.
(b) Find $\operatorname{Pr}[X<a]$.

Exercise 9 The joint probability density function of X and Y is given by

$$
f(x, y)=12 x y(1-x), \quad 0<x<1,0<y<1
$$

(a) Are X and Y independent?
(b) Find $\mathbf{E}[X]$ and $\mathbf{E}[Y]$.
(c) Find $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$.

Exercise 10 Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined as follows:

$$
f(x, y)= \begin{cases}c|x+y|, & x=-1,0,1 \text { and } y=-1,0,1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine:
(a) Determine c.
(b) Determine $\operatorname{Pr}[X=0, Y=1]$ and $\operatorname{Pr}[X=1]$.
(c) Determine $\operatorname{Pr}[|X-Y|<1]$.

Further Reading 1 [Further exercises] You can find more exercises with solutions here and here.

4 Computing the variance

Exercise 11 [Hats] There are n people taking their hats randomly. Let N be the total number of people that got the correct hat back.
(a) Show that $\mathbf{E}[N]=1$.
(b) Show that $\operatorname{Var}[N]=1$.
(c) Use Chebyshev's inequality to deduce bounds on N.

Exercise 12 [Max-Cut] In Part IA Algorithms, you saw the Min-Cut problem, where given a graph $G=(V, E)$ the goal is to find a subset $S \subseteq V$ such that the number of the edges crossing S and $V \backslash S$ is minimised. In this exercise, we will look at the problem of maximising the number edges crossing the cut.
Consider the algorithm that goes through the vertices one by one and adds it to S independently with probability $1 / 2$.
(a) Show that the exected size C of the cut produced is $|E| / 2$. Argue that this is within a factor 2 of the optimal.
(b) Compute the Var $[C]$.
(c) Use Chebyshev's inequality to deduce bounds on C.

