Intro to Probability Example Sheet 3

1 Sum of distributions

Extended Note 1 [Computing the random variables] Consider two discrete independent random variables X and Y with pmfs f_X and f_Y . Then, we want to compute the pmf for the random variable Z = X + Y.

In order to do this we sum up the probabilities for all ways of making the sum z.

$$f_Z(z) = \mathbf{Pr} \left[Z = z \right] = \sum_{k=-\infty}^{\infty} \mathbf{Pr} \left[X = k, Y = z - k \right] = \sum_{k=-\infty}^{\infty} \mathbf{Pr} \left[X = k \right] \cdot \mathbf{Pr} \left[Y = z - k \right]$$
$$= \sum_{k=-\infty}^{\infty} f_X(k) \cdot f_Y(z - k).$$

Using this formula we can compute the pmf for Z.

For continuous random variables X and Y with pdfs f_X and f_Y , the formula becomes

$$f_Z(z) = \int_{k=-\infty}^{\infty} f_X(k) \cdot f_Y(z-k) \, dk.$$

This type of summation is also known as *convolution* and it is used in several places, like signal processing, computer vision or efficient computation (see this video if you would like to learn more).

Exercise 1 [Sum of Poisson r.vs.] Consider two independent Poisson r.vs. $X \sim \mathsf{Poi}(\mu)$ and $Y \sim \mathsf{Poi}(\lambda)$. Show that $Z = X + Y \sim \mathsf{Poi}(\mu + \lambda)$.

Exercise 2 [Sum of uniform distributions] Consider three independent uniform distributions $X_1, X_2, X_3 \in \mathcal{U}[0, 1]$.

- (a) Determine the pdf for $S_2 = X_1 + X_2$.
- (b) Determine the pdf for $S_3 = X_1 + X_2 + X_3$.

Exercise 3 Given the following pmf for random variables X and Y, compute the pmf for Z = X + Y.

	1	2	3	4
$\mathbf{Pr}\left[X=x \right]$	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{2}{6}$
$\mathbf{Pr}\left[Y=y\right]$	0	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

2 Minimum/Maximum of random variables

Extended Note 2 [Computing the distribution function] Given two independent random variables X and Y with cummulative distribution functions F_X and F_Y , we want to compute the cummulative distribution function F_Z for $Z = \max\{X, Y\}$.

The main observation is to see that $\max\{X, Y\} \leq z$ iff both $X \leq z$ and $y \leq z$ (Why?). Then, we obtain

$$F_{Z}(z) = \mathbf{Pr} \left[Z \le z \right] = \mathbf{Pr} \left[\max\{X, Y\} \le z \right] = \mathbf{Pr} \left[X \le z, Y \le z \right] = \mathbf{Pr} \left[X \le z \right] \cdot \mathbf{Pr} \left[Y \le z \right]$$
$$= F_{\mathbf{Y}}(z) \cdot F_{\mathbf{Y}}(z).$$

Similarly for $Z = \min\{X, Y\}$ we have that

$$F_{Z}(z) = \mathbf{Pr} [Z \le z] = 1 - \mathbf{Pr} [Z > z] = 1 - \mathbf{Pr} [\min\{X, Y\} > z] = 1 - \mathbf{Pr} [X > z, Y > z]$$

= 1 - **Pr** [X > z] · **Pr** [Y > z] = 1 - (1 - F_{X}(z)) · (1 - F_{Y}(z)).

Exercise 4 [Minimum of uniform r.vs.] Consider *n* independent uniform random variables $X_1, \ldots, X_n \sim \mathcal{U}[0, 1]$.

(a) Determine the cumulative distribution function for $Z = \max\{X_1, \ldots, X_n\}$.

- (b) Determine the probability density function for Z.
- (c) Determine the expectation for Z.

Exercise 5 [Minimum of Exponential r.vs.] Consider two independent Exponential r.vs. $X \sim \mathsf{Exp}(\lambda)$ and $Y \sim \mathsf{Exp}(\mu)$. Find the cumulative distribution of $Z = \min\{X, Y\}$.

Exercise 6 [Minimum of geometric r.vs.] Consider two independent Geometric r.vs. $X \sim \text{Geom}(p)$ and $Y \sim \text{Geom}(q)$. Find the cummulative distribution of $Z = \min\{X, Y\}$.

3 Joint and marginal distributions

Exercise 7 The joint probability density function of X and Y is given by

$$f(x,y) = c \cdot (y^2 - x^2) \cdot e^{-y}, \quad -y \le x \le y, 0 < y < \infty.$$

(a) Find c.

- (b) Find the marginal densities of X and Y.
- (c) Find $\mathbf{E}[X]$.

Exercise 8 The joint probability density function of X and Y is given by

$$f(x,y) = e^{-x-y}, \quad 0 \le x < \infty, 0 \le y < \infty.$$

- (a) Find $\Pr[X < Y]$.
- (b) Find $\Pr[X < a]$.

Exercise 9 The joint probability density function of X and Y is given by

 $f(x,y) = 12xy(1-x), \quad 0 < x < 1, 0 < y < 1.$

- (a) Are X and Y independent?
- (b) Find $\mathbf{E}[X]$ and $\mathbf{E}[Y]$.
- (c) Find $\operatorname{Var}[X]$ and $\operatorname{Var}[Y]$.

Exercise 10 Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined as follows:

$$f(x,y) = \begin{cases} c|x+y|, & x = -1, 0, 1 \text{ and } y = -1, 0, 1\\ 0, & otherwise. \end{cases}$$

Determine:

- (a) Determine c.
- (b) Determine $\mathbf{Pr}[X=0, Y=1]$ and $\mathbf{Pr}[X=1]$.
- (c) Determine $\Pr[|X Y| < 1]$.

Further Reading 1 [Further exercises] You can find more exercises with solutions here and here.

4 Computing the variance

Exercise 11 [Hats] There are n people taking their hats randomly. Let N be the total number of people that got the correct hat back.

- (a) Show that $\mathbf{E}[N] = 1$.
- (b) Show that $\operatorname{Var}[N] = 1$.
- (c) Use Chebyshev's inequality to deduce bounds on N.

Exercise 12 [Max-Cut] In Part IA Algorithms, you saw the Min-Cut problem, where given a graph G = (V, E) the goal is to find a subset $S \subseteq V$ such that the number of the edges crossing S and $V \setminus S$ is minimised. In this exercise, we will look at the problem of *maximising* the number edges crossing the cut.

Consider the algorithm that goes through the vertices one by one and adds it to S independently with probability 1/2.

- (a) Show that the exected size C of the cut produced is |E|/2. Argue that this is within a factor 2 of the optimal.
- (b) Compute the $\operatorname{Var}[C]$.
- (c) Use Chebyshev's inequality to deduce bounds on C.