
General removal in functional arrays is

slow
In this short note, we look at a question asked by one of your classmates (if she wants, I can name her). The
question was whether it is possible to e�ciently remove the n-th element from a functional array. Recall from
the supervision exercises, that it is possible to remove the �rst element of the functional array in O (log n)
time/space and still maintain a functional array representation for the rest of the elements.
The answer is that we can only do this in Ω(n) time in the general case.1 This means that asymptotically it is
equally fast to rebuild the entire array, with the value removed.

1 Speci�c example

Consider a functional array with 15 elements and let's say that we want to remove the 7-th element.

A[1]

A[2] A[3]

A[8] A[12] A[10] A[14] A[9] A[13] A[11] A[15]

A[4] A[6] A[5] A[7]

A[1]

A[2] A[3]

A[8] A[12] A[10] A[14] A[9] A[13] A[11] A[15]

A[4] A[6] A[5] A[7]

Figure 1: (left) The arrangement of functional array for 15 elements. (right) Requesting to remove element 7.

Then this means that we need to update the following entries in the functional array:

A[1]

A[2] A[3]

A[9] A[13] A[11] A[15] A[10] A[14] A[12] A[16]

A[4] A[6] A[5] A[8]

A[1]

A[2] A[3]

A[9] A[13] A[11] A[15] A[10] A[14] A[12] A[16]

A[4] A[6] A[5] A[8]

Figure 2: (left) The elements that directly need to change. (right) The elements that indirectly need to change
because of the immutability of OCaml.

And this in turns means that we need to update all other nodes in the functional array by cascading updates
(see Figure 2), as datatypes are immutable in functional OCaml.

2 General example

To be precise, we need to make the above example general and show that it a�ects Ω(n) of the nodes in the
functional array for an arbitrarily large n.

1Of course there are some elements that can be removed e�ciently (e.g. if they are very close to the beginning or end of the
array). For example you can remove the second one, by removing the �rst two and then re-adding the �rst one.

1



Consider n = 2d − 1 (above d = 4). We will remove the element at index x = 2d−1 − 1 (above x = 7). This
element is the last one at depth d − 1. Hence, removing it means that all elements in the last level need to
be moved. The last level contains 2d−1 = (n + 1)/2 = Ω(n) elements, so we need to update the links to their
parents (and as we said above these actually trigger updates to all elements in the functional array). So, in
order to implement this change we need to modify Ω(n) nodes.

3 Appendix: Removing the �rst element

For completeness, we give the diagrams for removing the �rst element of the functional array and note that
these are just Θ(log n).

A[1]

A[2] A[3]

A[8] A[12] A[10] A[14] A[9] A[13] A[11] A[15]

A[4] A[6] A[5] A[7]

A[2]

A[3] A[4]

A[9] A[13] A[11] A[15] A[10] A[14] A[12] A[16]

A[5] A[7] A[6] A[8]

Figure 3: (left) The original functional array. (right) The functional array with the removal of the �rst element
(the indices refer to the original functional array).

4 Further reading

There do exist data structures which allow to add/remove/access an element at an arbitrary position (and
more) in O (log n) time. One such data structure you will learn in the Part IA Algorithms course and it is
called the red-black tree, which is a special type of BST. Others include: treaps, skip lists, etc.

2


	Specific example
	General example
	Appendix: Removing the first element
	Further reading

