
Foundations of Computer Science

Example Sheet 3
This supervision looks into the OCaml support for functions, common patterns for functions, lazy lists, search
strategies, the stack and queue data structures and imperative programming.

1 Lecture 8

Exercise 1 [Higher-order function]
(a) What is a higher-order function?

(b) Why is it useful that OCaml supports higher order functions?

Exercise 2 [Anonymous functions]
(a) What is the syntax for anonymous functions in OCaml?

(b) Why are they useful?

Exercise 3 [Curried functions]
(a) How many arguments do OCaml functions take?

(b) How does OCaml �support� functions with multiple arguments? Give examples for this.

(c) Is npower (from the �rst lecture) a curried function? What other �reasonable� types could a function
with equivalent behaviour have?

(d) What is the syntax for function application? Explain the error you get when evaluating f 2 3,
where let f x = x + 3.

(e) Write a function convert_4 that takes a function g : ('a * 'b * 'c * 'd) -> 'e and returns
a curried function for g.

Exercise 4 [Partial application]
(a) What is partial application?

(b) What functions result from partial application of the following curried functions?
i. let plus i j = i + j

ii. let lesser a b = if a < b then a else b

iii. let pair x y = (x, y)

iv. let equals x y = x = y

(c) Is there any practical di�erence between the following two declarations of the function f? Assume
that the function g and the curried function h are given.

i. let f x y = h (g x) y

ii. let f x = h (g x)

Exercise 5 [Sorting] How does sorting (e.g. List.sort bene�t from being able to pass functions as

values? What is the type of a sorting function taking a comparison function as an argument? [Note:
Pay attention to the order of the arguments]
(a) (Optional) What rules should the ordering function obey?

Exercise 6 [Map]
(a) What does the map function do?

(b) Use map for the following:

1

i. Replace every negative element of a list of integers with 0.

ii. Add 1 to every element in the list.

iii. Truncate all lists in a list, so that they have 3 or fewer elements.

iv. Append an item to all lists in a list.

Exercise 7 Complete [2016P1Q1 (a),(b)].

Exercise 8 [Predicates]
(a) What is a predicate (in OCaml)?

(b) How is exists de�ned? Give an example.

(c) How is filter de�ned? Give an example.

Exercise 9 [Function composition]
(a) How is function composition de�ned? Write an OCaml function that takes two functions and

returns their function composition. What is its type?

(b) How are these di�erent?

compose (fun x -> x + 1) (fun y -> y * 7)

compose (fun y -> y * 7) (fun x -> x + 1)

(c) Give equivalent single function de�nitions for these two function compositions?

Exercise 10 [Function iteration] The k-th iterate of a function f : 'a -> 'a denoted by fk(x),
is the application of f to x, k times. For example f2(x) = f(f(x)) and f3(x) = f(f(f(x))). Write
an OCaml function that takes a function and a positive integer k that returns the k-th iterate of the
function.

Exercise 11 Show how to replace any expression of the form List.map f (List.map g xs) by an
equivalent expression that applies List.map only once.

[Source: OCamlWP 5.12]

Exercise 12 [Matrices]
(a) Explain how matrices can be represented using lists. Is there a problem with that?

(b) Explain how to implement transpose using map. What is the time complexity of your implemen-
tation?

(c) Explain how to implement matrix multiplication using map. What is the time complexity of your
implementation?

Exercise 13 [List module]
(a) Go through the functions in the List.Module (you may skip �Association lists� and �Iterators�).

(b) How would you implement flatten, for_all, mapi and exists2? Give examples of how you would
use these functions. How do your implementations di�er from the reference implementations.

(c) Look carefully at the documentation for a few of these functions. What features do you notice?
Do you �nd the documentation useful? Is it better to search on stackover�ow for examples than to
look at the documentation?

2

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p1q1.pdf
https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html
https://github.com/ocaml/ocaml/blob/03839754f46319aa36d9dad56940a6f3c3bcb48a/stdlib/list.ml

2 Lecture 9

Exercise 14 [Delayed vs Lazy] What is the di�erence between delayed and lazy evaluation?

Exercise 15 [Unit type]
(a) What is the unit type and what is its syntax?

(b) What are the uses of unit in OCaml?

Exercise 16 [Lazy lists] Write brief notes on programming with lazy lists in OCaml. Your answer
should include the de�nition of a polymorphic type of in�nite lazy lists, a function to return the tail
of a lazy list, a function to create the in�nite list of all positive integers, and an apply-to-all functional
analogous to the list functional map.

[Source: [2015P1Q2]]

Exercise 17 [From] Explain why the following forms of from and get are wrong:
(a) let rec wrongfrom1 k = Cons(k, wrongfrom1(k+1));;

(b) let rec wrongfrom2 k = Cons(k, fun () -> wrongfrom2 (n + 1));;

(c) let rec get n xx = match n, xx with 0, _ -> [] | n, (Cons(x, xs)) -> x :: get

(n-1) xs();;

(d) let rec get n xx = match n, xx with 0, _ -> [] | n, (Cons(x, xs)) -> x :: get

(n-1) xs;;

Exercise 18 Declare a function to add adjacent elements of a sequence, transforming [x1;x2;x3;x4; . . .]
to [x1 + x2;x3 + x4; . . .].

[Source: OCamlWP 5.30]

Exercise 19 [Interleave] What is the problem with appending two in�nite lists? How does interleave
solve it?

Exercise 20 [Lazy binary tree (++)]
(a) A lazy binary tree either is empty or is a branch containing a label and two lazy binary trees,

possibly to in�nite depth. Present an OCaml datatype to represent lazy binary trees.

(b) Present an OCaml function that produces a lazy binary tree whose labels include all the integers,
including the negative integers.

(c) Present an OCaml function that accepts a lazy binary tree and produces a lazy list that contains
all of the tree's labels

[Source: [2008P1Q5]]

Exercise 21 [All binary lists (++)]
(a) Code the lazy list whose elements are all ordinary lists of zeroes and ones, namely []; [0]; [1];

[0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0];

(b) A palindrome is a list that equals its own reverse. Code the lazy list whose elements are all palin-
dromes of 0s and 1s, namely []; [0]; [1]; [0; 0]; [0; 0; 0]; [0; 1; 0]; [1; 1]; [1; 0;

1]; [1; 1; 1]; [0; 0; 0; 0];, You may take the reversal function List.rev as given.
(Hint: First think how you would generate palindromes of even length.)

[Exercise 9.5 & 9.6 in Lecturer's handout]

3

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p1q5.pdf

Exercise 22 [Nested in�nite lists (+++)]
(a) Write a function diag that takes a lazy list of lazy lists,[

[[z11; z12; . . .],
[z21; z22; . . .], [z31; z32; . . .], . . .]

]
and returns the diagonal, namely the lazy list [z11; z22; z33; . . .].

(b) Write a function that takes two lazy lists [x1;x2;x3; . . .] and [y1; y2; y3; . . .] and a function f of two
arguments; and returns a lazy list of lazy lists like above, with zij = fxiyj .

(c) Write a function that converts a lazy list of lazy lists like above to a lazy list whose elements are
all of the zij , enumerated in some order.

[Source: [2015P1Q2]]

Exercise 23 [Lazy enumeration of change (+++)] Code a function to make change using lazy lists,
delivering the sequence of all possible ways of making change. Using sequences allows us to compute
solutions one at a time when there exists an astronomical number. Represent lists of coins using ordinary
lists. (Hint: to bene�t from laziness you may need to pass around the sequence of alternative solutions
as a function of type unit -> (int list) seq.)

[Exercise 9.3 in Lecturer's handout]

3 Lecture 10

Exercise 24 [Queues] Write brief notes on the queue data structure and how it can be implemented
e�ciently in OCaml. In a precise sense, what is the cost of the main queue operations? (It is not required
to present OCaml code.)

[Source: [2014P1Q2]]

Exercise 25 [Queue example] Show the internal state of the (e�cient OCaml) queue after each of the
following operations: push 1, push 2, push 3, pop, push 4, pop, push 5, push 6, pop, pop, pop, pop.

Exercise 26 [Stacks] Write brief notes on the stack data structure. How can it be implemented in
OCaml?

Exercise 27 [BFS/DFS] Explain how BFS and DFS works. For each case, what is the order that the
nodes are traversed?

Exercise 28 [Iterative Deepening]
(a) What is the main issue with BFS?

(b) How does depth-�rst iterative deepening search solve this? Derive its space and time complexity.

4

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p1q2.pdf

Further Reading 1 [More on making lazy programs] Read the handout on �Techniques for gener-
ating lazy sequences�. We will probably cover some of the material there in the revision session.

Further Reading 2 [More on searching for solutions] Read the handout on �Brief notes on complete
search techniques�. We will probably cover some of the material there in the revision session.

4 Lecture 11

Only attempt exercises in this section if the lecturer covered them.

Exercise 29 What are the guarantees that pure functions provide in contrast to non-pure functions?
What are any reasons for introducing non-pure functions in a program?

Exercise 30 [References] What is the syntax and types for references in OCaml?

Exercise 31 [Swap] Write an OCaml function to exchange the values of two references xr and yr.

[Exercise 12.4 in Lecturer's handout]

Exercise 32 [While]
(a) What is the syntax for while loops in OCaml?

(b) Implement fact, npow and foldl using while loops in OCaml.

(c) Write an imperative version of fib.

Exercise 33 [Mutable lists]
(a) Describe how mutable lists are implemented in OCaml.

(b) Write the nth OCaml function.

(c) Write an OCaml function update that takes a list x, a position i and a value v, and sets the i-th
element of the list to v.

Exercise 34 [Revisiting all tails] Provide example code (and output) to demonstrate that the result
returned by all_tails (e.g. [1;2;3;4], [2;3;4], [3;4], [4]) occupies linear (to the length of the
original list) space.

5

