
Foundations of Computer Science

Example Sheet 1
The �rst supervision is about the core principles of Computer Science. This includes programming in OCaml,
understanding the types of OCaml, understanding core principles of type systems, understanding how to mea-
sure e�ciency of algorithms and proving properties of algorithms using the principle of induction.

1 Preliminaries

Remember to test the code that you write with examples. To deepen your understanding (and also as practice
for the exams), it is good to try to �rst run the examples on paper.

Exercise 1 Write an OCaml function that converts degrees to radians and a function that converts
radians to degrees.

Exercise 2 Write an OCaml function that takes 3 integers and returns the largest one.

Exercise 3 Write an OCaml function that takes 4 integers and outputs the pair of integers with the
maximum sum.

Exercise 4 Write an OCaml function that takes 3 integers and outputs the pair of integers with the
maximum product.

Exercise 5 [Sequences] Write an OCaml function to compute:
(a) The n-th term in an arithmetic sequence.

(b) The sum of the �rst n terms in an arithmetic sequence.

(c) The n-th term in a geometric sequence.

(d) The sum of the �rst n terms in a geometric sequence.

(e) The n-th term in a harmonic sequence.

(f) The sum of the �rst n terms in a harmonic sequence.

2 Lecture 1

Exercise 6 One solution to the year 2000 bug involves storing years as two digits, but interpreting them
such that 50 means 1950 and 49 means 2049.
(a) Write an OCaml function that converts between this format and the 4-digit representation.

(b) Write an OCaml function to compare two years in this format.

(c) Write an OCaml function to add/subtract an integer amount of years from another.

[Exercises 1.1, 1.2 in Lecturer's handout]

Extended Note 1 [Types and type inference] In OCaml, almost everything is an expression and
all valid expressions must have a type. If you type an invalid expression, you get a compilation error.
An expression is typically denoted by e (e1, e2 if there are many) and the type is denoted by T (T1, T2

if there are many). The type of the expression tells us the type of the result we get once we evaluate
expression (if we get any). For example,

1. The expression e = 10 + 20 has type int (sometimes we write this as e : int). When e is evaluated
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(or executed) it will produce the value 30 which has type int .

2. The expression e = let f x = x + 1 has type int → int , meaning that e evaluates to a function
takes integers as inputs and outputs integers.

3. The expression e = let f x = x > 3 has type int → bool , meaning that e evaluates to a function
that takes integers as inputs and outputs booleans.

When writing OCaml code, we can choose to explicitly state value types (e.g., let add_int ((x:int),

(y:int)) = x + y;;), known as type constraints or allow the OCaml compiler to infer them.

Exercise 7
(a) Write two OCaml functions: one to compute the mean of three integers and one to compute the

mean of three �oats. What are the types of the two functions?

(b) Write two OCaml functions: one to compute the median of three integers and one to compute the
median of three �oats. What are the types of the two functions?

(c) (open-ended) Some programmers add type constraints to functions that don't need them (e.g., let
f(x:int) = x + 1;; or let g(x:int) = (x, x);;) in OCaml? What are the bene�ts and what
are the downsides?

[Source: [1999P1Q5]]

Exercise 8 [Types] What are the types of (+) and (+.)? Why did the authors of OCaml choose to
have two di�erent operations? What alternatives did they have?

Exercise 9 [Value declaration] What is the syntax for value declarations? Why are they useful?

Exercise 10 [If-statement]
(a) What is the syntax for if-statements?

(b) What are the type restrictions that must hold for an if-statement? In your answer, consider
the OCaml expression if e1 then e2 else e3 with types e1 : T1, e2 : T2 and e3 : T3. What
conditions must hold for the types T1, T2 and T3?

Exercise 11 [Function declaration]
(a) What is the syntax for function declarations?

(b) What are the type restrictions that must hold for the declaration of a function with one argument?

Exercise 12 [andalso and orelse]
(a) How would you implement andalso (&&) and orelse (||) using if-statements?

(b) How would you implement andalso (&&) and orelse (||) using functions? Why is it not equivalent
to the native implementation?

(c) Why is the implementation de�ned to be equivalent to that of if-statements and not that of
functions?

(Hint: If you get stuck, have a look at the o�cial documentation.)

Exercise 13 [Recursive functions]
(a) What is a recursive function?

(b) What is the problem with the following function let rec nsum n = n + nsum (n-1);;?
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Exercise 14 [Fibonacci sequence] The Fibonacci sequence is de�ned as Fn = Fn−1+Fn−2 (for n > 1)
with F0 = 0 and F1 = 1.
(a) Compute the �rst 7 terms of the Fibonacci sequence.

(b) Write a recursive function that computes the n-th Fibonacci number. What is the largest value
that it can compute in under a second? Can you make it more e�cient?

Exercise 15 For each of the following expressions, indicate whether it compiles and if it does state its
type.
(a) let f x y = if x = y then x else 0

(b) let f x y = if x / y < 1 then x else y

(c) let f x y = if x /. y < 1 then x else y

(d) let f x y = if x / y < 1.0 then x else y

(e) let f x y = if x < y then x else y

(f) let f x y = if x / y < 3 then x else 2.1

Exercise 16 [Floating point precision] Because computer arithmetic is based on binary numbers,
simple decimals such as 0.1 often cannot be represented exactly. Write a function mul that performs the
computation m

x+ x+ . . .+ x︸ ︷︷ ︸
n

where x has type float. (It is essential to use repeated addition rather than multiplication!)
The value computed with n = 10000 and x = 0.1 may print as 1000.0, which looks exact. If that
happens, then evaluate the expression mul 0.1 10000 - 1000.0.
An error of this type has been blamed for the failure of an American Patriot Missile battery to intercept
an incoming Iraqi missile during the �rst Gulf War. The missile hit an American Army barracks, killing
28 people.

[Exercise 1.5 in Lecturer's handout]

Exercise 17 [Floating point precision] Consider the golden ratio ϕ = 1+
√
5

2 .
(a) Show that it satis�es ϕ = 1

ϕ−1 .

(b) Write an OCaml function that computes a sequence of �oat numbers where the n-th term is given
by γn = 1

γn−1−1 (for n > 0) and γ0 = ϕ. What do you notice? [Hint: in OCaml,
√
5 is expressed

as sqrt 5.0.]

[Exercise 1.6 in Lecturer's handout]

Exercise 18 [Floating point] Explain the following outputs:
(a) Int64.of_float(9007199254740993.0) gives 9007199254740992L.

(b) 3.0 +. 3E-90 gives 3.0

Exercise 19 [Operator precedence (+)]
(a) What is operator precedence?

(b) Which operator comes �rst plus, minus or negation? Explain the following results:
i. 3.0 +. -3.0 +. 3E-90 gives 3E-90.

ii. 3E-90 +. 3.0 -. 3.0 gives 0.0.

(c) Which operator comes �rst function application or plus? What should the results of the following
be given that let f x = x * 2?

i. f 2+3
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ii. f f 2

Exercise 20 [In�x operators (Optional)] Any function that takes two arguments can be registered as
in�x. Consider let (+++) x y = x + y and let ( *** ) x y = x * y + 1. The parentheses around
the function names register the function as in�x (only for function names with special characters). The
precedence is determined by the �rst character of the function name. What do the following expressions
return?
(a) 3 +++ 4 *** 5

(b) 3 +++ 4 *** 5 *** 6

Exercise 21 [Environment] What do the following lines of code do? Why?

let a = 10;;

let f x = x + a;;

let a = 20;;

f 5;;

Extended Note 2 [Coding style] There are many valid coding styles (e.g.� here and here) that one
can follow. Following best principles and keeping the code simple is good for many reasons. Throughout
the course you will see many coding practices that are better (in some way) than others. Here, I list two
to get you into the spirit:

1. Avoid parentheses when they are not needed: 4 * r * r evaluates to the same value as ((4) *

r) * (r), but the second one adds unnecessary clutter.

2. Do not write if ... then true else false nor if ... then false else true. Why?
What would you use instead?

(In general, coding style best practices are not carved in stone.)

3 Lecture 2

Extended Note 3 [Induction]
(You will see more of mathematical induction in the Discrete Maths course)
The principle of mathematical induction is a technique that can (among other things) be used to reason
that a program is correct. If we want to prove that a statement holds over all positive numbers (in the
Discrete Maths course this will usually be for all non-negative integers), then it su�ces to show that:

1. it holds for n = 1 (base case), and

2. if it holds for n = k then it also holds for n = k + 1

Example 1 Prove that

S(n) =
1

1× 2
+

1

2× 3
+ . . .+

1

n× (n+ 1)
=

n

n+ 1
.

Proof. We will start by proving the base case, for n = 1:

S(1) =
1

1× 2
=

1

1× (1 + 1)
,

which holds trivially.
Assume that it holds for n = k, that is 1

1×2 + 1
2×3 + . . .+ 1

k×(k+1) = k
k+1 , then we need to show that it

holds for n = k + 1. For n = k + 1, the sum is written as

S(k + 1) =
1

1× 2
+

1

2× 3
+ . . .+

1

k × (k + 1)
+

1

(k + 1)× (k + 2)
.
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The �rst k terms are equal to the S(k) term, so

S(k + 1) = S(k) +
1

(k + 1)× (k + 2)
.

Using the induction hypothesis,

S(k + 1) =
k

k + 1
+

1

(k + 1)× (k + 2)
.

With simple algebraic manipulation we get,

S(k + 1) =
k · (k + 2)

(k + 1)× (k + 2)
+

1

(k + 1)× (k + 2)
=

k · (k + 2) + 1

(k + 1)× (k + 2)
=

k2 + 2k + 1

(k + 1)× (k + 2)

=
(k + 1)2

(k + 1)× (k + 2)
=

k + 1

k + 2

This shows that it also holds for n = k+1, so by the principle of mathematical induction it holds for all
natural numbers.

Example 2 Prove that the following program computes the sum of integers from 1 to n

let rec nsum n =

if n = 1 then 1

else n + nsum (n-1);;

Proof. Again, we start by proving the base case: For n = 1, the function gets into the �rst branch of the
if-statement and returns 1, which is the correct answer.
Assume that it holds for n = k, that is that calling sum_1_to_n k returns S(k) = 1 + . . .+ k. Then we
need to show that sum_1_to_n (k + 1) returns S(k+1). Note that S(k+1) = S(k)+ (k+1) and k+1
is always greater than 1, so when the function is called it will enter the second branch. By the induction
hypothesis, sum_1_to_n k returns S(k). Therefore, second branch returns k + 1 + S(k) = S(k + 1).
Hence, it holds for S(k + 1) and so it holds for all natural numbers.

Note: The base case does not have to start with 0. Consider the following example:

Example 3 Prove that 2n > 2n for every positive integer n > 2.

Proof. We begin the base case for n = 3. The LHS is equal to 23 = 8 and the RHS is 2 · 3 = 6. So, the
inequality holds.
Assume that it holds for n = k, that is 2k > 2 · k (induction hypothesis), then we need to show that
2k+1 > 2 · (k + 1). By multiplying the inequality obtained by the induction hypothesis, we have

2k > 2 · k ⇒ 2 · 2k > 2 · 2 · k ⇒ 2k+1 > 2k + 2k > 2k + 4 > 2 · (k + 1) ⇒ 2k+1 > 2 · (k + 1)

Therefore, it holds for n = k + 1 and by the principle of mathematical induction it holds for all natural
numbers greater than 2.

Exercise 22 [Sum]
(a) Using the principle of mathematical induction, show that

n∑
i=1

i =
1

2
n · (n+ 1).

(b) Using the theorem above, write a more e�cient version for computing the sum of the �rst n
numbers.

(c) For which cases does your algorithm fail?

(d) When does integer over�ow happen?
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(e) (+) Is there a case where your function might over�ow, even if the sum �ts in an integer? How can
you �x this? [Hint: Argue that n or n+ 1 must be even].

Exercise 23 [Naive power]
(a) Using the principle of induction show that naive power computes xn.

(b) In terms of n, how many multiplications does your function perform?

(c) For which cases does the function fail?

(d) Modify the function to compute the power of an integer.

Exercise 24 [E�cient power (++)]
(a) Using the principle of induction (with the stronger hypothesis that the function returns correct

values for all n ≤ k instead of just n = k), show that the power function in Section 1.6, correctly
computes xn.

(b) Approximately how many multiplications does this function perform in terms of n.

Exercise 25 [Is it a power]
(a) Write an OCaml function that takes a positive integer v and determines if v is a power of 2.

(b) Write an OCaml function that takes positive integers v and b and determines if v is a power of b.

Extended Note 4 Page 14 does not contain the full derivation. The following contains more details:

nsum 3 ⇒ if 3 = 0 then 0 else 3 + nsum 2

⇒ if false then 0 else 3 + nsum 2

⇒ 3 + nsum 2

⇒ 3 + if 2 = 0 then 0 else 2 + nsum 1

⇒ 3 + if false then 0 else 2 + nsum 1

⇒ 3 + (1 + nsum 1)

⇒ 3 + (2 + if 1 = 0 then 0 else 1 + nsum 0)

⇒ 3 + (2 + if false then 0 else 1 + nsum 0)

⇒ 3 + (2 + (1 + nsum 0))

⇒ 3 + (2 + (1 + if 0 = 0 then 0 else 0 + nsum − 1))

⇒ 3 + (2 + (1 + if true then 0 else 0 + nsum − 1))

⇒ 3 + (2 + (1 + 0))

⇒ 3 + (2 + 1)

⇒ 3 + 3

⇒ 6

A glimpse of formal semantics. We can de�ne formally the operation of the if-statement as follows. Let
e1 ⇒ v1, then if v1 = true, then

if e1 then e2 else e3 ⇒ e2

Otherwise if v2 = false,
if e1 then e2 else e3 ⇒ e3

Exercise 26 [Expression evaluation] Show some of the derivation steps for the expression power(3,

12).
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Extended Note 5 [Recursive vs Tail recursive]
To investigate further how a tail-recursive function is evaluated di�erently from a non-tail-recursive
function, we will use the debugging capabilities of OCaml.
Step 1: De�ne the recursive and iterative versions to sum integers from 1 to n.

let rec nsum n =

if n = 0 then 0

else n + nsum (n-1);;

let rec nsumIter (n, ans) =

if n = 0 then ans

else nsumIter(n-1, (n + ans));;

Step 2: Enable tracing, which shows the input arguments for each function call and the its return value.

#trace nsum;;

#trace nsumIter ;;

Step 3: Execute nsum 5 and nsumIter 5. Note that all nsumIter function calls return the same value.
For the OCaml implementer, this means that there is no reason to keep in memory the inputs (nor
intermediate values) of the previous function calls, only of the last one. Then, the implementation
should chain the returned value of the last function call to the return value of the �rst function call.

nsum 5

nsum 4

nsum 3

nsum 2

nsum 1

nsum 0

nsum () = 0

nsum () = 1

nsum () = 3

nsum () = 6

nsum () = 10

nsum () = 15

nsumIter (5, 0)

nsumIter (4, 5)

nsumIter (3, 9)

nsumIter (2, 12)

nsumIter (1, 14)

nsumIter (0, 15)

nsumIter () = 15

nsumIter () = 15

nsumIter () = 15

nsumIter () = 15

nsumIter () = 15

nsumIter () = 15

(You will learn more about how the compiler achieves this in the Part IB Compiler Construction course)

Exercise 27 [Factorial function] The factorial of a positive integer n is given by n! = n · (n−1) · . . . ·1.
(a) Write a recursive function to compute the factorial.

(b) Write an iterative function to compute the factorial. Verify that it is iterative by inspecting the
values returned by the functions.

Exercise 28 [Iterative power functions]
(a) Write an iterative version of the power function.

(b) Write an iterative version of the e�cient power function.
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Exercise 29 [Tail-recursion]
(a) What is the bene�t of tail-recursion?

(b) Why would someone not use tail-recursion?

Extended Note 6 [Big-O notation] You will learn more about Big-O notation in the Part IA algo-
rithms course
The formal de�nition for O(·) notation is the following:
f(n) is in O(g(n)) i� there exist c > 0 and n0 such that for all n ≥ n0, 0 ≤ f(n) ≤ c · g(n).
Example 1 Let f(n) = n and g(n) = n2. Show that f(n) = O(g(n)).

Proof. Consider c = 1, then we need to show that there is an n0 such that for all n ≥ n0, 0 ≤ f(n) ≤
c · g(n), or equivalently that 0 ≤ n ≤ n2. The �rst part of the inequality (n ≥ 0 is true for all n ≥ 0).
Now we will investigate when is the second part true:

n ≤ n2 ⇔ 0 ≤ n2 − n ⇔ 0 ≤ n · (n− 1).

For n ≥ 0 and n ≥ 1, the product n · (n− 1) is non-negative, hence the inequality holds. Therefore, we
must choose c = 1 and n0 = 1.

Proving that f(n) = O(g(n)) is generally harder directly using the de�nition. Instead we rely on using
the following properties:

1. O(1) is contained in O(na) for a > 0.

2. O(na) is contained in O(nb) if a ≤ b.

3. O(an) is contained in O(bn) if a ≤ b.

4. O(log n) is contained in O(na) for all a > 0.

5. If O(g1(n)) is contained in O(f1(n)) and O(g2(n)) is contained in O(f2(n)), then O(g1(n)+ g2(n))
is contained in O(f1(n) + f2(n)) (for positive functions g1 and g2).

6. O(α · f(n)) is equivalent to O(f(n)).

Example 2 Let f(n) = 4 · n2 + 3n+ 8. Show that f(n) = O(n2).

Proof. Split f(n) = f1(n) + f2(n) + f3(n), where f1(n) = 4 · n2, f2(n) = 3n and f3(n) = 8. Using
Property 6, f1(n) = O(n2), f2(n) = O(n) and f3(n) = O(1). Using Property 4, f1(n) = O(n2),
f2(n) = O(n2) and f3(n) = O(n2). Using Property 5, f(n) = O(n2 + n2 + n2) = O(3 · n2). Using
Property 6, f(n) = O(n2).

Exercise 30 [Big-O notation]
(a) (Open-ended) Why is the big-O notation used? Can we not just do empirical computations of the

running time?

(b) The following method can be used to measure the evaluation time of some expression.

let measure () =

let t = Sys.time() in

(<expression you want to time >; Printf.printf "%fs\n" (Sys.time()

-. t));;

Measure the time it takes to execute sillySum (section 2.5) for values n = 20 to n = 30. Plot the
graph vs input size and compare with the theoretical running time.

(c) What assumptions do we usually make when computing the runtime e�ciency of an algorithm?

(d) What is the time complexity of the naive and e�cient power function?
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Exercise 31 [Big-O notation properties (++)]
(a) Show Big-O notation Property 2.

(b) Plot a graph on any plotting software (or Google) to convince yourself that log n is contained in
O(0.1 ·

√
n).

Exercise 32 [Big-Omega and Big-Theta notations]
(a) What is the formal de�nition for big-Omega notation?

(b) What is the formal de�nition for big-Theta notation?

(c) What does it mean for an algorithm to run in polynomial time?

(d) (Open-ended) A friend of yours says that all algorithms that run in polynomial time are extremely
e�cient. They also suggest that non-polynomial time algorithms are of no use. What would you
respond?

Exercise 33 [(+)] The runtime T (n) of an algorithm satis�es the following recurrence relation T (1) = 1
and for n > 0, T (n+ 1) = T (n) + 1. Prove that the runtime is linear in big-O notation.

Exercise 34 [(+)] The runtime T (n) of an algorithm satis�es the following recurrence relation T (1) = 1
and for n > 0, T (n+ 1) = T (n) + n+ 1. Prove that the runtime is quadratic in big-O notation.

Exercise 35 [(+)] The runtime T (n) of an algorithm satis�es the following recurrence relation T (1) = 1
and for n > 0, T (n) = T (n/2) + 1. Prove that the runtime is logarithmic in big-O notation. Assume
that n = 2k.

Exercise 36 [(++)] The runtime T (n) of an algorithm satis�es the following recurrence relation T (1) = 1
and for n > 0, T (n) = T (n/2) + n. Prove that the runtime is linear in big-O notation. Assume that
n = 2k.

Exercise 37 [(++)] Find an upper bound for the recurrence given by T (1) = 1 and T (n) = 2T (n/2)+1.
You should be able to �nd a tighter bound than O (n log n).

[Exercise 2.4 in Lecturer's handout]

Exercise 38 [Matrix exponentiation (+++)] (Only attempt this if you know about matrices). Con-
sider two 2× 2 matrices A and B.
(a) Implement an OCaml function that takes the elements of A and B and returns the matrix product

of these two.

A ·B =

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
(b) Modify the power function to compute the power of a matrix.

(c) What is the time complexity of your algorithm?

(d) Implement an OCaml function that takes a 2× 2 matrix A and a 2-element vector v and computes
A · v.

(e) The Fibonacci sequence is de�ned as Fn = Fn−1+Fn−2 (for n > 1) with F0 = 0 and F1 = 1. Show
that for n > 0 [

Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn

Fn−1

]
(f) Using the functions you developed above, show how to compute the n-th Fibonacci number in

O(log n) time.
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4 Lecture 3

Exercise 39 [Tuples]
(a) What is the syntax for creating tuples?

(b) What is the syntax for accessing the elements of a tuple?

(c) How are the types of tuples represented? What are the types of the expressions you mentioned
above?

(d) (+) Would it be possible to have a function that takes a tuple and an integer n and returns the
n-th component of the tuple?

Exercise 40 [Tuples - types] State the types for the following tuples.
(a) (1, 2, 3)

(b) (("A", 2), 3.0)

(c) (2.0 +. 3.0)

(d) (nsum, 2)

(e) (1, "AA", 2.0)

(f) ([(1, 2.0); (3, 4.0)], "AA")

(g) ([(1, 2); (3.0, 4)], "AA")

Exercise 41 [Polymorphism]
(a) What is polymorphism? What are type variables? Explain the term by giving references to let

identify x = x and let swap (x, y) = (y, x).

(b) Why is polymorphism useful?

Exercise 42 [Lists]
(a) What is the syntax for creating a list and for appending an item to a list?

(b) What is the syntax for accessing an element from an list?

(c) What is the type of a list? Can a list have items of di�erent types?

(d) What is the type of the empty list? Why?

(e) How are lists represented internally?

Exercise 43 [Lists - types]What are the results of the following expressions and what are their types?
(a) []

(b) [1; 2; 3]

(c) [[1; 2], [1]]

(d) [1, [2; 3]]

(e) [1; 2] = [1; 2]

(f) [1] = [2]

(g) [] = []

Exercise 44 [Function pattern matching]
(a) What is the syntax for de�ning a function with pattern matching?

(b) De�ne the function nsum using pattern matching.

(c) What is the problem with the following function declaration?

let rec nsum = function
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n -> n + nsum (n-1)

| 0 -> 0;;

(d) When can you get a �This pattern-matching is not exhaustive.� warning? What happens if the
warning is realised?

Exercise 45 [Head Tail]
(a) Implement the head and tail functions.

(b) What are their types?

Exercise 46 [Null]
(a) What does the null function do?

(b) What is its type?

Exercise 47 [Append]
(a) What does append do? What is its type?

(b) Let ℓ1 and ℓ2 be the lengths of the two lists. What is the e�ciency of append in big-O notation?

(c) Write an e�cient OCaml function for appending one list to another.

Exercise 48 [Reverse]
(a) What does reverse do?

(b) What is the time complexity of nrev in section 3.6?

(c) What is the time complexity of rev in section 3.7?

Exercise 49 [List length]
(a) Write an OCaml recursive function to compute the length of a list.

(b) Write an OCaml iterative function to compute the length of a list.

(c) Are your functions polymorphic? Would there be any disadvantage if these were not polymorphic?

Exercise 50 [Last element]
(a) Write an OCaml iterative function to return the last element of a list.

(b) What happens if we call the function with the empty list?

(c) What is the time complexity of your function? Can we do better?

[Exercise 3.2 in Lecturer's handout]

Exercise 51 [Odd elements] Write an OCaml function that returns the elements at odd positions in
the list. Indexing starts at 0. For example, given [a; b; c; d] it should return [b; d].

[Exercise 3.3 in Lecturer's handout]

Exercise 52 [Strange functions (++)]
(a) What is the type of let rec loop x = loop x? Why?

(b) Why does let rec trunc x = trunc produce an error?

[Exercise 3.4 in Lecturer's handout]
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Exercise 53 [All tails] Implement an OCaml function tails to return the list of the tails of its
argument. For example, given [1; 2; 3] it should return [[1; 2; 3]; [2; 3]; [3]; []] (or perhaps
in a di�erent order).

[Exercise 3.5 in Lecturer's handout]

Exercise 54 [All pairs] Implement an OCaml function all_pairs that takes a list and returns all
possible ordered pairs in any order. For example, given [1; 2; 3] it could return [(1, 2); (1, 3);

(2, 3)].
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