
    

Data Science: Revision Exercises
Maximum Likelihood Estimator (MLE)

Extensions to the Supervision Work

Exercise 1 : In E1Q11, you computed the MLE using a single sample.

1. A friend of yours wants to hash with multiple hash functions and report the mean of the
MLEs. Perform an experiment to see how well this performs in practice for  and 
repetitions.

2. Now, derive the proper MLE for having multiple samples. Compare the accuracy of this
estimator with your friend’s estimator.

Exercise 2 : We have two biased coins with probability  and . We are goining to throw  coin
tosses, starting with the first coin and after  coin tosess we switch to the second coin (where  is
chosen at the beginning).

1. Write code which given , ,  and  generates a sequence of coin tosses.
2. Compute the likelihood function for ,  given  and .
3. Write code to find the MLE estimate for ,  and  given the observations. Hint: You will

need to loop over the possible values of . Hint 2: Compute the log-likelihood to avoid
underflow.

4. Run the MLE code for the example dataset you generated in (1). How close is your estimate?
5. (optional) What is the time complexity of your algorithm (in terms of )?
6. (optional) How can you efficiently generalise this for  coins? What is the running time in this

case? Hint: You need to use dynamic programming.

Exercise 3 : In the lecture notes, you derived the MLE for the Binomial distribution when  is
unknown. Now, we will investigate the case where  is unknown.

Suppose that  is a realisation of a random sample from a binomial distribution with parameters 
, where  is known and  is unknown. (For example, this could correspond to flipping a coin

with a known probability, but not knowing how many times the coin was flipped).

1. Write an expression for the likelihood .
2. Show that  for .

3. Show that

4. Deduce that  is an MLE. Show that if  is an integer, then there are two MLEs.

Exercise 4 : In Exercise 1.1.2 of the lecture notes, you used the plug-in principle also known as the
invariance principle.
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1. State and prove the invariance property for the MLE. Hint: Look here if you are having
trouble.

2. Find the MLE estimate for the variance of the Binomial distribution with known  and
unknown .

3. Find the MLE estimate for  given observations  from .
4. Find the MLE estimate for  given observations  from .
5. Why is the invariance property important?

Exercise 5 Are the MLE estimators biased?:

1. Recall from Part IA Probability, what it means for an estimator to be biased.
2. Is the estimator of E1Q2 biased?
3. Is the estimator of E1Q4 biased? See E1Q11(a) for the distribution of the maximum. What

happens as ?
4. Is the estimator of E1Q6 biased?
5. (optional) If you are interesting in learning more about the MLE being unbiased, see the

Fisher Information Project.

Exercise 6 : Download the dataset containing the total expences per MP. Using the analysis of
E1Q5, compare the average expenses for MPs in London and MPs out of London. Do the
assumptions apply here?

(optional) Perform a similar analysis for the average expenses between parties (or among genders).
(You will need to find another dataset that maps MPs to their parties).

Exercise 7 : (+) The unigram model in natural language processing models the probability of a
sentence as  as  where  are the  words of the sentence.
Given  sentences , show that the MLE for the parameters  are , where  is the
number of times word  occurs in any sentence and  is the total number of words in all
sentences.

Hint: This question is essentially asking you for the MLE of the multinomial distribution.

Additional exercises

Exercise 8 : A very inexperienced archer shoots an arrow  times at a disc of (unknown) radius .
The disc is hit every time, but at completely random places. Let  be the distances of the
various hits to the center of the disck.

1. Show that given  the pdf is  for .
2. Determine the Maximum Likelihood estimate for .

Exercise 9 : Suppose that  is a dataset, which is a realisation of a random sample from a
Rayleigh distribution, which is the continuous distribution with pdf  for 

. Determine the maximum likelihood estimator for .

Exercise 10 : Suppose that  is a dataset, which is a realisation of a random sample from
a distribution with pdf
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Determine the MLE for .

Exercise 11 : Suppose that  is a dataset, which is a realisation of a random sample from
a distribution with pdf

1. Determine the MLE for .
2. Is there anything weird with this distribution?

Exercise 12 : (+) Suppose that  is a dataset, which is a realisation of a random sample
from a distribution with pdf

Determine the maximum likelihood estimator for .

Exercise 13 : Suppose that  is a dataset, which is a realisation of a random sample from
a distribution with pdf

Determine the maximum likelihood estimator for  and .

Exercise 14 : (+) Create your own MLE exercise.

Random variable transformations

Revision

1. You are given a random variable , its cdf  and a function . Let .
1. Find the cdf for  for the case where  is non-decreasing.
2. Find the cdf for  for the case where  is non-increasing.
3. Describe how you would find the cdf for  for the case where  is not monotonic.

2. What does it mean to generate a random variable?
3. How is generating a sample from a distribution related to random variable transformation

(for increasing functions)?
4. Describe the general approach for generating a sample from a distribution with cdf . What

is the graphical interpretation for this?

Transformation

Exercise [Linear transformation]: Consider r.v.  and  for constants  ( ) and 
. Find the cdf of  in terms of the cdf of .
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Exercise [Constant transformation]: Consider r.v.  with cdf  and the transformation 
 where  is a constant. Find the pdf ?

Exercise [Cubic transformation]: Consider r.v.  and . Find the cdf and pdf
for .

Exercise: Redo exercise 1 from Example Sheet 1.

Exercise [Sine transformation]: Suppose . Consider . Find the cdf for 
.

Exercise [Square transformation]: Suppose  is a continuous random variable. Find the cdf and
pdf for .

Exercise [Normal-gamma squared relationship]: Let , show that  follows
a gamma distribution.

NumPy and SciPy

Exercise 15 : Write efficient NumPy expressions for the following:

1. Given a matrix , compute the sum of all its entries.
2. Given a matrix , compute the sum of the squares of all entries.
3. Given a vector , return the items at odd indices.
4. Given a vector , return the sum of entries at odd indices.
5. Given a matrix , vectors  and , compute .
6. Given two vectors of observations  and , keep the observations with .
7. Find the inverse of a square matrix .
8. Given a list of linear models and a matrix  of feature vectors, find a confidence interval for

each point. (Hint: See E3Q8)
9. Given a vector  compute the sum of all entries except for the last one.

10. Given a vector , write code that verifies that this is a probability vector.
11. Given a finite probability vector , write code that computes the expectation and variance.
12. Given a finite probability vector , compute the CDF.
13. Greate a matrix  of size  with the checkboard pattern.
14. (+) Given two vectors  and , find the ordering of the elements of  that minimises .
15. Given a matrix , subtract the mean from each row.
16. Given a matrix  and a value  find the entry in  that is closest to .
17. Given a matrix , compute its rank.
18. Given a vector , find the  largest values.
19. (optional) Implement Conway’s Game of Life in NumPy.

Exercise 16 Counterexamples for fmin:

1. Construct an example of a function for which scipy.optimize.fmin finds a local minimum.
2. Construct an example of a fucntion for which scipy.optimize.fmin fails to find a local

minimum.
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Revision

Define a linear model.
State and prove the connection between linear models and least squares.
What does it mean for the parameters of a model to be identifiable?
When are the parameter values interpretable?
What is a one-hot encoding?
How can we incorporate non-linearity in linear models?
What is a residual plot? How can we use it to improve our model?

Extensions to supervision work

Exercise 17 : Repeat E1Q14, but this time don’t assume that the inflection point is at .

Exercise 18 : Extension of E1Q17.

1. Generate a dataset where the st. deviation changes with (sigma x_i)^3 (or 4). Show how
would you fit this.

2. (optional) Generalise your code, so that it works for general .

Bayesian inference

Revision

1. State Bayes’ rule.
2. What is the posterior, prior and likelihood?
3. What is the main difference between Bayesian and frequentist inference?
4. Derive the posterior distribution for a Normal distribution where the mean is distributed

according to a Normal prior. (E2Q3)
5. Derive the posterior distribution for a Beta distribution where the mean is distributed

according to a Beta prior. (E2Q6)

Recommended reading: Chapter 7 from “The Science of Uncertainty” (see here)

Additional exercises

Exercise 19 : Extension of E2Q1.

1. Choose a relatively simple shape (e.g. a cartoonised tree) and create a PDF that generates
2. How does the plotting method affect the shape generated? What would happen if we run for

sufficiently long?
3. How could you create a density function that “draws” any shape given as a pixel matrix (i.e. a

matrix where each entry is between  indicating the intensity of a pixel at that 
point).

Exercise 20 : We are given a random sample  from the Poisson distribution ,
where  for constant  and . Determine the posterior .

Exercise 21 : We are given a random sample  from the exponential distribution ,
where  for constant  and . Determine the posterior .
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Exercise 22 : Example 7.14 from “The Science of Uncertainty” (see here)

Linear independence

Revision

What does it mean for  vectors to be linearly independent?
Define the space spanned by  vectors.

Exercises

Exercise 23 : Are the following vectors independent?

1.  and 
2.  and 
3. ,  and 

Exercise 24 : Show that the if a vector  belongs to the span of vectors  then 
 are not linearly independent.

Exercise 25 : Using NumPy (np.linalg.matrix_rank) determine whether the following vectors are
linearly dependent:

1. .
2. .
3. .
4. .

Exercise 26 : Given  vectors in , can they be independent? (Do not give a proof for this).

Exercise 27 : What is the minimum number  of vectors in  that can be linearly dependent?

Exercise 28 : Give  vectors in  which are linearly independent.

Confidence intervals

Revision

Define a confidence interval in a frequentist setting.
Define a confidence interval in a Bayesian setting.
Explain the difference between the two.
Describe how to estimate a confidence interval using resampling in a frequentist setting.
Explain how this is applied to E3Q3.
Describe how to estimate a confidence interval by sampling models in a Bayesian setting.
Write down the assumptions and procedure.
Explain how this is applied to E2Q5.

Exercises
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Exercise 29 :

1. Repeat E3Q2, and compute a confidence interval for each of the parameters.
2. Try to write generic code that given a linear model, find an -confidence interval for a

specified parameter.

Exercise 30 :

1. Repeat E2Q5, and compute a confidence interval for each of the parameters.
2. Try to write generic code that given a linear model, find an -confidence interval for a

specified parameter.

Exercise 31 : Extension of E3Q8. Create a similar confidence band some other dataset of the
lecture notes where you did prediction, e.g. the Iris dataset.

Exercise 32 : Perform a hypothesis test for whether the dataset has variance that changes with the
square of variance.

Exercise 33 [Normal confidence interval]: Derive a confidence interval for the mean of the
normal distribution (with known variance) given  samples. Why do we usually choose confidence
intervals of equal tails?

Exercise 34 [Uniform distribution]: In this exercise, you will construct (meaningful) confidence
intervals for the parameter of the uniform distribution. You are given i.i.d. r.vs. 

.

1. Consider the r.v. , show that  (see order statistics
exercises).

2. Show that .
3. By considering , construct a  confidence interval.

Datasets from the course

Exercise 35 : For each of the datasets that you presented in the course, collect the inference tasks
and visualisations that you applied on the datasets. Are there some tasks that you can apply only
on certain types of datasets?

Now, it is your time to to look in more depth at the data sets you have

Exercise 36 : For the police stop-and-search dataset, find an interesting hypothesis or some sort of
modelling task and apply the techniques your learnt to solve it. Use visualisations that support your
insights.

Exercise 37 : For the iris dataset, find an interesting hypothesis or some sort of modelling task and
apply the techniques your learnt to solve it. Use visualisations that support your insights.

Exercise 38 : For the police stop-and-search dataset, find an interesting hypothesis or some sort of
modelling task and apply the techniques your learnt to solve it. Use visualisations that support your
insights.
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Exercise 39 :

1. Find any reasonable dataset online (or in the extended online notes). (You may want to look
at Our World in Data, Kaggle, the UCI repository, the SK-learn datasets, wikipedia)

2. Identity some interesting Data Science task on the dataset.
3. Use the modelling and analysis techniques you learnt in the course to solve the task.
4. Visualise the task. (You may need to iterate between this and the previous two steps multiple

times).
5. Evaluate how well you solved the task.

Exercise 40 : Repeat the previous exercise with several datasets, but there is no need to write code.

Exercise 41 : (optional)

1. Read about the Oxford/AtraZeneca vaccine trials in this journal article or about the Pfizer
trials in this journal article.

2. Describe the sample selection process.
3. What data science techniques are used in the process? How is efficacy defined?
4. How is expert knowledge incorporated in the analysis?
5. (Optional) Using resampling compute a confidence interval on the efficacy.
6. Is there anything that you would have done differently?

Conditional probability and independence

Exercise 42 [Extended multiplication rule]:

1. Show that .
2. Show that .

Exercise 43 [Decomposition]: Show that if  is independent of  then it is independent of 
 and independent of .

Exercise 44 [Weak Union]: Show that if  is independent of , then  is independent of 
given .

Exercise 45 [Contraction]: Show that if  is independent of  given , and  is independent of 
, then  is independent of .

Exercise 46 [Machine translation]: (optional) In this exercise, you will prove the famous
probability formulations of the IBM models. In the context of statistical machine translation, we
have a source sequence  (where  is the -ith element and  denotes the elements ), a
target sequence  and an alignment , indicating connections between the source and the target
sequences.

1. (easy) Show that if  is the length of the target sequence then .

2. Show that assuming independence between  and  given ,
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3. Show that

4. Show that .
Deduce that

Exercise 47 : (Optional) At the station there are three payphones which accept 20p pieces. One
never works, another always works, while the third works with probability 1/2. On my way to the
metropolis for the day, I wish to identify the reliable phone, so that I can use it on my return. The
station is empty and I have just three 20p pieces. I try one phone and it does not work. I try another
twice in succession and it works both times. What is the probability that this second phone is the
reliable one?

Exercise 48 : Parliament contains a proportion  of Party A members, who are incapable of
changing their minds about anything, and a proportion  of Party B members who change
their minds completely at random (with probability ) between successive votes on the same issue.
A randomly chosen member is noticed to have voted twice in succession in the same way. What is
the probability that this member will vote in the same way next time?

Exercise 49 [Polya Urn]: The Polya Urn model is as follows. We start with an urn which contains
one white ball and one black ball. At each second we choose a ball at random from the urn and
replace it together with one more ball of the same colour. Calculate the probability that when 
balls are in the urn,  of them are white.

Markov Chains

Revision questions

1. Define a Markov Chain.
2. What does it mean for a Markov Chain to be periodic?
3. What does it mean for a Markov Chain to be irreducible?
4. What is a stationary distribution of a Markov Chains? Does it always exist?
5. How can you numerically compute the stationary distribution?
6. What are the detailed-balanced equations and how can you use them to compute the

stationary distribution? Does it always work?
7. What are hitting times of a Markov Chain?
8. How can you numerically compute these hitting times (and variants)?

Exercises

This section is under construction

The following handouts have a lot of problems on Makov Chains (some out of the scope of this
class):
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Handout 1
Handout 2

When you solve one of these problems, try to think about computational aspects of the Markov
Chain. Run simulations and see if these match the theoretical result.

https://www.stat.berkeley.edu/~aldous/150/takis_exercises.pdf
http://web.math.ku.dk/~susanne/kursusstokproc/ProblemsMarkovChains.pdf

