
Solution Notes for Data Science
Example Sheet 2

Question 1

There are many ways to approach this problem. A common approach is to split the figure into four regions:
(0) the boundary of the face, (1) the smile, (2) the left eye and (3) the right eye. Then, generate a categorical
random variable K ∈ [0, 3], which indicates which of the four regions to sample. The probability for each region
should be roughly proportional to the area of each region. Now we have to specify a distribution for each of
the regions. Some simple ones are the following:

1. For the boundary of the face, pick the radius R ∼ N (1, 0.072) and the angle Θ ∼ U(0, 2π) with the x-axis.
Then get the x, y coordinates by projecting on the axes, i.e. x = R sin(Θ) and y = R cos(Θ).

2. For the smile, pick R ∼ N (0.5, 0.072) and the angle Θ ∼ U(−π/2.5, pi/2.5) and use the same process to
convert the polar into Cartesian coordinates.

3. For the right eye, choose a normal distribution centred at (0.35, 0.3) with .

4. For the left eye, choose a normal distribution centred at (−0.35, 0.3).

import numpy as np

import matplotlib.pyplot as plt

def rxy():

k = np.random.choice(4, p=[.7, .2, .05, .05])

if k == 0:

# Generate a sample from the boundary of the face.

r = np.random.normal(loc=1, scale=0.07)

theta = np.random.uniform(0, 2 * np.pi)

x = r * np.cos(theta)

y = r * np.sin(theta)

elif k == 1:

# Generate a sample from the smile on the face.

r = np.random.normal(loc=0.5, scale=0.07)

theta = np.random.uniform(-np.pi * 4 / 5, -np.pi / 5)

x = r * np.cos(theta)

y = r * np.sin(theta)

elif k == 2:

# Generate a sample from the right eye.

s = np.random.normal(loc=[0.35, 0.3], scale=0.08)

x, y = s[0], s[1]

elif k == 3:

# Generate a sample from the left eye.

s = np.random.normal(loc=[-0.35, 0.3], scale=0.08)

x, y = s[0], s[1]

return x, y

n = 5000

xy = [rxy() for _ in range(n)]

x, y = [x for x, _ in xy], [y for _, y in xy]

fig, ((ax_x, dummy), (ax_xy, ax_y)) = plt.subplots(2, 2, figsize=(4, 4), sharex='col',

sharey='row',↪→

1



gridspec_kw={'height_ratios': [1, 2],

'width_ratios': [2, 1]})↪→

dummy.remove()

ax_xy.scatter(x, y, s=3, alpha=.1)

ax_x.hist(x, density=True, bins=60)

ax_y.hist(y, density=True, bins=60, orientation='horizontal')

plt.show()

This code gives the following figure.

0.0

0.5

1 0 1

1.0

0.5

0.0

0.5

1.0

0.0 0.5

Follow-up questions:

1. How would you the the smile more thin near the ends?

2. What is the minimal change you can make in the code above to get a winky face?

3. How does the figure change as you take more samples? Is there a problem if you take too many samples?

4. How do you expect the figure to change with the size of the marker?

5. How can you deal with the problem that the inner part of the face boundary can appear more dense?

6. Investigate the posterior of K given two samples between the right eye and the smile.

Question 2

(a) We obtain the pdf for the distribution by differentiation (without forgetting about the indicator function),

Pr(Θ = θ) = − b0
θα0+1

· (−α0) · 1θ≥b0 = α0 ·
b0

θα0+1
· 1θ≥b0

(b) To calculate the posterior,

Pr(θ | x) =
Pr(x | θ) · Pr(θ)

Pr(x)

= (const) ·

(
n∏
i=1

Pr(xi | θ)

)
· Pr(θ)

= (const) ·

(
n∏
i=1

1

θ
1xi∈[0,θ]

)
· Pr(θ)

= (const) · 1

θn
· 1mini xi≥0 · 1maxi xi≤θ · Pr(θ)

= (const′) ·
(

1

θn
· 1maxi xi≤θ

)
·
(
· b0
θα0+1

· 1θ≥b0
)

= (const′) · 1

θn+α0+1
· 1θ≥max(b0,maxi xi)

2



By denoting b1 = max(b0,maxi xi) and α1 = n + α0 + 1 we see that this density is proportional to the
density of Pareto(b1, α1) and it is defined over the same domain. Hence, the posterior is Pareto(b1, α1).

(c) The Pareto pdf has a peak on the left boundary and is decreasing in its domain. So, we will determine a
confidence interval of the form [b1, r] such that Pr(Θ ∈ [b1, r] | X) = 0.95, i.e.

1−
(
b1
r

)α1

= 0.95⇒ r =
b1

0.051/α1
.

b1
θ

P
r(

Θ
=
θ
|x

)

Posterior distribution

(d) Any interval for which there is 0.95 probability of Θ being in it, is a valid confidence interval. So, a valid
confidence interval would also be one of the form [`,∞). For this we have,(

b1
`

)α1

= 0.95⇒ ` =
b1

0.951/α1
.

However, the first interval is more natural as (1) it is the shortest possible confidence interval and (2) it
also contains the peaks of the distribution.

Some follow-up questions:

1. How many valid confidence intervals are there?

2. How should one handle bi-modal distributions?

3. Can you think of a symmetric distribution where the shortest possible interval is not symmetric?

3



Question 3

We start by writing out Bayes’ rule for n independent samples,

Pr(µ | x1, . . . , xn) =
Pr(x1, . . . , xn | µ) Pr(µ)

Pr(x1, . . . , xn)

= (const1) ·

(
n∏
i=1

Pr(xi | µ)

)
Pr(µ)

= (const1) ·

(
n∏
i=1

(const2) exp

(
− (xi − µ)2

2σ2
0

))
· (const3) · exp

(
− (µ− µ0)2

2ρ20

)

= (const4) · exp

(
−

n∑
i=1

(xi − µ)2

2σ2
0

− (µ− µ0)2

2ρ20

)

= (const4) · exp

(
−

n∑
i=1

x2i − 2xiµ+ µ2

2σ2
0

− µ2 − 2µµ0 + µ2
0

2ρ20

)

= (const4) · exp

(
−µ2

(
n

2σ2
0

+
1

2ρ20

)
+ µ

(∑n
i=1 xi
σ2
0

+
µ0

ρ20

)
+ (const5)

)
Now we have an expression in the form −aµ2 + bµ, where a = n

2σ2
0

+ 1
2ρ20

and b =
∑n

i=1 xi

σ2
0

+ µ0

ρ20
and we want to

bring in the form − (µ−c)2
2τ2 .

−aµ2 + bµ = −a
(
µ2 − b

a
µ

)
= −a

(
µ2 − 2 · b

2a
· µ+

(
b

2a

)2

−
(
b

2a

)2
)

= −a
(
µ− b

2a

)2

+ (const6) = −
(
µ− b

2a

)2
1/(
√

2a)
+ (const6).

Hence, the mean and st. deviation are given by

c = − b

2a
=

∑n
i=1 xi

σ2
0

+ µ0

ρ20
n
σ2
0

+ 1
ρ20

and τ =
1

2a
=

1√
n
σ2
0

+ 1
ρ20

.

So, the posterior is of the form

Pr(µ | x1, . . . , xn) = (const)7 · exp

(
− (µ− c)2

2 · τ2

)
.

Two densities that are defined over the same domain and are proportional to each other must be equal. Hence,
the posterior is a Normal distribution N (c, τ2).

Question 4

We start by writing out Bayes’ rule for these n independent samples,

Pr(µ | x1, . . . , xn) =
Pr(x1, . . . , xn | µ) · Pr(µ)

Pr(x1, . . . , xn)
= (const) ·

(
n∏
i=1

Pr(xi | µ)

)
· Pr(µ).

We know that the prior follows a Normal distributionN (0, 52), so it remains to find an expression for Pr(xi | µ).
Let Hi be the indicator random variable for whether the i-th sample is an outlier or not,

Pr(xi | µ) = Pr(xi, Hi = 1 | µ) + Pr(xi, Hi = 0 | µ)

= Pr(xi | Hi = 1, µ) Pr(Hi = 1 | µ) + Pr(xi, Hi = 0 | µ) Pr(Hi = 0 | µ)

= Pr(xi | Hi = 1, µ) Pr(Hi = 1) + Pr(xi, Hi = 0 | µ) Pr(Hi = 0)

= 0.01 · pcauchy(xi) + 0.99 · pnormal(xi).

4



where in the second step we used the chain rule for conditional probability Pr(A,B | C) = Pr(A | B,C)·Pr(B |
C) and the third step follows from independence of µ and Hi. Combining all of these, we get

Pr(µ | x1, . . . , xn) = (const) ·

(
n∏
i=1

(0.01 · pcauchy(xi) + 0.99 · pnormal(xi))

)
· Pr(µ)

Now, we can estimate the posterior distribution using sampling and normalisation. The code below implements
this.

import numpy as np

import scipy.stats

import matplotlib.pyplot as plt

x = [4.3, 2.8, 3.9, 4.1, 9, 4.5, 3.3] # The dataset

samples = 10000 # Number of samples to use.

prior_mu, prior_sigma = 0, 5 # Parameters for the Normal prior.

p_cauchy = 0.01

likelihood_sigma = 0.5

def prx(x, mu):

p1 = scipy.stats.norm.pdf(x, loc=mu, scale=likelihood_sigma)

p2 = scipy.stats.cauchy.pdf(x)

return np.prod((1-p_cauchy) * p1 + p_cauchy * p2)

mus = np.random.normal(loc=prior_mu, scale=prior_sigma, size=samples)

w = np.array([prx(x, mu) for mu in mus])

w = w / np.sum(w)

plt.hist(mus, weights=w, density=True, bins=np.linspace(2, 7, 100))

plt.show()

Running it gives the following plot.

2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

Note 1: Your results may differ because you used different binning.
Note 2: If we had not used the outlier distribution, then the posterior distribution would be quite different

(why? - which samples contribute to this?):

5



2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

Question 5

We assume that the model has the form tempi ∼ N (yi, σ
2), where yi = α+ β1 · sin(2πti) + β2 · cos(2πti).

The choice of priors is not a formal procedure and consists of a collection of heuristics (You may want
to read more about this process in Chapter 7 of “Probability and Statistics: The Science of Uncertainty” by
Michael J. Evans and Jeffrey S. Rosental).

In this case, we choose a ∼ U(8, 12) and γ ∼ U(−0.01, 0.07). We choose β1 and β2 to be dependent
in the following way, choose a radius R ∼ U(6, 8) and an angle Φ ∼ U(0, 2π), then set β1 = R cos(Θ) and
β2 = R sin(Θ). We also choose σ ∼ N (1.41, 0.12), i.e. close to the observed value.

Now, in order to compute the confidence interval we need to estimate empirically the distribution Γ | X.
We do this by marginalising over the parameters α, β1, β2, i.e.

Pr(Γ | X) =

∫
α,β1,β2

Pr(α, β1, β2, γ | X)dαdβ1dβ2

= (const) ·
∫
α,β1,β2

Pr(X | α, β1, β2, γ) · Pr(α, β1, β2, γ)dαdβ1dβ2,

which we estimate by sampling the values of the parameters α, β1, β2, γ using their priors and computing
Pr(X | α, β1, β2, γ) which is just the likelihood of a linear model with Normal noise. From this process we
accumulate tuples of the form (α, β1, β2, γ,Pr(X | α, β1, β2, γ)). We sort these tuples by their γ value, normalise
to find the unknown constant and finally we find the 2.5% and 97.5% quantiles to estimate a symmetric
confidence interval.

An example implementation is the following,

import numpy as np

import pandas

climate =

pandas.read_csv('https://www.cl.cam.ac.uk/teaching/2021/DataSci/data/climate.csv')↪→

climate['t'] = climate.yyyy + (climate.mm - 1) / 12

climate['temp'] = (climate.tmin + climate.tmax) / 2

# Let's look at Oxford, which has longer records.

df = climate.loc[(climate.station == 'Oxford') & (~pandas.isna(climate.temp))]

t, temp = df['t'], df['temp']

# Sample from the prior distributions.

samples = 100000

alpha = np.random.uniform(8, 12, size=samples)

# Introduce a dependence between beta1 and beta2.

beta_magnitude = np.random.uniform(6, 8, size=samples)

beta_angle = np.random.uniform(0, 2 * np.pi, size=samples)

6



beta_1 = beta_magnitude * np.cos(beta_angle)

beta_2 = beta_magnitude * np.sin(beta_angle)

gamma = np.random.uniform(-1 / 100, 7 / 100, size=samples)

sigma = np.random.normal(loc=1.41, scale=0.1, size=samples)

# Compute weights

def logpr(temp, a, b1, b2, gamma, t, sigma):

pred = a + b1 * np.sin(2 * np.pi * t) + b2 * np.cos(2 * np.pi * t) + gamma * (t - 2000)

n = len(temp)

return - n / 2 * np.sqrt(2 * np.pi * (sigma ** 2)) - np.sum((temp - pred) ** 2) / (2 *

(sigma ** 2))↪→

w = np.array([logpr(temp, a, b1, b2, g, t, s) for (a, b1, b2, g, s) in zip(alpha, beta_1,

beta_2, gamma, sigma)])↪→

# Log-exp trick in order to avoid underflow.

w = np.exp(w - max(w))

w = w / np.sum(w)

# Find a 95% confidence interval (see section 6.2 of lecture notes)

i = np.argsort(gamma)

gamma, w = gamma[i], w[i]

F = np.cumsum(w)

print(f'[{gamma[F < 0.025][-1]}, {gamma[F > 0.975][0]}]')

Note 1: For many reasonable choices of priors most of the samples will have a negligible contribution. So,
we have to take a large number of samples.

Note 2: We have used the log-sum-exp trick to avoid underflows.

Question 6

(a) We know that the random variables Be (for e ∈ E = {As,Blk,Mix,Oth,Wh}) follow a Beta distribution
with parameters α = 1/2, β = 1/2 and are independent. So, we can write the prior as

Pr(βAs, βBlk, βMix, βOth, βWh) =
∏
e∈E

Pr(Be = βe) =
∏
e∈E

(const) · (1− βe)−1/2β−1/2e · 1βe∈[0,1]

= (const′)
∏
e∈E

(1− βe)−1/2β−1/2e · 1βe∈[0,1].

(b) As usual, in order to compute the posterior of the parameters given independent samples, we use Bayes’
rule, where for convenience we write β = (βAs, βBlk, βMix, βOth, βWh),

Pr(β | y) =
Pr(y | β) · Pr(β)

Pr(y)
= (const) · Pr(β) ·

n∏
i=1

Pr(yi | β).

We already know the expression for the prior from (a), so we need to determine the expression for the
likelihood term. The outcome of the i-th investigation is assumed to be drawn from the distribution
Yi ∼ Bin(1, βethi) (i.e. a Binomial distribution whose parameter is determined from the ethnicity of the
i-th person). Therefore the probability of an outcome being y given the parameters is

Pr(yi | β) =

(
1

yi

)
(βethi)

yi(1− βethi)
1−yi = (βethi)

yi(1− βethi)
1−yi ,

by noticing that
(
1
yi

)
= 1 for both yi = 0 (

(
1
0

)
= 1)and yi = 1 (

(
1
1

)
= 1). Now, we can write the posterior

as

Pr(β | y) = (const′′)
∏
e∈E

(1− βe)−1/2β−1/2e · 1βe∈[0,1]

n∏
i=1

(βethi
)yi(1− βethi

)1−yi .

7



Normally we would be done, but in this case we can determine exactly the distribution for the posterior.
To see this we group the terms by βe and notice that the term βe appears in the product as many times
as people with ethnicity ethi = e and yi = 1 (minus −1/2). Let’s call this number ne. Similarly, the term
1− βe appears as many times as the number of people with ethnicity ethi = e and yi = 1 (minus −1/2).
Call this number se.

Pr(β | y) = (const′′)
∏
e∈E

(1− βe)−1/2+neβ−1/2+see · 1βe∈[0,1].

Now we can recognise that this is proportional to the density of the five joint independent Beta distribu-
tions and defined over the same domain. So, the posterior for Be is Beta(ne + 1/2, se + 1/2).

Note 1: The random variable Yi follows a Bernoulli distribution. By expressing Yi ∼ Bin(1, p) hints that
you should express Pr(Yi = y) = py(1 − p)1−y. The alternative way to express this probability is using the
indicator function, i.e. Pr(Yi = y) = 1y=1 · p+1y=0 · (1− p). (We can check these two are equivalent by setting
y = 0 into both equations and getting 1− p or by setting y = 1 and getting p).

Note 2: It is interesting that we had a Beta prior and we ended up with a shifted Beta posterior (when
the likelihood is Bernoulli). In Bayesian statistics, we say that the Beta distribution is conjugate to itself with
respect to the Bernoulli likelihood.

Question 7

(a) From Question 3, we know that a prior of N (µ0 = 5, ρ20 = 32) for the mean of a Normal distribution
likelihood with σ0 = 3.2, gives a Normal distribution posterior with

µ1 =

m0

ρ20
+

∑
xi

σ2
0

1
ρ20

+ n
σ2
0

=
5
32 + 10.3·30

3.22

1
32 + 30

3.22

= 10.106 and σ1 =
1√

1
ρ20

+ n
σ2
0

=
1√

1
32 + 30

3.22

= 0.573

(b) There are two unknown parametersM andH. We assume that the mean of the sick patients is independent
of whether the 31-rst patient is sick or healthy. (Think about why this assumption is reasonable). Hence,

Pr(M = µ,H = h) = Pr(M = µ) ·Pr(H = h) =
1√

2πρ20
· e−(µ−µ0)

2/(2ρ20) · (0.99 ·1h=healthy + 0.01 ·1h=sick)

(c) Let x1, . . . , x30 be the test results for the 30 sick patients and x31 be the result for the last patient. As
always we start with Bayes’ rule and take advantage of the independence between samples,

Pr(M = µ,H = h | x1, . . . , x31) = (const) · Pr(x1, . . . , x31 | M = µ,H = h) · Pr(M = µ,H = h)

= (const)

(
31∏
i=1

Pr(xi | M = µ,H = h)

)
· Pr(M = µ) · Pr(H = h)

By noticing that xi for i < 31 is independent of x31 (since the last patient being sick is independent of
another patient’s test result, given the parameters of the model). Hence,

Pr(M = µ,H = h | x1, . . . , x31)

= (const)

(
30∏
i=1

Pr(xi | M = µ)

)
· Pr(x31 | M = µ,H = h) · Pr(M = µ) · Pr(H = h)

By regrouping the terms, we recognise the posterior from Question 3, so it can be simplified as follows,

Pr(M = µ,H = h | x1, . . . , x31)

= (const)

(
30∏
i=1

Pr(xi | M = µ)

)
· Pr(M = µ)︸ ︷︷ ︸

proportional to posterior from Q3

·Pr(x31 | M = µ,H = h) · Pr(H = h)

= (const′) exp

(
− (µ1 − µ)2

2 · σ2
1

)
· Pr(x31 | M = µ,H = h) · Pr(H = h).

8



Notice that µ1 depends on the mean of the samples x1, . . . , x30. Now, we look at the remaining terms

Pr(x31 | M = µ,H = h) · Pr(H = h) =

0.99 · 1√
2π·2.12

exp
(
− x2

31

2·2.12

)
if h = healthy

0.01 · 1√
2π·3.22

exp
(
− (x31−µ)2

2·3.22

)
if h = sick.

Combining all of these we get,

Pr(M = µ,H = h | x1, . . . , x31)

= (const′) exp

(
− (µ1 − µ)2

2 · σ2
1

)
·

0.99 · 1√
2π·2.12

exp
(
− x2

31

2·2.12

)
if h = healthy

0.01 · 1√
2π·3.22

exp
(
− (x31−µ)2

2·3.22

)
if h = sick.

(d) Now, we need to slightly change our posterior since we are given the mean x̄1:30 of the samples x1, . . . , x30
and not the actual samples. Since the average of normal distributions follows a normal distribution, so

X̄1:30 ∼ N (µ, 3.2
2

30 ).

Pr(M = µ,H = h | x̄1:30, x31)

= (const′) exp

(
− (x̄1:30 − µ)2

2 · 3.22/30

)
·

0.99 · 1√
2π·2.12

exp
(
− x2

31

2·2.12

)
if h = healthy

0.01 · 1√
2π·3.22

exp
(
− (x31−µ)2

2·3.22

)
if h = sick.

We want to compute Pr(H = h | x̄1:30, x31), which we do using marginalisation and sampling. The first
step is,

Pr(H = h | x̄1:30, x31) =

∫ ∞
µ=−∞

Pr(M = µ,H = h | x̄1:30, x31)dµ.

The second step is to evaluate this integral using Monte-Carlo estimates, i.e. we sample M and H
using the given priors, compute the unnormalised probabilities and then normalise to find the desired
probability. The code below does this,

import numpy as np

import scipy.stats

samples = 100000 # The number of samples to take.

p_healthy = 0.99 # Probability of a patient being healthy.

mu_healthy, sigma_healthy = 0, 2.1 # Parameters of the Normal distribution for the test

result of healthy patient.↪→

sigma_sick = 3.2 # The st. deviation of the Normal distribution for the test result of

sick patient.↪→

prior_mu_sick, prior_sigma_sick = 5, 3 # Parameters of the Normal prior distribution for

mean of sick patients.↪→

x_31 = 8.8 # The result of the unknown patient.

x_mean, n = 10.3, 30 # The mean result for the 30 sick patients.

# Collecting the samples. We need to sample both parameters: health status and mean for

sick patients.↪→

health_status = np.random.choice(['healthy', 'sick'], p=[p_healthy, 1.0 - p_healthy],

replace=True, size=samples)↪→

mu = np.random.normal(loc=prior_mu_sick, scale=prior_sigma_sick, size=samples)

# The likelihood of the 31rst patient P(x_31 | mu, h) for the two cases of h.

likelihood_x31_healthy = scipy.stats.norm.pdf(x=x_31, loc=mu_healthy, scale=sigma_healthy)

likelihood_x31_sick = scipy.stats.norm.pdf(x=x_31, loc=mu, scale=sigma_sick)

# P(x_{1:30} | mu, h) * P(x_31 | mu, h)

# Note: This is proportional to the posterior (the prior terms are added through sampling).

weights = np.exp(-(x_mean - mu) ** 2 / (2 * n * sigma_sick ** 2)) \

* np.where(health_status == 'healthy', likelihood_x31_healthy,

likelihood_x31_sick)↪→

9



# By summing for both healthy and sick, we can marginalise out "mu".

posterior_healthy = np.sum(weights[health_status == 'healthy']) / np.sum(weights)

print((posterior_healthy, 1 - posterior_healthy))

Question 9

(a) By defining Z = 1Y ∈[0.5,0.7], we want to estimate Pr(Z | X).

Pr(X | Z) =
Pr(Z | X) · Pr(X)

Pr(Z)
= (const) · Pr(Z | X) · Pr(X)

We can therefore generate samples of X, then generate samples of Y and finally count the samples for
which Z = 1 and normalise to find the probability. This is shown in the code below

import numpy as np

import matplotlib.pyplot as plt

# Generate the samples.

samples = 10000

xs = np.random.uniform(-1, 1, size=samples)

ys = np.random.normal(loc=xs ** 2, scale=0.1, size=samples)

# Compute which ones satisfy the criteria.

z = np.array(np.logical_and(ys >= 0.5, ys <= 0.7), dtype=int)

plt.hist(xs, weights=z, density=True, bins=np.linspace(-1, 1, 60))

plt.show()

This gives the following figure.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) By the definition of conditional probability,

Pr(X | X ≥ 0) =
Pr(X ≥ 0, X)

Pr(X ≥ 0)

If X < 0, then the probability is zero. Otherwise, Pr(X ≥ 0, X) = Pr(X), hence

Pr(X | X ≥ 0) =
scipy.stats.normal.pdf(x, µ, σ)

1− scipy.stats.normal.cdf(0, µ, σ)

import numpy as np

import scipy.stats

10



def compute_prob(x, mu, sigma):

if x < 0:

return 0

prob = scipy.stats.norm.pdf(x, loc=mu, scale=sigma) / (

1 - scipy.stats.norm.cdf(0, loc=mu, scale=sigma))

print(f'prob: {prob}')

print(f'Compare with: {scipy.stats.norm.pdf(x, loc=mu, scale=sigma)}')

compute_prob(x=4, mu=2.4, sigma=6)

compute_prob(x=1, mu=-1, sigma=3)

Question 12

Let Hi be the indicator random variable for whether the i-th point is an outlier or not. Then,

Pr(H5 | x1, . . . , xn) =

∫ ∞
µ=−∞

Pr(H5, µ | x1, . . . , xn)dµ

=

∫ ∞
µ=−∞

Pr(H5, µ, x1, . . . , xn)

Pr(x1, . . . , xn)
dµ

=

∫ ∞
µ=−∞

Pr(H5, µ, x1, . . . , xn)

Pr(x1, . . . , xn)
· Pr(H5, µ)

Pr(H5, µ)
dµ

= (const) ·
∫ ∞
µ=−∞

Pr(x1, . . . , xn | H5, µ) Pr(H5, µ)dµ

= (const) ·
∫ ∞
µ=−∞

n∏
i=1

Pr(xi | H5, µ) Pr(H5, µ)dµ

= (const) ·
∫ ∞
µ=−∞

∏
i 6=9

Pr(xi | µ)

 · Pr(xi | H5, µ) Pr(H5) Pr(µ)dµ

= (const) ·
∫ ∞
µ=−∞

∏
i 6=9

(0.01 · pcauchy(xi) + 0.99 · pnorm(xi))

Pr(µ) ·

{
0.01 · pcauchy(x5) if H5 = 1

0.99 · pnormal(x5) if H5 = 0
dµ

Now, we estimate the integrals for Pr(H5 = 1 | x1, . . . , xn) and Pr(H5 = 0 | x1, . . . , xn) up to the (const)
factor. Then by normalising we get an estimate for Pr(H5 = 1 | x1, . . . , xn). The following code implements
this,

import numpy as np

import scipy.stats

x = [4.3, 2.8, 3.9, 4.1, 4.5, 3.3] # Dataset without x5.

x_5 = 9 # The fifth sample in the original dataset.

samples = 10000 # Number of samples to use.

prior_mu, prior_sigma = 0, 5 # Parameters for the Normal prior.

p_cauchy = 0.01

likelihood_sigma = 0.5

def prx(x, mu, h_5):

p1 = scipy.stats.norm.pdf(x, loc=mu, scale=likelihood_sigma)

p2 = scipy.stats.cauchy.pdf(x)

# P(x_1, .. , x_4, x_6, x_7 | mu)

p_others = np.prod((1 - p_cauchy) * p1 + p_cauchy * p2)

11



# P(x_5 | h_5, mu)

if h_5 == 'cauchy':

p_5 = scipy.stats.cauchy.pdf(x_5)

else:

p_5 = scipy.stats.norm.pdf(x_5, loc=mu, scale=likelihood_sigma)

return p_others * p_5

# Generate the samples.

mu = np.random.normal(loc=prior_mu, scale=prior_sigma, size=samples)

h_5 = np.random.choice(['cauchy', 'normal'], p=[p_cauchy, 1 - p_cauchy], replace=True,

size=samples)↪→

# Compute P(h_9, mu | x1, ... , xn).

posterior = np.array([prx(x, m, h) for m, h in zip(mu, h_5)])

# Marginalise out mu.

w_cauchy = np.sum(posterior[h_5 == 'cauchy'])

w_normal = np.sum(posterior[h_5 == 'normal'])

# Normalise to cancel out the constant.

print(w_cauchy / (w_cauchy + w_normal))

12


