
Solution Notes for Data Science
Example Sheet 1

Question 1

This question is asking to compute the PDF of X = f(U), where f(u) = u · (1 − u) is the transformation
function. The plot for the transformation function is shown below:

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

u

f(u)

We start by evaluating the CDF of X and then we will differentiate this to obtain the PDF.

FX(x) = Pr(X ≤ x) = Pr(f(U) ≤ x).

Now we are searching for the regions of U where f(U) ≤ x holds. These are shown below as regions A and B.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

u

f(u)

A B

The crossing points for a fixed x, can be obtained by solving

f(u) = u · (1− u) = x⇔ u2 − u+ x = 0⇔ u =
1−
√

1− 4x

2
or u =

1 +
√

1− 4x

2
.

under the assumption that x ≤ 1/4 (otherwise there are no intersection points). Hence, region A is [0, 1−
√

1−4x
2]

and region B is [1+
√

1−4x
2 , 1]. Hence,

FX(x) = Pr(f(U) ≤ x) = Pr

(
0 ≤ U ≤ 1−

√
1− 4x

2

)
+ Pr

(
1 +
√

1− 4x

2
≤ U ≤ 1

)
=

1−
√

1− 4x

2
+ 1− 1 +

√
1− 4x

2
(since U ∼ U [0, 1])

= 1−
√

1− 4x.

1

Clearly, for x ≤ 0, FX(x) = 0 and for x ≥ 1/4, FX(x) = 1. So, the CDF is given by,

FX(x) =

0 for x < 0

1−
√

1− 4x for 0 ≤ x ≤ 1/4

1 for x > 1/4.

A sketch for which is shown below,

−5 · 10−2 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0.5

1

u

f(u)

By differentiating, we get the PDF,

fX(x) =

0 for x < 0

2√
1−4x

for 0 ≤ x ≤ 1/4

1 for x > 1/4

Question 2

The likelihood for a single sample xi is,

Pr(xi;λ) =
e−λλxi

xi!
.

Assuming the samples are independent, the joint likelihood for the entire dataset is,

lik(λ) = Pr(x1, . . . , xn;λ) =

n∏
i=1

Pr(xi;λ) =

n∏
i=1

e−λλxi

xi!
= e−nλ · λ

∑n
i=1 xi ·

n∏
i=1

1

xi!
.

Maximising the likelihood is equivalent to maximising the log-likelihood (since log is an increasing function),
so

log lik(x1, . . . , xn;λ) = −nλ+

n∑
i=1

xi log λ−
n∑
i=1

log(xi!)︸ ︷︷ ︸
const

.

By differentiating with respect to λ,

∂ log lik(x1, . . . , xn;λ)

∂λ
= −n+

∑n
i=1 xi
λ

.

Setting to zero, we get the MLE estimate λ̂MLE,

∂ log lik(x1, . . . , xn;λ)

∂λ
= 0⇒ λ̂MLE =

∑n
i=1 xi
n

.

(Optional) We can argue that this is a maximum by noticing that the derivative left of λ̂ is positive and on the
right is is negative.

2

Question 3

The implementation is straightforward, we use the formula for the likelihood that we found in Question 2 and
we try to maximise it (in scipy we need to minimise the negative of the log-likelihood which is equivalent to
maximising the log-likelihood). We can verify the output is close to correct by comparing with the mean.

import scipy.stats

import scipy.optimize

import numpy as np

def log_likelihood(x, l):

lik = scipy.stats.poisson.logpmf(x, mu=l)

return np.sum(lik)

x = [3, 2, 8, 1, 5, 0, 8]

initial_guess = 1

lambda_mle = scipy.optimize.fmin(lambda l: -log_likelihood(x, l), 1)

print(f"Lambda MLE: {lambda_mle}")

print(f"Mean : {np.mean(x)}")

One possible output:

Optimization terminated successfully.

Current function value: 19.033583

Iterations: 20

Function evaluations: 40

Lambda MLE: [3.85712891]

Mean : 3.857142857142857

Note 1: Instead of using the log-pmf we could have used the normal pmf, but the product is more prone
to underflows (if we had more values in the dataset).

def log_likelihood_2(x, l):

lik = scipy.stats.poisson.pmf(x, mu=l)

return np.prod(lik)

lambda_mle = scipy.optimize.fmin(lambda l: -log_likelihood_2(x, l), 1)

print(f"Lambda mle : {lambda_mle}")

One possible output:

Optimization terminated successfully.

Current function value: -0.000000

Iterations: 20

Function evaluations: 40

Lambda mle : [3.85712891]

Note 2: Actually, the log-pmf still computes the factorial which we do not need (i.e. makes the computation
slower) and also reduces the precision of the computation. So, we can instead compute,

def log_likelihood_3(x, l):

lik = np.sum(x) * np.log(l) - len(x) * l

return np.sum(lik)

lambda_mle = scipy.optimize.fmin(lambda l: -log_likelihood_3(x, l), 1)

print(f"Lambda mle : {lambda_mle}")

3

One possible output:

Optimization terminated successfully.

Current function value: -9.448021

Iterations: 20

Function evaluations: 40

Lambda mle : [3.85712891]

Question 4

The likelihood for a single sample is,

Pr(xi; θ) =
1

θ
10≤xi≤θ =

1

θ
10≤xi · 1xi≤θ,

by using that 1A and B = 1A · 1B . The joint likelihood for all samples, since they are independent, is given by,

lik(θ) = Pr(x1, . . . , xn; θ) =

n∏
i=1

1

θ
10≤xi ·1xi≤θ =

1

θn
·

(
n∏
i=1

1

θ
10≤xi

)
·

(
n∏
i=1

1

θ
1xi≤θ

)
=

1

θn
·10≤mini xi ·1maxi xi≤θ.

Now we need to maximise this. Note that θ−n is a decreasing as θ increases. Also note that 1maxi xi≤θ = 0
if θ < maxi xi. Hence, this expression is maximised for the smallest possible value of θ that leads to non-zero
likelihood, so θ̂MLE = maxi xi.

The plot below validates our reasoning:

maxi xi

θ

P
r(
x

1
,.
..
,x
n
;θ

)

lik(θ)

Question 5

We start by writing out the likelihood for µ, δ, σ,

lik(µ, δ, σ) = Pr(x1, . . . , xm, y1, . . . , yn;µ, δ, σ)

=

(
m∏
i=1

Pr(xi;µ, δ, σ)

)
·

 n∏
j=1

Pr(yj ;µ, δ, σ)

 (since all samples are independent)

=

(
m∏
i=1

1√
2πσ2

· e−(xi−µ)2/(2σ2)

)
·

 n∏
j=1

1√
2πσ2

· e−(yj−µ−δ)2/(2σ2)

Maximising the likelihood function is equivalent to maximising the log-likelihood, so

log lik(µ, δ, σ) = −n+m

2
· log(2πσ2)− 1

2σ2

 m∑
i=1

(xi − µ)2 +

n∑
j=1

(yj − µ− δ)2

 .

4

Now, we set the partial derivatives equal to zero to get the MLEs for the parameters,

∂ log lik(µ, δ, σ)

∂δ
= 0⇒

n∑
i=1

(yi − δMLE − µMLE) = 0⇒ y = δMLE + µMLE.

∂ log lik(µ, δ, σ)

∂µ
= 0⇒

m∑
i=1

(xi−µMLE)+

n∑
j=1

(yj−µMLE−δMLE) = 0⇒ m·(x−µMLE)+n·(y−µMLE−δMLE) = 0.

By subtracting the second from the first, we get µMLE = x and this gives δMLE = y−x. Note: This is probably
what we would have done if we did not use the MLE.

Finally, the MLE for σ is given by

∂ log lik(µ, δ, σ)

∂σ
= 0⇒ −m+ n

σMLE
+

1

σ3
MLE

·

 m∑
i=1

(xi − µMLE)2 +

n∑
j=1

(yj − µMLE − δMLE)2

⇒ σ2
MLE

σ2
MLE =

1

m+ n
·

 m∑
i=1

(xi − µMLE)2 +

n∑
j=1

(yj − µMLE − δMLE)2

σMLE =

√√√√√ 1

m+ n
·

 m∑
i=1

(xi − µMLE)2 +

n∑
j=1

(yj − µMLE − δMLE)2

.
Question 6

The likelihood for a single sample is given by,

Pr(yi;xi, λ) =
(λxi)

yie−λxi

yi!
.

Since the samples are assumed independent, the joint likelihood is given by,

lik(λ) = Pr(y1, . . . , yn;x1, . . . , xn, λ) =

n∏
i=1

(λxi)
yie−λxi

yi!
= λ

∑n
i=1 yie−λ

∑n
i=1 xi

n∏
i=1

xyii
yi!

= (const)·λ
∑n
i=1 yie−λ

∑n
i=1 xi .

Maximising the likelihood is equivalent to maximise the log-likelihood (note: the only parameter that we have
control over is λ),

log lik(λ) = (const’) +

n∑
i=1

yi log λ− λ
n∑
i=1

xi.

By differentiation, this gives

∂ log lik(λ; y1, . . . , yn, x1, . . . xn)

∂λ
=

∑n
i=1 yi
λ

−
n∑
i=1

xi.

By setting the derivative to zero, we get the maximum likelihood estimate,

∂ log lik(λ; y1, . . . , yn, x1, . . . xn)

∂λ
= 0⇒ λMLE =

∑n
i=1 yi∑n
i=1 xi

.

(Optionally), we can argue that this is a maximum since the derivative is positive on the left of λMLE and it is
negative on the right of λMLE.

Note (from official answers): The answer is intuitively reasonable. The mean of a Po(λxi) is λxi, so
a sensible estimate for λ from a single city is yi/xi, and the estimate we’ve just computed corresponds to
aggregating all the cities into one megopolis with total population

∑n
i=1 xi. But why is this the right way to

aggregate these per-city estimates? Is it obvious (without going through the algebra that we’ve just done) that
it should be (

∑n
i=1 yi)/(

∑n
i=1 xi) rather than just the average of the per-city estimates, n−1

∑n
i=1 yi/xi?

5

Question 7

(Method 1): One way of seeing it is that we are picking a y value for the inflection point, say c and then
we choose slopes m1 and m2 for the two lines. The equation of a line passing through (x0, c) is given by
y = c+mi(x− x0). Hence, the entire function f is given by,

f(x) =

{
c+m1(x− x0) for x < x0

c+m2(x− x0) otherwise.

Using indicator functions, this can be written as,

f(x) = c+m1(x− x0) · 1x<x0
+m2(x− x0) · 1x≥x0

= c+m1(x− x0) · (1− 1x≥x0
) +m2(x− x0) · 1x≥x0

.

The implementation is given below,

import numpy

import matplotlib.pyplot as plt

def pred(x, m1, m2, c, inflection_x=3):

e = numpy.where(x <= inflection_x, 1, 0)

return e * (m1 * (x - inflection_x) + c) + (1-e) * (m2 * (x - inflection_x) + c)

x = numpy.linspace(0, 5, 1000)

plt.plot(x, pred(x, m1=0.1, m2=0.5, c=2))

plt.show()

0 1 2 3 4 5

1.8

2.0

2.2

2.4

2.6

2.8

3.0

(Method 2): Another way of thinking about this is that in the first part there is a linear equation y = m1x+c1
and at the inflection point there is a an extra term that grows linearly with the distance from x0. So this additive
term can be represented as m2(x− x0)1x≥x0 . Hence, the entire function f is given by,

f(x) = m1x+ c+m2(x− x0)1x≥x0
.

The implementation is given below,

import numpy

import matplotlib.pyplot as plt

def pred(x, m1, m2, c, inflection_x=3):

e = numpy.where(x <= inflection_x, 1, 0)

return c + m1 * x + (1-e) * m2 * (x - inflection_x)

6

x = numpy.linspace(0, 5, 1000)

plt.plot(x, pred(x, m1=0.1, m2=0.5, c=2))

plt.show()

0 1 2 3 4 5

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Some further questions:

� What if the inflection point was not specified?

Question 8

Using a one-hot encoding, the linear model becomes,

temp ≈ α+ β1 sin(2πt) + β2 cos(2πt) +
∑

d∈decades

γd1u=d.

In order to create a one-hot encoding for the decades, we search for all decades that appear in the dataset and
we sort them uniquely. Then, we append a one-hot encoding of the decades to the features. There is one more
point for which we must be careful. The one-hot encoded features of the decades are linearly dependent with
the constant term. More formally,∑

d∈decades

1u=d = 1⇒
∑

d∈decades

1

γd
· γd1u=d −

1

α
· α = 0.

This means that we should fit the linear model without the intercept term, i.e.
(Optionally,) below the a visualisation for the Oxford dataset which has more decades of data than Cam-

bridge.

import pandas

import numpy as np

import sklearn.linear_model

import matplotlib.pyplot as plt

climate =

pandas.read_csv('https://www.cl.cam.ac.uk/teaching/2021/DataSci/data/climate.csv')↪→

climate['t'] = climate.yyyy + (climate.mm-1)/12

climate['temp'] = (climate.tmin + climate.tmax)/2

Let's look at Oxford, which has longer records.

df = climate.loc[(climate.station=='Oxford') & (~pandas.isna(climate.temp))]

t,temp = df['t'], df['temp']

d = np.floor(t/10).astype(int) * 10

7

Plotting is better if we work with integers for decades, not strings!

decades = np.sort(np.unique(d))

X = [np.sin(2 * np.pi * t), np.cos(2 * np.pi * t)] + [np.where(d==i, 1, 0) for i in

decades]↪→

model = sklearn.linear_model.LinearRegression(fit_intercept=False)

model.fit(np.column_stack(X), temp)

Use Python's magic sequence-unpacking syntax: gamma is a LIST of remaining coefs

b1, b2, *gamma = model.coef_

_, ax = plt.subplots(figsize=(4, 2.5))

ax.step(decades, gamma, where='post')

ax.set_xlabel("Decade")

ax.set_ylabel("$\\gamma_d$")

plt.show()

1850 1900 1950 2000
Decade

10

11

12

d

Question 9

No, they are not linearly independent, since

g1 + g2 = e1 + e2 + e3 = 1,

where 1 is the all ones vector.
We remove one of the vectors from the set and we will show that {g1, e1, e2, e3} are linearly independent.

There are several ways to do this.
Method 1: Start from the definition we need to show that

∀a, b, c, d. ag1 + be1 + ce2 + de3 = 0⇒ a = b = c = d = 0.

We can expand the LHS,

a

1
1
1
1
0
0
0

+ b

1
1
0
0
1
0
0

+ c

0
0
1
0
0
1
1

+ d

0
0
0
1
0
0
0

=

a+ b
a+ b
a+ c
a+ d
b
c
d

= 0

The last three rows give b = c = d = 0 and the first row gives a = 0.
Method 2: In the previous method we just had to show that a = b = c = d = 0 is the unique solution

to the system, so we want the rank of the matrix of coefficients to be 4. We can compute this using Gaussian
Elimination or we can just use numpy,

import numpy as np

g1 = np.array([1, 1, 1, 1, 0, 0, 0])

e1 = np.array([1, 1, 0, 0, 1, 0, 0])

e2 = np.array([0, 0, 1, 0, 0, 1, 1])

e3 = np.array([0, 0, 0, 1, 0, 0, 0])

8

print(f"Rank: {np.linalg.matrix_rank(np.column_stack([g1, e1, e2, e3]))}")

Output: Rank 4

Question 10

The linear model can be written as,

1outcome=“find” ≈
∑

g∈genders

αg1gender=g +
∑

e∈ethnicities

βe1eth=e.

The model is not identifiable since,∑
g∈genders

1gender=g =
∑

e∈ethnicities

1eth=e ⇒
∑

g∈genders

1

αg
· αg1gender=g −

∑
e∈ethnicities

1

βe
· βe1eth=e.

In order to make the parameters of the model identifiable, we remove one of the indicator features, e.g. 1eth=asian.
This means that our model becomes,

1outcome=“find” ≈
∑

g∈genders

αg1gender=g +
∑

e 6=asian

βe1eth=e.

In order to interpret the coefficients, we make a table of the possible indicator values,

Gender Ethnicity Prediction
Female Asian αFemale

Female Black αFemale + βBlack

Female x, x 6= Asian αFemale + βx
Male Asian αMale

Male Black αMale + βBlack

Male x, x 6= Asian αMale + βx
Other Asian αOther

Other Black αOther + βBlack

Other x, x 6= Asian αOther + βx

From this we see that αg is the predicted probability that outcome=“find” for a eth=“Asian” person of gen-
der=g, and βe is the difference between an eth=e person and an eth=“Asian” person, the same difference
assumed across all levels of gender.

Question 11

(a) For two random variables U and V , max(U, V) ≤ x iff U ≤ x and V ≤ x. Hence, Pr(max(U, V) ≤ x) =
Pr(U ≤ x, V ≤ x) and if the random variables are independent,

Pr(max(U, V) ≤ x) = Pr(U ≤ x, V ≤ x) = Pr(U ≤ x) · Pr(V ≤ x).

Extending this argument, max(U1, . . . , Um) ≤ x iff U1 ≤ x, . . . , Um ≤ x. Hence, for Ui being independent
uniform random variables, we get for t ∈ [0, 1],

FT (t) = Pr(max(U1, . . . , Um) ≤ t) = Pr(U1 ≤ t, . . . , Um ≤ t) =

m∏
i=1

Pr(Ui ≤ t) = tm.

The PDF is given by,

fT (t) =
d

dt
FT (t) = mtm−1

(b) We proceed the usual way for computing the MLE for m, i.e. by writing out the likelihood and log-
likelihood,

lik(m) = mtm−1 ⇒ log lik(m) = logm+ (m− 1) log t.

9

Then, differentiating,
∂lik(m)

∂m
=

1

m
+ log t.

Finally, equating with zero, we find mMLE,

1

mMLE
+ log t = 0⇒ mMLE =

1

− log t
.

(Optionally,) we can verify that this is a maximum, since the derivative is positive for m < mMLE and
negative for m > mMLE.

Note 1: The following code implements this estimation (in practice the random sampling would be replaced
with a “good” hashing function).

import numpy as np

m = 100

samples = np.random.random(m)

m_mle = 1 / (- np.log(np.max(samples)))

print(f"m_MLE: {m_mle}")

One possible output:

m_MLE = 161.724...

Note 2: This algorithm has several advantages: (i) requires only constant RAM memory and (ii) it can be
parallelised (since combining two maximums is easy).

Note 3: The following code extends the MLE estimate using multiple independent hash functions:

import numpy as np

m = 10000

num_reps = 10

acc = 0

for _ in range(num_reps):

samples = np.random.random(m)

acc -= np.log(np.max(samples))

print(f"m_MLE: {num_reps / acc}")

One possible output:

m_MLE: 9522.075...

Question 12

We start by establishing the relation between X and Θ. By looking at the orthogonal triangle, formed by the
ray of light, we have

tan(Θ) =
X

1
= X.

As usual, we start by estimating the CDF of X.

FX(x) = Pr(X ≤ x) = Pr(tan(Θ) ≤ x) = Pr(Θ ≤ tan−1(x)) (since tan is monotonous)

=
1

π
· tan−1(x) (Using the CDF of Θ ∼ U [−π/2, π/2]).

Hence, we can find the PDF by differentiating,

fX(x) =
d

dx

(
1

π
· tan−1(x)

)
=

1

π
· 1

1 + x2
.

(Optionally,) we can check that this distribution (the Cauchy distribution) has no mean,

E[X] =

∫ ∞
−∞

1

π
· 1

1 + x2
· xdx = 2 ·

∫ ∞
0

1

π
· x

1 + x2
dx =

2

π
· log(1 + x2)|∞0 →∞

10

Question 13

In this question we have to formulate the optimisation objective and use the scipy.fmin function. However,
there are a few points that we need to be careful with:

� The initial point should be chosen carefully. If γ ≥ 1, then the method will converge at γ ≈ 0.

� Changing the optimisation method might significantly improve the result.

� We should be using γ = exp(γ′) to ensure that γ > 0.

One possible implementation is the following:

import numpy as np

import pandas

import scipy.optimize

import matplotlib.pyplot as plt

iris = pandas.read_csv('https://www.cl.cam.ac.uk/teaching/2021/DataSci/data/iris.csv')

sepal, petal = iris['Sepal.Length'], iris['Petal.Length']

def mse(a):

predictions = a[0] - a[1] * (sepal ** np.exp(a[2]))

return np.sum((predictions - petal) ** 2)

a, b, c = scipy.optimize.fmin(mse, np.array([1, 0.3, -0.4]))

newsepal = np.linspace(np.min(sepal), np.max(sepal), 150)

preds = a - b * (newsepal ** np.exp(c))

(Optionally,) we can plot the curve we just fitted.

fig, ax = plt.subplots(figsize=(4.5, 3))

ax.scatter(newsepal, preds, color='r', zorder=-1, linestyle='dashed')

ax.scatter(iris['Sepal.Length'], iris['Petal.Length'], alpha=0.3)

ax.set_ylim(0, 7.5)

ax.set_ylabel('Petal.Length')

ax.set_xlabel('Sepal.Length')

plt.title('Exp relation between sepal and petal length')

plt.tight_layout()

plt.savefig("ex13_exponential_plot.pdf")

plt.show()

5 6 7 8
Sepal.Length

0

2

4

6

Pe
ta

l.L
en

gt
h

Exp relation between sepal and petal length

Question 14

There are (at least) three interpretations to this question:
(Interpretation 1): Approximate the temperatures using two linear functions on the time.

11

import pandas

import numpy as np

import sklearn.linear_model

import matplotlib.pyplot as plt

climate =

pandas.read_csv('https://www.cl.cam.ac.uk/teaching/2021/DataSci/data/climate.csv')↪→

climate['t'] = climate.yyyy + (climate.mm-1)/12

climate['temp'] = (climate.tmin + climate.tmax)/2

df = climate.loc[(climate.station=='Cambridge') & (~pandas.isna(climate.temp))]

t, temp = df['t'], df['temp']

X = np.column_stack([

(t - 1980) * np.where(t >= 1980, 1, 0),

(t - 1980) * np.where(t < 1980, 1, 0)

])

model = sklearn.linear_model.LinearRegression(fit_intercept=True)

model.fit(X, temp)

_, ax = plt.subplots(figsize=(8, 5))

ax.plot(t, model.predict(X), color='r')

ax.plot(t, temp)

ax.set_xlabel("Year")

ax.set_ylabel("Temperature in Celsius")

plt.tight_layout()

plt.savefig('ex15_cam_plot.pdf')

plt.show()

1960 1970 1980 1990 2000 2010 2020
Year

0

5

10

15

20

Te
m

pe
ra

tu
re

 in
 C

el
siu

s

(Interpretation 2): Approximate the temperatures using two additional linear functions on time.

X = np.column_stack([

np.sin(2 * np.pi * t),

np.cos(2 * np.pi * t),

(t - 1980) * np.where(t >= 1980, 1, 0),

(t - 1980) * np.where(t < 1980, 1, 0)

])

model = sklearn.linear_model.LinearRegression(fit_intercept=True)

model.fit(X, temp)

12

1960 1970 1980 1990 2000 2010 2020
Year

0

5

10

15

20

Te
m

pe
ra

tu
re

 in
 C

el
siu

s

(Interpretation 3): Use two different linear models for times before 1980s and after.

X = np.column_stack([

np.sin(2 * np.pi * t) * np.where(t >= 1980, 1, 0),

np.cos(2 * np.pi * t) * np.where(t >= 1980, 1, 0),

np.sin(2 * np.pi * t) * np.where(t < 1980, 1, 0),

np.cos(2 * np.pi * t) * np.where(t < 1980, 1, 0),

np.where(t < 1980, 1, 0),

(t - 1980) * np.where(t >= 1980, 1, 0),

(t - 1980) * np.where(t < 1980, 1, 0)

])

model = sklearn.linear_model.LinearRegression(fit_intercept=True)

model.fit(X, temp)

1960 1970 1980 1990 2000 2010 2020
Year

0

5

10

15

20

Te
m

pe
ra

tu
re

 in
 C

el
siu

s

Note: If you want to compare the three models, you need to look closer at the different regions and various
metrics.

Question 15

(a) Under the linear model assumptions, we would expect the error to be a Normal distribution with zero
mean and constant variance. However, in this case, it seems that the variance increases with xi.

13

(b) We start by writing out the likelihood for α, β, γ, σ.

lik(α, β, γ, σ) =

n∏
i=1

Pr(y1, . . . , yn;α, β, γ, σ)

=

n∏
i=1

1√
2π(σxi)2

· e−(yi−(α+βxi+γx
2
i))

2/(2(σxi)
2)

=

n∏
i=1

1√
(2π(σxi)2)

· e−
∑n
i=1

(yi−(α+βxi+γx
2
i))

2

2(σxi)
2

Taking the logarithm, we get,

log lik(α, β, γ, σ) = (const)−
n∑
i=1

log(σxi)−
n∑
i=1

(yi − (α+ βxi + γx2
i))

2

2(σxi)2
.

We can optimise this using scipy.optimize.fmin. A possible implementation is shown below.

import pandas

import numpy as np

import matplotlib.pyplot as plt

import scipy.optimize

dataset =

pandas.read_csv('https://www.cl.cam.ac.uk/teaching/2021/DataSci/data/heteroscedasticity.csv')↪→

x, y = dataset['x'], dataset['y']

x2 = x ** 2

def predict(a, X, X2):

return a[0] + a[1] * X + a[2] * X2

def likelihood(a):

pred = predict(a, x, x2)

mse = (pred - y) ** 2

sigma = np.exp(a[3])

return np.sum(+np.log(sigma * x) + mse / ((2.0 * sigma * sigma) * x2))

a = scipy.optimize.fmin(likelihood, [0.2, 0.2, 0.3, 0.3])

print(f"Parameters: {a}")

One possible output:

[-0.21591674 -1.78830743 0.28594986 -1.23517892]

Optionally, we can plot the predictions,

_, ax = plt.subplots(figsize=(8, 5))

ax.scatter(x, predict(a, x, x2), color='r')

ax.scatter(x, y)

ax.set_xlabel("x")

ax.set_ylabel("y")

plt.tight_layout()

plt.savefig('ex15_plot.pdf')

plt.show()

14

2 4 6 8 10
x

5

0

5

10

15

y

Question 16

Note that

f1 + f2 =

F3

F4

F5

...

+

F2

F3

F4

...

 =

F3 + F2

F4 + F3

F5 + F4

...

 =

F4

F5

F6

...

 = f.

So, one solution is α = 0, β1 = 1 and β2 = 1. Using any of the methods we used in Q9, we get that this is the
unique solution.

For the linear model f ≈ α+ β1f1 + β2f2 + β3f3, note that

f2 + f3 =

F2

F3

F4

...

+

F1

F2

F3

...

 =

F2 + F1

F3 + F2

F4 + F3

...

 =

F3

F4

F5

...

 = f1.

Hence, f1, f2, f3 are linearly dependent. Hence, the linear model is not identifiable.

Question 17

We get the following values,

Ethnicity Value
Asian α+ βAsian

Black α+ βBlack

Mixed α+ βMixed

Other α+ βOther

White α− βAsian − βBlack − βMixed − βOther

The average prediction is given by,

1

5
((α+ βAsian) + (α+ βBlack) + (α+ βMixed) + (α+ βOther) + (α− βAsian − βBlack − βMixed − βOther)) =

5α

5
= α.

So, α is the average prediction and βk (for k 6= White) is the difference from the average prediction, for ethnicity
k.

Question 19

Yes, take a look at B(0.5, 0.5).

15

The intuition for this is that like an infinite geometric series does converge, we can construct an integral
with a point approaching ∞ that also converges. For the mean and variance to also converge we just need to
make sure that

∫
xf(x)dx and

∫
x2f(x)dx also converges. One natural choice for f(x) is kx−0.5 in [0, 1], since∫ 1

0
kx−0.5 = 2k

√
x|10 = 2k (Note that if we chose an exponent greater than 1, then this would not work). Now,

xf(x) = kx0.5 and x2f(x) = kx1.5, which obviously converge over the interval [0, 1].

16

