
GCD, linear diophantine equations, CRT for Part IA

Discrete Mathematics

Note: This handout contains several exercises and past papers relevant to the greatest common divisor
(GCD), including linear congruence equations, linear Diophantine equations and more. The Chinese

remainder theorem (CRT) is not taught in lectures, but appears regularly in some form in the exams. So, I
would recommend you go over this topic (and the other grey areas) and attempt the relevant past papers. As

always first attempt to solve your problem on your own and then consult the answer.

The material in this handout appears in multiple books and other resources, so you will find a more complete
treatment there. For example Chapter 2 & 4.4 in ”Elementary Number Theory” by D. M. Burton and

Chapter 4.5.2 in ”The art of computer programming (Volume II)” by D. Knuth.
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Greatest Common Divisor
Definition 1. Define the set of divisors D(n) for a natural number n.

Definition 2. Define the set of common divisors CD(n,m) for natural numbers n and m.

Definition 3. Define the greatest common divisor gcd(n,m) for two positive natural numbers n and m.

Note: It is not immediately obvious that such a number indeed exists. You need the GCD algorithm for that.

Very Basic properties
Here we will prove some basic properties that motivate the GCD algorithm.

Property 1. For natural numbers n,m, CD(n,m) = CD(m,n).

Property 2. For natural numbers n,m, CD(n,m · n) = D(n).

Property 3. Let m and m′ be natural numbers and let n be a positive integer such that m ≡ m′ (mod n),
then CD(m,n) = CD(m′, n). (Slide 183)

Property 4. For natural numbers n,m, CD(n,m) = CD(n, rem(m,n)).
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Property 5. For natural numbers n,m,

CD(n,m) =

{
D(n) if n | m,
CD(n, rem(m,n)) otherwise.

GCD algorithm
Write OCaml code for computing the gcd using Euclid’s algorithm (from now on we will refer to the algorithm
as gcd0). (Slide 189)

Note 1: Be careful in the ordering of arguments in the recursive call. If you place them in the wrong order, it
will result in an infinite loop.

Note 2: This is not the only algorithm that computes the gcd. There is also a method using the Fundamental
Theorem of Arithmetic (see that handout for more details). Also, one of the Christmas projects is to derive
Steiner’s algorithm for the gcd.

Reason that your implementation terminates. (Slide 194)
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Reason that your implementation computes a number g such that CD(m,n) = D(g) (and deduce that the gcd
exists). (Slide 194)

Example 1. Evaluate gcd(72, 28) using the Euclidean algorithm.

Proof.

gcd(72, 28) = gcd(28, rem(72, 28)) = gcd(28, 16)

= gcd(16, rem(28, 16)) = gcd(16, 12)

= gcd(12, rem(16, 12)) = gcd(12, 4)

= 4

Example 2. Evaluate gcd(13, 8) using the Euclidean algorithm.

Proof.

gcd(13, 8) = gcd(8, rem(13, 8)) = gcd(8, 5)

= gcd(5, rem(8, 5)) = gcd(5, 3)

= gcd(3, rem(5, 3)) = gcd(3, 2)

= gcd(2, rem(3, 2)) = gcd(2, 1)

= 1

Example 3. Show that for positive integers m and n, we have gcd(m,m+ n) | n.
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Proof.By the properties of the gcd0 algorithm we know that gcd(m,m+ n) = gcd(m,m+ n−m) = gcd(m,n).
Since gcd(m,n) | n, it follows that gcd(m,m+ n) | n.

Example 4. Show that for any a ∈ N, gcd(2a+ 1, 9a+ 4) = 1.

Proof.

gcd(2a+ 1, 9a+ 4) = gcd(2a+ 1, 9a+ 4− 4 · (2a+ 1))

= gcd(2a+ 1, a)

= gcd(2a+ 1− 2 · a, a)

= gcd(1, a) = 1

Example 5. Show that for any a ∈ N, gcd(5a+ 2, 7a+ 3) = 1.

Proof.

gcd(5a+ 2, 7a+ 3) = gcd(5a+ 2, 7a+ 3− (5a+ 2))

= gcd(5a+ 2, 2a+ 1)

= gcd(5a+ 2− 2 · (2a+ 1), 2a+ 1)

= gcd(a, 2a+ 1)

= gcd(a, 1) = 1

Exercise 1. Show that for all positive integers a:

(a) gcd(3a+ 1, 13a+ 4) = 1

(b) gcd(5a+ 2, 7a+ 3) = 1

Exercise 2. For any odd positive integer a, gcd(18a+ 10, 3a+ 2) = 1.

Exercise 3. Create an exercise of the above form.
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(grey area) GCD efficiency
As computer scientists we are interested in how efficient the gcd algorithm is. For this analysis, we will count
the number of steps, i.e. the number divisions made by the algorithm.

Theorem 1. The gcd0(n,m) algorithm takes O(log(m+ n)) steps to terminate.

Proof.We will prove that when gcd0(m,n) is called, after two steps, either the algorithm terminates or the sum
m+ n is decreased by a factor 2/3. This will mean that the algorithm can run for at most log3/2(m+ n) steps
(after this number the sum would have to be 1 or less, but this is not possible).

Assume that m ≥ n. We will consider two cases:

If m ≥ 2n, then after one iteration the new parameters are m′ = n and n′ = rem(m,n) < n (if the algorithm
does not terminate). Hence, the new sum is m′ + n′ ≤ n+ n = 2

3 (2n+ n) = 2
3 (m+ n) and we have proved the

requirement.

Otherwise (m < 2n). Assume that the algorithm does not terminate within the next two iterations. Then in
one iteration, the parameters will be m′ = n, n′ = m− n (since m > n) and in the second iteration these will
be m′′ = m−n and n′′ = rem(n,m−n) < m−n. Hence, m′′+n′′ < (m−n) + (m−n) = 2m−2n ≤ 4n−2n =
2n ≤ 2

3 (m+ n).

Note: In O-notation the base of the logarithm does not affect the result.

See the Fibonacci question in the supervision work for a worst-case execution of the GCD algorithm.

(optional) Lamé’s theorem
We will now look at a slightly stronger result for the execution time of the Euclidean gcd algorithm.

Lemma 1. For natural numbers m > n ≥ 1, if gcd0 performs k ≥ 1 steps, then m ≥ Fk+2 and n ≥ Fk+1.

Proof.The proof is by induction over k. Consider k = 1. Since n ≥ 1 = F1 and m > n, it means that
m ≥ 2 = F2.

For the inductive step assume that this is true for k = `, we will show that it is also true for k = ` + 1.
Consider m and n for which gcd0(m,n) takes k steps, then the the next iteration has parameters m′ = n and
n′ = rem(m,n) and terminates in ` steps. By inductive hypothesis m′ > F`+2 and n′ > F`+1. So,

m′ + n′ = n+ rem(m,n) = n+ (m− quo(m,n) · n) ≤ m

since m > n implies quo(m,n) ≥ 1. Thus,

m ≥ m′ + n′ > F`+2 + F`+1 = F`+3 = F(`+1)+2,

which proves that it also holds for k = `+ 1. Hence, by the principle ... .

This implies Lamé’s Theorem.

Theorem 2. For any natural k ≥ 1, if a > b ≥ 1 and b < Fk+1, then gcd0(m,n) requires fewer than k steps.
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Extended GCD
Show how the extended GCD algorithm computes x, y ∈ Z such that ax+ by = gcd(a, b).

Note that there are two ways to compute the coefficients x and y: (i) the forward and (ii) the backward method.
We will show both ways here, and from then on we use only the forward method.

Example 6. Express gcd(72, 28) as an integer linear combination of 72 and 28.

Proof.We start with the forward computation. In each step, we keep a linear combination of the gcd arguments
in terms of n = 72 and m = 28.

72 = 28 · 2 + 16 28 = 1 · 28 16 = 72− 2 · 28 = 1 · 72 + (−2) · 28
28 = 16 · 1 + 12 16 = 1 · 72 + (−2) · 28 12 = 28− 16 = (−1) · 72 + 3 · 28
16 = 12 · 1 + 4 12 = (−1) · 72 + 3 · 28 4 = 16− 12 = 2 · 72 + (−5) · 28
12 = 4 · 3 + 0 4 = 2 · 72 + (−5) · 28

which gives 4 = 2 · 72 + (−5) · 28, i.e. x = 2 and y = −5.

Note 1: When doing this computation on paper you don’t need the first column. It was added here for clarity.

Note 2: Throughout the execution you need to be methodological and keep the same order in products
involving the quotients.

Similarly, we can obtain the result with the backward algorithm. Note that you should follow the second column
from bottom to top each time replacing the remainder by a linear coefficient of the divident and the quotient.

72 = 28 · 2 + 16 4 = 2 · 16 + (−1) · 28 = 2 · (72− 2 · 28) + (−1) · 28 = 2 · 72 + (−5) · 28
28 = 16 · 1 + 12 4 = 1 · 16 + (−1) · 12 = 16− (1 · 28− 1 · 16) = 2 · 16 + (−1) · 28
16 = 12 · 1 + 4 4 = 1 · 16 + (−1) · 12
12 = 4 · 3 + 0
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Example 7. Express gcd(54, 21) as an integer linear combination of 54 and 21.

Proof.Forward computation,

54 = 21 · 2 + 12 21 = 1 · 21 12 = 54− 21 · 2 = 54 + (−2) · 21
21 = 12 · 1 + 9 12 = 54 + (−2) · 21 9 = 21− 12 = (−1) · 54 + 3 · 21
12 = 9 · 1 + 3 9 = (−1) · 54 + 3 · 21 3 = 12− 9 = 2 · 54 + (−5) · 21
9 = 3 · 3 + 0 3 = 2 · 54 + (−5) · 21

Backward computation,

54 = 21 · 2 + 12 3 = 2 · (54 + (−2) · 21) + (−1) · 21 = 2 · 54 + (−5) · 21
21 = 12 · 1 + 9 3 = 12− (21− 12) = 2 · 12 + (−1) · 21
12 = 9 · 1 + 3 3 = 12− 9
9 = 3 · 3 + 0

Basic Properties
There are two points when looking at these basic properties. One it to see how to derive them and the other is
to understand what they mean so that you can use them when needed.

Notice that there will be using three types of arguments:

(a) to prove that g is the gcd(n,m) we show that for every d, d | m and d | n implies d | g.

(b) gcd(n,m) = 1 iff there exist x, y such that nx+my = 1.

(c) we prove a property using the steps of the GCD algorithm.

Property 6. For any positive integer n, gcd(n, 1) = 1.

Proof.(Using method (a)) OK we will do the first quite rigorously (but you don’t have to use so much detail).
We need to show that

1 | n ∧ 1 | 1 ∧ ∀d ∈ N.d | 1 ∧ d | n⇒ d | 1

1 | n and 1 | 1 follow trivially from the properties of divisibility.

For the quantification. Let d be arbitrary. Assume d | n and d | 1, then d | 1 (trivially). Hence,

∀d ∈ N.d | 1 ∧ d | n⇒ d | 1

Combining the three terms in conjunction we get the result. So, gcd(n, 1) = 1.

(Using method (b)) By choosing x = 1 and y = −(n− 1) we have that 1 · n+ (−(n− 1)) · 1 = 1

(Using method (c)) The gcd0 algorithm terminates in the first step since 1 | n, so 1 is the the gcd of the two
numbers.

Property 7. For any positive integer n, gcd(n, n) = n. (You can also prove using all three methods.)
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Property 8. For any positive integer n and m, gcd(n,m) = gcd(m,n).

Proof.(Using method (a)) Let d be arbitrary. Then

d | gcd(n,m)⇔ d | n ∧ d | m
⇔ d | m ∧ d | n
⇔ d | gcd(m,n)

Two numbers with the same set of divisors are equal, hence gcd(m,n) = gcd(n,m).

Property 9. For any positive integers n,m, `, gcd(`, gcd(m,n)) = gcd(gcd(`,m), n).

Proof.(Using method (a)) Let d be arbitrary. Then

d | gcd(`, gcd(m,n))⇔ d | ` ∧ d | gcd(m,n)

⇔ d | ` ∧ (d | m ∧ d | n)

⇔ (d | ` ∧ d | m) ∧ d | n
⇔ d | gcd(`,m) ∧ d | n
⇔ d | gcd(gcd(`,m), n)

Hence, gcd(`, gcd(m,n)) = gcd(gcd(`,m), n).

Property 10 (Linearity). For any positive integers n,m, `, gcd(` · n, ` ·m) = ` · gcd(n,m).
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Proof.(Using methods (a) and (b)) We will prove that `·gcd(n,m) | gcd(`·n, `·m) and gcd(`·n, `·m) | `·gcd(n,m),
hence they must be equal.

For the first part, there exist x, y ∈ Z such that (`m)x+ (`n)y = gcd(` · n, ` ·m). By writing m = m′ gcd(n,m)
and n = n′ gcd(n,m) we get

(` gcd(n,m))m′x+ (` gcd(n,m))n′y = ` gcd(n,m)(m′x+ n′y) = gcd(` · n, ` ·m)⇒ ` gcd(n,m) | gcd(` · n, ` ·m)

For the second part, we use what we proved that there exists k ∈ Z such that `k = gcd(`n, `m). By the
definition of the gcd, we have ` · k | `m and ` · k | `n. By the properties of |, these in turn imply that k | m and
k | n. Hence, k | gcd(m,n) so `k | ` gcd(m,n), i.e. gcd(` · n, ` ·m) | ` gcd(m,n).

(Using method (c)) See slides 205-207 in the lecture notes.

Let’s see some applications of these properties.

Example 8. Show that gcd(m,n) = m iff m | n.

Proof.(⇒) Assume m = gcd(n,m), then m | n by the property of the gcd.

(⇐) gcd(m,n) = gcd(m, k ·m) = m · gcd(1, k) = m where we used the linearity property of the gcd. Can you
see how you would use method (b)?

Example 9. Show that k | mn and gcd(k,m) = 1 implies k | n.

Proof.(Using properties of gcd) k | mn implies that mn = k · ` for ` ∈ Z.

n = gcd(k,m) · n (gcd(k,m) = 1)

= gcd(k · n,m · n) (by linearlity on n)

= gcd(k · n, k · `)
= k · gcd(n, `) (by linearity on k)
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Hence, k | n.

(Using method (b)) Since gcd(k,m) = 1, there exist x, y ∈ Z such that kx+my = 1. By multiplying both sides
by n, we get knx+mny = n⇒ knx+ k`y = n⇒ k(nx+ `y) = n⇒ k | n.

Example 10. Show that for all positive integers a, b, c, if gcd(a, b) = 1 then gcd(a · b, c) = gcd(b, c).

Proof.(Using properties of gcd)

gcd(b, c) = gcd(b · gcd(a, c), c)

= gcd(gcd(ba, bc), c) (by linearity of gcd)

= gcd(ba, gcd(bc, c)) (by associativity of gcd)

= gcd(ab, c · gcd(b, 1)) (by linearity of gcd)

= gcd(ab, c)

Why did we multiply by gcd(a, c) = 1? This was a trick. We want to somehow create the term ab. This
multiplication by 1 = gcd(a, c) and then linearity allow us to do this. Some of the following examples and
exercises use it.

(Using method (a) and Euclid’s Theorem) We know that gcd(b, c) | c and gcd(b, c) | b, so gcd(b, c) | ab. So
gcd(b, c) | gcd(ab, c).

We know that gcd(ab, c) | ab and gcd(ab, c) | c, so gcd(gcd(ab, c), a) | gcd(ab, c) (and so gcd(gcd(ab, c), a) | c) and
gcd(gcd(ab, c), a) | c so gcd(gcd(ab, c), a) | gcd(a, c) = 1. Hence, gcd(gcd(ab, c), a) = 1. By Euclid’s Theorem,
gcd(ab, c) | b and hence gcd(ab, c) | gcd(b, c).

Example 11. For any positive integers a, b, c, if a | bc then a | gcd(a, b) · gcd(a, c).

Proof.gcd(a, b) gcd(a, c) = gcd(a gcd(a, c), b gcd(a, c)) = gcd(a gcd(a, c), gcd(ab, bc)) = gcd(a gcd(a, c), gcd(ab, ak)) =
gcd(a gcd(a, c), a gcd(b, k)) = a · gcd(gcd(a, c), gcd(b, k))

Example 12. For any positive integers a, b, c, if gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.
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Proof.gcd(a, c) = gcd(a, gcd(a, b)c) = gcd(a, gcd(ac, bc)) = gcd(gcd(a, ac), bc) = gcd(a · gcd(1, c), bc) =
gcd(a, bc).

Example 13. For any positive integers a, b, c, if gcd(a, b) = 1, c | a then gcd(b, c) = 1.

Proof.a = c · k for k ∈ Z. We know that gcd(b, c) | b and gcd(b, c) | c, so gcd(b, c) | ck. Hence,
gcd(b, c) | gcd(ck, b).

Exercise 4. For any positive integers a, b, c, d if gcd(a, b) = 1 and d | ac and d | bc then d | c.

Exercise 5. For any positive integers a, b, c, if gcd(a, b) = 1 and c | a+ b, then gcd(a, c) = gcd(b, c) = 1.

Exercise 6. If gcd(a, b) = 1, then gcd(a2, b) = 1 and gcd(a2, b2) = 1.

Exercise 7. If gcd(a, b) = 1, then gcd(ak, bk) = 1. (Use the previous exercise)

Applications

Euclid’s Theorem
The following theorems are two theorems that are very useful in number theory. These are so fundamental that
you may think that you don’t even need to prove them.

Theorem 3 (Euclid’s theorem). For positive integers k,m and n, if k | (mn) and gcd(k,m) = 1, then k | n.

Proof.Assume k | (mn) and gcd(k,m) = 1. By definition of divisibility, mn = k · k′. By Euclid’s extended gcd
algorithm, there exist x, y ∈ Z, such that kx+my = 1. By multiplying both sides by n we have

k(nx) +mnx = n⇒ k(nx) + kk′y = n⇒ k(nx+ k′y) = n⇒ k | n.

Theorem 4. For positive integers m, n and prime p, if p | (mn), then p | m or p | n.
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Proof.Assume p | (mn). Assume p - m, then since gcd(p,m) | p gcd(p,m) = 1 (as it cannot be p). Hence by
Euclid’s Theorem, p | n. Hence, one of the two must hold.

Existence of a multiplicative inverse
Definition 4. The multiplicative inverse of a in Zb is the element c such that ac ≡ 1 (mod b). We denote this
element c by a−1.

Let’s take a look at the inverses of the elements in Z10:

0 1 2 3 4 5 6 7 8 9
− 1 − 7 − − − 3 − 9

Note that all odd elements except 5 have an inverse and this inverse is unique. Since 5 | 10, this is suspicious.
Let’s look at the inverses of elements of Z20:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
− 1 − 7 − − − 3 − 9 − 11 − 17 − − − 13 − 19

OK, this strengthens our observation that elements that do not share a factor with b = 20 (i.e. are co-prime
with 20) have an inverse (and only those). We also note that inverses appear in pairs. Below we will formally
prove these statements and show how to use the extended GCD algorithm to calculate the inverse.

Theorem 5. Element a ∈ Zb has a multiplicative inverse in Zb iff gcd(a, b) = 1.

Proof.(⇒) Assume that a has a multiplicative inverse, then aa−1 ≡ 1 (mod b), i.e. there exists k ∈ Z such that
aa−1+bk = 1. The gcd(a, b) divides all linear combinations of a and b, hence gcd(a, b)|aa−1+bk ⇒ gcd(a, b) | 1.
Therefore, gcd(a, b) = 1.
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(⇐) By the extended Euclid’s algorithm we know that gcd(a, b) = 1 implies that there exist x, y ∈ Z such that
ax + by = 1. Therefore, ax = 1− by, so ax ≡ 1− by ≡ 1 (mod b). Hence, [x]b is a multiplicative inverse. (we
need [·]b to guarantee that the element is in Zb = {0, 1, . . . , b− 1}

Note that the (⇐) direction also gives a method for computing a−1. Before looking into this let’s verify that
the inverse is unique. This also implies that the inverses appear in pairs.

Theorem 6. The inverse of an element a ∈ Zb is unique.

Proof.Assume that c and c′ are both inverses of a. Then by definition of an inverse, ca ≡ 1 (mod b)(1) and
c′a ≡ 1 (mod b). By properties of mod we multiply by c′ both sides of the first relation to get (ca)c′ ≡ c′ ≡
(mod b).
By associativity of multiplication, we get c(ac′) ≡ c′ ≡ (mod b). (this could be skipped)
Finally, using (2) we get c1 ≡ c′ ≡ (mod b). So, c ≡ c′ ≡ (mod b).

Example 14. Find the multiplicative inverse of 17 in Z20.

Proof.(Using extended GCD))

20 = 17 · 1 + 3 17 = (1) · 17 3 = 20− 17 = (1) · 20 + (−1) · 17
17 = 5 · 3 + 2 3 = (1) · 20 + (−1) · 17 2 = 17− 5 · 3 = (−5) · 20 + (6) · 17
3 = 2 · 1 + 1 2 = (−5) · 20 + (6) · 17 1 = 3− 2 = (6) · 20 + (−7) · 17
2 = 2 · 1 + 0 1 = (6) · 20 + (−7) · 17

Hence, 1 = (6) · 20 + (−7) · 17. Therefore, the multiplicative inverse is [−7]17 = 13.

(Using trial and error) Since we have proved that every element that is co-prime to 20 has a unique inverse,
if we find an element x that satisfies 17x ≡ 1 (mod 20), then we are done (since gcd(17, 20) = 1). After trying
some of the other odd elements we see that x = 13 has 17 · 13 = 221 which has a remainder of 1 when divided
with 20.

Note: The second method is mostly useful when b is small.

Example 15. Find the multiplicative inverse of 13 in Z20.
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Proof.(Using extended GCD))

20 = 11 · 1 + 9 11 = 1 · 11 9 = 20− 11 = 1 · 20 + (−1) · 11
11 = 9 · 1 + 2 9 = 1 · 20 + (−1) · 11 2 = 11− 9 = (−1) · 20 + 2 · 11
9 = 2 · 4 + 1 2 = (−1) · 20 + 2 · 11 1 = 9− 4 · 2 = 5 · 20 + (−9) · 11
2 = 1 · 2 + 0 1 = 5 · 20 + (−9) · 11

Hence, 1 = 5 · 20− 9 · 11. Therefore, the multiplicative inverse is [−9]20 = 11

(Using trial and error) Since we have proved that every element that is co-prime to 20 has a unique inverse,
if we find an element x that satisfies 11x ≡ 1 (mod 20), then we are done. After trying some of the other odd
elements we see that x = 11 has 11 · 11 = 121 which has a remainder of 1 when divided with 20.

Implementation challenge: Find the inverse of a in Zb using the extended gcd algorithm.

Exercise 8. Find the inverses for the following elements:

(a) Find the inverse of 17 in Z26.

(b) Find the inverse of 8 in Z63.

(c) Find the inverse of 9 in Z11.

You can verify your answers (and generate more examples) by running the extended GCD algorithm or by
using this tool.

Let’s take a look at how we can evaluate the multiplicative inverse of a power of an element.

Theorem 7. Let a be an element in Zb with multiplicative inverse a−1. Show that for k ∈ N \ {0}, the inverse
of ak = a · . . . · a︸ ︷︷ ︸

k times

is (a−1)k in Zb.

Proof.ak · (a−1)k ≡ a · . . . · a︸ ︷︷ ︸
k times

· a−1 · . . . · a−1︸ ︷︷ ︸
k times

≡ (a · a−1) · . . . · (a · a−1)︸ ︷︷ ︸
k times

≡ 1 · . . . · 1︸ ︷︷ ︸
k times

≡ 1 (mod b).

Solving linear congruences
Now, we will take a look at the related task of solving linear congruence equations. These are equations of the
form ax ≡ b (mod m), where a,m ∈ N \ {0} and b ∈ Z. We begin with the case where gcd(a,m) = 1.

Theorem 8. If gcd(a,m) = 1, then all solutions to ax ≡ b (mod m) are given by x = a−1b + km for every
k ∈ Z.
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Proof.Since gcd(a,m) = 1, there exists a−1 ∈ Zm (by Theorem 5). Therefore,

ax ≡ b (mod m)⇒ x ≡ a−1b (mod m)⇒ x = a−1b+ km for some k ∈ Z

We verify that all values of this form also satisfy the given equation

a(a−1b+ km) ≡ (aa−1)b+ km ≡ b+ 0 ≡ b (mod m).

Example 16. Solve 13x ≡ 4 (mod 20).

Proof.We know from the exercises in the previous section that the inverse of 13 in Z20 is 11. So the general
solution is for any k ∈ Z, such that 11 · 4 + 20k = 44 + 20k.

Exercise 9. Solve the following modular equations:

(a) 17x ≡ 3 (mod 26).

(b) 8x ≡ 5 (mod 63).

(c) 9x ≡ 8 (mod 11).

(Optional) What does this basically mean when m is a prime? It means that if we pick any non-zero
element in Zm, we get that f(x) = a ·m x is an one-to-one function. Let’s take a look at m = 11 for
a = 1, a = 2, a = 3,

1 2 3 4 5 6 7 8 9 10
a = 1 1 2 3 4 5 6 7 8 9 10
a = 2 2 4 6 8 10 1 3 5 7 9
a = 3 3 6 9 1 4 7 10 2 5 8

Note that each row generates a different permutation of the elements in Zm \ {0}. As you will see in the
algorithms course, it is common to choose m prime and any non-zero a (and possibly some b) and use
the function ax+ b as a hash function or a pseudo-random number generator or for encryption.

Now let us turn to the case where gcd(a,m) is not necessarily 1.

Theorem 9. The equation ax ≡ b (mod m) is solvable iff gcd(a,m) | b. In case there are solutions, these are
given by the solutions of a

gcd(a,m) · x ≡
b

gcd(a,m) (mod m
gcd(a,m) ).
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Proof.Let x be a solution to the equation ax ≡ b (mod m). This implies that m | ax− b. Since gcd(a,m) | m
and gcd(a,m) | a, we get gcd(a,m) | ax− b and gcd(a,m) | ax. So, gcd(a,m) | b (since if a number divides two
numbers then it also divides their difference). So, if gcd(a,m) - b, then the equation has no solutions.

Otherwise, a = a′ · gcd(a,m), m = m′ · gcd(a,m) and b = b′ · gcd(a,m) for some a′, b′,m′ ∈ Z. Hence, ax ≡ b
(mod m) is equivalent to

ax− b = km⇔ (∃k ∈ Z.a′ gcd(a,m)x− b′ gcd(a,m) = km′ gcd(a,m))

⇔ (∃k ∈ Z.a′x− b′ = m′k)

⇔ a′x ≡ b′ (mod m′).

Since gcd(a′,m′) = 1 (why?), from Theorem 8, this is solvable and the solutions are given by (a′)−1b+ km for
every k ∈ Z.

Example 17. Find all solutions to 12x ≡ 8 (mod 20).

Proof.In this case a = 12, m = 20, so gcd(a,m) = gcd(22 · 3, 22 · 5) = 22 = 4. Since 4 | 8, there exist solutions
which are given by the solution of

(
12
4

)
· x ≡ 8

4 (mod 20
4 ) or equivalently 3x ≡ 2 (mod 5). By trial and error

the solution to this is given by 4 + 5k for every k ∈ Z.

Example 18. Find all solutions to 12x ≡ 2 (mod 20).

Proof.Assume there exists x that solves this equation, then

20 | 12x− 2⇒ 20 | 2(6x− 1)⇒ 10 | 6x− 1⇒ 2 | 6x− 1⇒ 2 | 1,
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which is not the case. Hence, there are no solutions.

Exercise 10. Solve the following linear congruence equations:

(a) 85x ≡ 15 (mod 80).

(b) 85x ≡ 43 (mod 80).

(c) 54x ≡ 48 (mod 66).

(d) 20x ≡ 60 (mod 780).

Exercise 11. Show that the following linear congruences have no solutions (without using a calculator):

(a) 3x ≡ 16 (mod 12937912894121).

(b) 16x ≡ 22 (mod 12937912894112).

(c) 15x ≡ 12 (mod 2374932874235).

Exercise 12. What happens if a = 0 in ax ≡ b (mod m)?

Solving linear Diophantine equations

Theorem 10. The equation ax+by = d for given a, b ∈ N\{0} and d ∈ Z has a solution iff gcd(a, b) - d.

Proof.Assume x, y ∈ Z are solutions to the equation, so ax + by = d. By definition of gcd, gcd(a, b) | a and
gcd(a, b) | b, so gcd(a, b) | ax+ by so gcd(a, b) | d. (Or if you can prove it from scratch: so there exist a′, b′ ∈ Z
such that a = a′ · gcd(a, b), hence d = a′ gcd(a, b)x+ b′ gcd(a, b)y = gcd(a, b)(a′x+ b′y)⇒ gcd(a, b) | d)

Assume gcd(a, b) | d, so d = d′ gcd(a, b) for d′ ∈ Z. The extended gcd algorithm implies that there exist x and
y such that ax+ by = gcd(a, b), hence a(xd′) + b(yd′) = d′ gcd(a, b) = d (by multiplying by d′). So, xd′ and yd′

are solutions to the equations (NOT the only ones).

Note: The proof also gives us a way to compute a solution to the linear Diophantine equation if there exists
one.

Example 19. Find any solution to the equation 15x+ 8y = 1.

Proof..

15 = 8 · 1 + 7 8 = (1) · 8 7 = 15− 8 = (1) · 15 + (−1) · 8
8 = 7 · 1 + 1 7 = (1) · 15 + (−1) · 8 1 = 8− 7 = (−1) · 15 + (2) · 8
7 = 1 · 7 + 0 1 = (−1) · 15 + (2) · 8
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So, 1 = (−1) · 15 + (2) · 8, which means that x = −1 and y = 2 is a solution.

Example 20. Find any solution to the equation 15x+ 8y = 3.

Proof.Given that x = −1 and y = 2 is a solution to 15x+8y = 1, by multiplying by 3 we get x = −3 and y = 6,
which satisfies 15x+ 8y = 3.

Example 21. Find any solution to the equation 75x+ 20y = 55.

Proof..

75 = 20 · 3 + 15 20 = (1) · 20 15 = 75− 20 · 3 = (1) · 75 + (−3) · 20
20 = 15 · 1 + 5 15 = (1) · 75 + (−3) · 20 5 = 20− 15 · 1 = (−1) · 75 + (4) · 20
15 = 5 · 3 + 0 5 = 20− 15 · 1 = (−1) · 75 + (4) · 20

So, 5 = 20− 15 · 1 = (−1) · 75 + (4) · 20, which means that x = −1 and y = 4 is a solution to 75x+ 20y = 5, so
by multiplying by 11 we obtain x = −11 and y = 44 as a solution.

Example 22. Show that the equation 24x+ 16y = 62 has no solutions in Z.

Proof.gcd(16, 24) = 4, but 4 - 62, so the equation has no solution over Z.

Exercise 13. Find any solution to the following equations:

(a) 22x+ 17y = 1.

(b) 22x+ 17y = 3.

(c) 32x+ 23y = 1.
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(d) 32x+ 23y = 4.

(e) 121x+ 44y = 11.

(f ) 121x+ 44y = 33.

You can verify your solutions (and generate more practice questions) using this tool.

Exercise 14. Show that the following equations have no solutions:

(a) 22x+ 16y = 5.

(b) 21x+ 14y = 6.

Exercise 15. Show that the following equations have no solutions:

� 127983712x+ 32498734234y = 222348093421.

� 12381201x+ 130482924y = 4.

Theorem 11. Let a, b ∈ N \ {0} and d ∈ N such that gcd(a, b) | d. All solutions to ax + by = d for
x, y ∈ Z, are given by x = x0 + a

gcd(a,b) · k and y = y0 − b
gcd(a,b) · k for some k ∈ Z, where (x0, y0) is any

initial solution.

Proof.Let x = x0 + t1 and y = y0 + t2 be solutions for some t1, t2 ∈ Z. We will now derive necessary conditions
on t1 and t2, and then we will show that these are also sufficient. We start by writing out,

ax+ by = d⇔ a(x0 + t1) + b(y + t2) = d⇔ (ax0 + by0) + at1 + bt2 = d⇔ at1 + bt2 =⇔ at1 = −bt2

We can write a = a′ · gcd(a, b) and b = b′ · gcd(a, b) with gcd(a′, b′) = 1. So, at1 = −bt2 ⇔ a′t1 = b′t2.
By Euclid’s corollary, since gcd(a′, b′) = 1, a′ | t2 and b′ | t1. Hence, t1 = b′ · t′1 and t2 = a′ · t′2. So,
a′t1 = −b′t2 ⇔ a′b′t′1 = −a′b′t′2 ⇔ t′1 = −t′2. Hence, by introducing a new name for t′1, we get t1 = b

gcd(a,b) · k
and t2 = a

gcd(a,b) · k for some k ∈ Z, i.e. x = x0 + bk and y = y0 − ak.

Finally, we verify that these are solutions to the original equation (i.e. the condition is sufficient),
a(x0 + b

gcd(a,b)k) + b(y0 − a
gcd(a,b)k) = ax0 + by0 + ab

gcd(a,b)k −
ab

gcd(a,b)k = ax0 + by0 = d.

Example 23. Find all solutions to the equation 15x+ 8y = 1.
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Proof.By the previous exercise we know that x0 = −1 and y0 = 2 is a solution. Hence, all solutions are given
by x = x0 + 8k = −1 + 8k and y = y0 − 15k = 2− 15k for some k ∈ Z.

Example 24. Find all solutions to the equation 15x+ 8y = 3.

Proof.We know that x0 = −3 and y0 = 6 is a solution. Hence, all solutions have the form x = x0 +8k = −3+8k
and y = y0 − 8k = 6− 8k.

Example 25. Find all solutions to the equation 75x+ 20y = 55.

Proof.Since x0 = −11 and y0 = 44 is a solution for 75x + 20y = 55, all solutions to the equation are given by
x = x0 + 20

gcd(75,20)k = −11 + 4k and y = y0 − 75
gcd(75,20) = 44− 15k for some k ∈ Z.

Exercise 16. Find all solutions to the following equations:

(a) 22x+ 17y = 1.

(b) 22x+ 17y = 3.

(c) 32x+ 23y = 1.

(d) 32x+ 23y = 4.

(e) 121x+ 44y = 11.

(f ) 121x+ 44y = 33.

You can verify your solutions (and get more practice) using this tool.

Exercise 17. See 2006p2q4 for solving linear Diophantine equations with the additional constraint that x and
y are non-negative.

Exercise 18 (Frobenius Problem). In this exercise, we are trying to find for a, b ∈ Z+ with gcd(a, b), the
largest m ∈ Z that is not representable by ax+ by = m for x, y ∈ N (i.e. x ≥ 0, y ≥ 0).

(a) (Optional) Watch this Numberphile video.

(b) Show that for a given m, there is always a unique solution (x0, y0) such that 0 ≤ x0 < b.

(c) Show that the larger x is, the smaller y must be.
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(d) Show that given 0 ≤ x0 < b, the smallest integer not representable with solution x0 is given when y0 = −1.

(e) Show that the smallest m not representable is for x0 = b− 1 and y0 = −1 and find its value.

(f ) Explain why all ms greater than this value are representable.

(grey area) Higher-order congruence equations
Can we solve higher-order linear congruence equations? For example, can we solve x2 − 5x+ 6 ≡ 0 (mod 10)?
Of course the brute force strategy of trying all possible modula still works. Consider in turn 0, 1, 2, . . . , 9 and
the only values that satisfy this are 2, 3, 7 and 8.

A more principled approach is to see that we need to prove that x2−5x+6 = (x−2)(x−3) and 10 | (x−2)(x−3)
iff 2 | (x− 2)(x− 3) and 5 | (x− 2)(x− 3). By Euclid’s theorem, we know that

2 | (x− 2)(x− 3)⇔ 2 | (x− 2) or 2 | (x− 3)⇔ x = 2k or x = 2k + 1 for some k ∈ Z,

which holds for all x. So, it remains to investigate the other case,

5 | (x− 2)(x− 3)⇔ 5 | (x− 2) or 5 | (x− 3)⇔ x = 5k + 2 or x = x = 5k + 3 for k ∈ Z.

The solutions have the form x = 5k + 2 or x = 5k + 3 for some k ∈ Z. (Note: that this is equivalent to the
solutions having the form x = 10k + 2, x = 10k + 7, x = 10k + 3 or x = 10k + 8, which confirms the solutions
we found above).

For the more general case we need the Chinese Remainder Theorem.

(grey area) Chinese Remainder Theorem
The Chinese Remainder theorem states that if m and n are co-prime, then there is a one-to-one mapping
between the remainders with division by mn and the pairs of remainders with division by n and division by m.
More concretely, consider m = 5 and n = 4, two co-prime numbers. There are mn = 20 possible remainders,
which are shown below together with their remainders in the division with m and n respectively (for example
7 gives (rem(7, 5), rem(7, 4)) = (2, 3).

0 1 2 3 4 5 6 7 8 9
(0, 0) (1, 1) (2, 2) (3, 3) (4, 0) (0, 1) (1, 2) (2, 3) (3, 0) (4, 1)

10 11 12 13 14 15 16 17 18 19
(0, 2) (1, 3) (2, 0) (3, 1) (4, 2) (0, 3) (1, 0) (2, 1) (3, 2) (4, 3)

Note that none of the of the pairs appears in the output more than once. And also note that every pair appears
once. To see why this holds it seems more natural to arrange the entries in a 4× 5 and a 5× 4 table, so that as
we go through the entries in the table from left to right they yield the above sequence. This gives the following
entries in the table

(0, 0) (1, 1) (2, 2) (3, 3) (4, 0)
(0, 1) (1, 2) (2, 3) (3, 0) (4, 1)
(0, 2) (1, 3) (2, 0) (3, 1) (4, 2)
(0, 3) (1, 0) (2, 1) (3, 2) (4, 3)

(0, 0) (1, 1) (2, 2) (3, 3)
(4, 0) (0, 1) (1, 2) (2, 3)
(3, 0) (4, 1) (0, 2) (1, 3)
(2, 0) (3, 1) (4, 2) (0, 3)
(1, 0) (2, 1) (3, 2) (4, 3)

If two pairs are equal then they must be in the same column in the first and in the second array (why?). Now,
look at the distance d between the two pairs (red and green arrow), which is the same on both arrays. Since
the two elements are in the same column it must be that m | d and similarly n | d. But the lowest common
multiple lcm(n,m) = mn

gcd(n,m) = mn (see the Fundamental Theorem of Arithmetic handout), and 0 < d < mn

(as the distance between two different elements in a collection of mn elements). Hence, there cannot exist such
distance. Since there are mn elements that are different, it must be a one-to-one mapping.
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Now, we will prove the existence part in a constructive way, i.e. one that allows to compute the value x ∈ Zmn

such that rem(x,m) = x1 ∈ Zm and rem(x, n) = x2 ∈ Zn.

Theorem 12. Let m,n ∈ N \ {0} with gcd(n,m) = 1, x1 ∈ Zm and x2 ∈ Zn. Then, there exists unique
x ∈ Zmn, such that rem(x,m) = x1 and rem(x, n) = x2.

Proof.Since m and n are co-prime, there exist x, y ∈ Z such that mx+ny = 1. Consider x = [x1ny+x2mx]mn.
How did we choose this? If look at the remainder of x divided by m, we have

x ≡ (x1ny + x2mx) ≡ x1ny ≡ x1(1−mx) ≡ x1 (mod m).

Similarly, x ≡ x2 (mod n). Hence, this weighing

Note: In one of the Christmas projects, you are asked to prove that the Chinese remainder theorem generalises
to more than one pairwise co-prime numbers.

Example 26. Find all x ∈ Z15 such that rem(x, 5) = 3 and rem(x, 3) = 1.

s

Proof.(Brute force) We know that there are just 15 numbers to check, so we go through all of them and see
which one satisfies both. (Actually we only need to check numbers of the form 5k+ 3). In this way we find the
answer 13.

(Using gcd) Note that (−1) · 5 + (2) · 3 = 1. Hence, x = [1 · (−1) · 5 + 3 · (2) · 3]15 = 13.

Example 27. Find all x ∈ Z such that x ≡ 3 (mod 41) and x ≡ 10 (mod 47).

Proof.By the extended gcd algorithm we get (−8) · 41 + 7 · 47 = 1. Hence, the initial solution is given by
[10 · (−8) · 41 + 3 · 7 · 47]41·47 = 1561. Hence, the general solution is x = 1561 + 41 · 47k for some k ∈ Z.

Example 28. Find all x ∈ Z such that x ≡ 3 (mod 41) and 7x ≡ 23 (mod 47).
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Proof.First of all, we notice that 7x ≡ 10 (mod 47) does not have the form we need for the CRT. But we know
that 7 has a multiplicative inverse (which we find to be 27) in Z47, hence 7x ≡ 23 (mod 47) is equivalent to
27 · 7x ≡ 27 · 23 (mod 47) which is equivalent to x ≡ 3 (mod 47).

Hence, we now have to solve the system x ≡ 3 (mod 41) and x ≡ 10 (mod 47), which we did in the previous
exercise.

Exercise 19. Show that for m = 4 and n = 2, there exists a counterexample to the one-to-one mapping.

Examples
Example 29. (Requires knowledge of the Chinese Remainder Theorem) Find the last two digits of 3400.

Proof.We want to determine the remainder of 3400 when divided by 100, i.e. by 52 · 22. Note that φ(25) = 20
and φ(4) = 1. By Euler-Fermat’s theorem, 320 ≡ 1 mod 25 so 3400 ≡ 1 mod 25 and 32 ≡ 1 mod 4 so 3400 ≡ 1
mod 4. Hence, using the Chinese Remainder Theorem since gcd(4, 100) = 1, 3400 ≡ 1 mod 100 and so the last
two digits are 01.

Problems (under construction)

Past papers

7

COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 2

Discrete Mathematics (MPF)

(a) (i) Calculate gcd(144, 77), the greatest common divisor of 144 and 77, as an integer linear combination
of 144 and 77. [4 marks]

(ii) What is the multiplicative inverse of 77 in Z144 and the multiplicative inverse of 67 in Z77?
[2 marks]
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(iii) Describe all integers x that solve the following two congruences{
77 · x ≡ 1 (mod 144)

67 · x ≡ 3 (mod 77)

Indicate how one may calculate the least natural number solution to the above. [4 marks]

Justify your answers.

8

COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 2

Discrete Mathematics (MPF)

(a) For a non-empty tuple of positive integers a1, . . . , an, let

CD(a1, ..., an) = { d ∈ N : ∀ 1 ≤ i ≤ n. d | ai }
be the set of natural numbers that are common divisors of all a1, . . . , an.

(i) Without using the Fundamental Theorem of Arithmetic, prove that for positive integers a and a′,
if CD(a, a′) = {1} then, for all integers k,

(a · a′) | k ⇐⇒ a | k ∧ a′ | k [4 marks]

(ii) Either prove or disprove that, for all natural numbers n ≥ 2 and all tuples of positive integers
a1, . . . , an, if CD(a1, . . . , an) = {1} then, for all integers k, (a1 · . . . ·an) | k =⇒ a1 | k ∧ . . . ∧ an | k.

[3 marks]
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(iii) Either prove or disprove that, for all natural numbers n ≥ 2 and all tuples of positive integers
a1, . . . , an, if CD(a1, . . . , an) = {1} then, for all integers k, a1 | k ∧ . . . ∧ an | k =⇒ (a1 · . . . ·an) | k.

[3 marks]

7

COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 2

Discrete Mathematics (MPF)

You may use standard results provided that you mention them clearly.

(a) (i) State a sufficient condition on a pair of positive integers a and b so that the following holds:

∀ x, y ∈ Z.
(
x ≡ y (mod a) ∧ x ≡ y (mod b)

)
⇐⇒ x ≡ y (mod ab)

[2 marks]

(ii) Recall that, for a positive integer m, we let Zm = {n ∈ N | 0 ≤ n < m} and that, for an integer k,
we write [k]m for the unique element of Zm such that k ≡ [k]m (mod m).

Let a and b be positive integers and let k and l be integers such that k a + l b = 1. Consider the
functions f : Zab → Za × Zb and g : Za × Zb → Zab given by

f(n) =
(

[n]a , [n]b
)
, g(x, y) = [k a (y − x) + x]ab

Prove either that g ◦ f = idZab
or that f ◦ g = idZa×Zb

. [8 marks]
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COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 2

Discrete Mathematics (MPF)

(a) (i) Calculate two integers x and y satisfying 177x+ 78 y = 3. [3 marks]

(ii) Describe all the integer pairs (x, y) that satisfy the above equation. [3 marks]

9

COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 2

Discrete Mathematics (MPF)

(a) Let p and m be positive integers such that p > m.
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(i) Prove that gcd(p,m) = gcd(p, p−m). [3 marks]

(ii) Without using the Fundamental Theorem of Arithmetic, prove that if gcd(p,m) = 1 then p |
(
p
m

)
.

You may use any other standard results provided that you state them clearly. [3 marks]

7

COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

Discrete Mathematics (MPF)

(a) Let N≥2
def
= { k ∈ N | k ≥ 2 }.

Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers m and n,

gcd(m,n) = 1 ⇐⇒ ¬(∃ k ∈ N≥2. k |m ∧ k |n )

You may use any other standard results provided that you state them clearly. [6 marks]
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COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

Discrete Mathematics (MPF)

(a) Without using the Fundamental Theorem of Arithmetic, prove that for all positive integers a, b, c,

gcd(a, c) = 1 =⇒
(

gcd(a · b, c) | b ∧ gcd(a · b, c) = gcd(b, c)
)

You may use any other standard results provided that you state them clearly. [6 marks]

7

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 2

Discrete Mathematics (MPF)

(c) (i) Use Euclid’s Algorithm to express the number 1 as an integer linear combination of the numbers 34
and 21. [3 marks]

(ii) Find a solution x ∈ N to 34 · x ≡ 3 (mod 21). [3 marks]
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COMPUTER SCIENCE TRIPOS Part IA – 2007 – Paper 2

Discrete Mathematics I (MPF)

(a) Given a, b ∈ N with a ≥ b prove carefully that there are unique values q, r ∈ N such that a = qb+ r and
0 ≤ r < b. [6 marks]

(b) Prove further that the greatest common divisor of a and b is equal to the greatest common divisor of b
and r. [2 marks]

(c) Derive Euclid’s algorithm for finding the greatest common divisor of two numbers. [3 marks]

(d) Determine the algorithm’s efficiency by finding a limit for the number of divisions required in its execution
expressed as a function of a. [3 marks]
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(e) Find all values x, y ∈ Z satisfying 72x+ 56y = 40. [3 marks]

(f ) Find all values z ∈ Z satisfying 56z ≡ 24(mod 72). Express the answer in the form z ≡ a(mod m).
[3 marks]

2

COMPUTER SCIENCE TRIPOS Part IA – 2003 – Paper 1

Discrete Mathematics (MPF)

(a) Show that the greatest common divisor of 798 and 567 is 21. [2 marks]

(b) Find all pairs of integers (x, y) with 798x+ 567y = 63. [4 marks]
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(c) Find all integer solutions to 567x = 42 (mod 798). [4 marks]
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