
Fundamental Theorem of Arithmetic for Part IA

Discrete Mathematics

Note: This handout contains some basic exercises for the Fundamental theorem of arithmetic and the
existence of an infinite number of prime numbers.

You can read more about the Fundamental Theorem of Arithmetic in Chapter 3.1 in ”Elementary Number
Theory” of D. M. Burton or Chapter 2 and 12 in ”An introduction to the theory of numbers” by G. H. Hardy.
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Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic basically says that every number has a unique factorisation. This
means that we can perceive each number as a sort of vector (or bag) of prime factors.

Theorem 1. Every positive integer n ≥ 2 can be uniquely written as the ordered product of primes.

Note: Ordered means that we consider 2 · 3 · 5 the same as 5 · 3 · 2.

In the lectures this is broken down into two parts existence and uniqueness.

Lemma 1. Every integer n ≥ 2 either is a prime or can be written as a product of primes. (see slides 260-262)

Lemma 2. For every integer n ≥ 2, there is a unique finite ordered sequence of primes p1 ≤ . . . ≤ p` with
` ∈ N such that n =

∏
(p1, . . . , p`). (see slides 264-269)

Combine the two Lemmas above to state the Fundamental Theorem of Arithmetic.
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Example 1. The following numbers can be factorised as:

• 60 = 22 · 3 · 5
• 1032 = 23 · 2 · 43

• 25200 = 32 · 24 · 52 · 7

Exercise 1. Find the prime factorisation of 22!.

(optional) Uniqueness of factorisation is not obvious
As discussed in the supervisions, if we consider the set of even integers, i.e. S = {2, 4, 6, 8, . . .}, then the set is
closed under addition and multiplication, meaning that for a, b ∈ S, a+ b ∈ S and a · b ∈ S (why? ).

We call an even-composite an even number that can be written as the product of two even numbers, otherwise
we call it even-composite. For example, 10 is even-prime since it cannot be written as the product of two even
numbers, but 20 = 2 · 10 is even-composite.

Does there exist an even number that has two even-prime factorisations? For example, 20 has a unique. (see
answer at the end of the document)

Basic properties
Property 1. For naturals a and b, such that a = pa11 · . . . p

ak
k and b = pb11 · . . . · p

bk
k , a | b iff ai ≤ bi for every i.

Property 2. For naturals a and b, such that a = pa11 · . . . p
ak
k and b = pb11 · . . . · p

bk
k , gcd(a, b) is given by

p
min(a1,b1)
1 · . . . · pmin(ak,bk)

k .

Property 3. For a = pa11 · . . . p
ak
k and b = pb11 · . . . · p

bk
k the lowest common multiple lcm(a, b) is given by

p
max(a1,b1)
1 · . . . · pmax(ak,bk)

k .
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Exercise 2. (a) Find the unique prime factorisation of 5577 and 99099. (Hint: Use the divisibility criteria).

(b) Compute gcd(5577, 99099) and lcm(5577, 99099), expressing each of your answers as a product of prime
numbers.

Property 4. Prove that gcd(a, b) · lcm(a, b) = ab.

Proof.

gcd(a, b) · lcm(a, b) = p
max(a1,b1)
1 · . . . · pmax(ak,bk)

k · pmin(a1,b1)
1 · . . . · pmin(ak,bk)

k

= p
min(a1,b1)+max(a1,b1)
1 · . . . · pmin(ak,bk)+max(ak,bk)

k

= pa1+b11 · . . . · pak+bkk

Property 5. The number of divisors of N = pa11 · . . . · p
ak
k is given by (a1 + 1) · . . . · (ak + 1).

Proof.By Property 1, all divisors will have the form pb11 · . . . · p
bk
k for bi ≤ ai and different assignments of bi will

give a different divisor. Hence, for the i-th factor we could set bi to 0, 1, . . . , ai, so ai + 1 values. Since each bi
is chosen independently, there are (a1 + 1) · (a2 + 1) · . . . · (ak + 1) possible assignments and hence divisors.

Example 2. Count the divisors of 60.
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Proof.We find the prime factorisation of 60 to be 22 · 31 · 51. Hence, using the above formula the total number
of divisors is (2 + 1)(1 + 1)(1 + 1) = 12.

The divisors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, which confirms the count.

Examples
Example 3. Let p be a prime and p | an for naturals a and n ≥ 1. Show that pn | an.

Proof.Let a = pa11 p
a2
2 · . . . · p

ak
k , then

an = pna11 pna22 · . . . · pnakk .

Since p | an, p = pi for some i. Hence, an has as a factor pnai where ai ≥ 1. Hence, pn | an.

Example 4. Find all primes p such that 7p+ 1 = n2 for natural n ≥ 1.

Proof.We start by factorising,
7p = n2 − 1 = (n− 1)(n+ 1)

Since 7 and p are primes, there are the following cases:

• n− 1 = 7 and n+ 1 = p, so n = 8 and p = 9 (impossible since 9 not prime)

• n− 1 = 7p and n+ 1 = 1 (impossible since n+ 1 > n− 1)

• n− 1 = p and n+ 1 = 7, so n = 6 and p = 5.

• n− 1 = 1 and n+ 1 = 7p (impossible since p ≥ 2 which would imply that n+ 1 > 7(n− 1)).

Exercise 3. Find all primes p and q with p 6= q, such that (2p+ 3q − 11)(p+ q − 1) = 4.

Exercise 4. Prove that there is exactly one natural number n for with 28 + 211 + 2n is a perfect square. (Hint:
28 + 211 is a square)

Example 5. Show that log10(7) is irrational.
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Proof.Assume that it is rational, so p/q = log10(7), then 10p/q = 7 and so 10p = 7q. This means that 2p5p = 7q.
This will only be possible if p = q = 0, which cannot be the case.

Exercise 5. Show that log(3)/ log(2) is irrational.

Example 6. Find the smallest positive integer such that n/2 is a square (of a natural) and n/3 is a cube (of
a natural).

Proof.Assume that n/2 = k2 ⇒ n = 2k2 and n/3 = m3 ⇒ 3 ·m3. Since, we are searching for the smaller such
number, we don’t have to assume that n has any divisors other than 2 and 3. We have to pick natural x and y
such that n = 2x3y satisfies the above two conditions.

n = 2x3y = 2k2 ⇒ 2x−13y = k2 so 2 | (x − 1) and 2 | y. Similarly, 3 | x and 3 | (y − 1). This is essentially a
system of modulo equations, but we can also just check x, y = 0, 1, 2, 3, . . . and see that x = 3 and y = 4 are
the smallest solutions, giving n = 648.

Exercise 6. Prove that in any set of 33 distinct integers with prime factors amongst {5, 7, 11, 13, 23}, there
must be two whose product is a square. (Hint: Use the pigeonhole principle)

Exercise 7. Prove that

lcm(a, b, c)2

lcm(a, b) lcm(b, c) lcm(c, a)
=

gcd(a, b, c)2

gcd(a, b) gcd(b, c) gcd(c, a)

Exercise 8. Show that if n is composite, then n | (n− 1)!.

Exercise 9. Prove some of the gcd properties using the Fundamental Theorem of Arithmetic.

Infinitely many primes
The existence of an infinite number of primes is a useful thing on its own, as it tells us that we can find primes
to use e.g. in cryptographic applications. An even more important thing is how many primes there are below
a given number x.

Theorem 2. There is an infinite number of prime numbers.

Proof.(Euclid’s proof) Assume there is a finite number of prime numbers and let p1, . . . , pk be these primes.
Then, consider P = p1 · . . . pk + 1. We will show that P has not prime factors. Assume not and let pi | P , then
pi | p1 · . . . pk and also divides the difference pi | (P − p1 · . . . pk) so pi | 1. This means that pi = 1.
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(Alternative proofs) There exists a proof that does not make use of Euclid’s theorem. You can find this on
wikipedia.

Example 7. (a) Show that the product of two numbers of the form 4k + 1 is also of the same form.

(b) Show that there are infinitely many primes of the form 4k + 3.

Proof.(a) OK. (b) Assume not and consider the primes of the form 4k + 3 to be p1, . . . , pn and consider
N = 4(p1 . . . pn)− 1. Then N cannot have all prime factors of the form 4k+ 1, as by part (a) this would imply
that N is also of that form. So, there is a prime p = 4`+ 3 such that p | N . However, p | N and p | 4(p1 . . . pn
so p | −1 (contradiction). So, there must be infinite primes of this form.

Exercise 10. Show that there are infinite primes of the form 6k + 5.

Example 8. For every natural n, there exist n consecutive natural numbers.

Proof.We are searching for a natural K such that if we add 1, 2, . . . , n, then we get composite numbers. One
idea is to try to find K with the property that i | K + i for every i. This means that i | K for every i. One
such number is K = (n+ 1)!. Then for every i, i | K, so i | K + i.

Past papers
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COMPUTER SCIENCE TRIPOS Part IA – 2003 – Paper 1

Discrete Mathematics (MPF)

(a) Prove that there are infinitely many prime numbers. [4 marks]

(b) Let p1, p2, . . . , pk be the first k primes. Show that the number of positive integers less than n and having
no prime factors other than p1, p2, . . . , pk is less than

√
n2k. [8 marks]

[Hint: All such numbers are of the form m2 pε11 pε22 · · · p
εk
k where each εi is 0 or 1.]
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Deduce that the kth prime is less than 4k. [4 marks]

2

COMPUTER SCIENCE TRIPOS Part IA – 2001 – Paper 1

Discrete Mathematics (MPF)

(a) Prove the fundamental theorem of arithmetic, that any natural number can be expressed as a product of
powers of primes and that such an expression is unique up to the order of the primes. [4 marks]

(b) Given a natural number n, let d(n) be the number of divisors of n (including 1 and n).

If p1, p2, . . . , pk are distinct primes, prove that

d(p1
α1p2

α2 . . . pk
αk) =

k∏
i=1

(αi + 1). [3 marks]
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(c) What is the smallest number with 36 factors? [3 marks]

Answer to the even factorisation: The special property of the set S is that for x = 60, we can write it as 6 · 10
or 2 · 30 and notice that 2, 6, 10, 30 are even-primes.
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