
Fermat’s Theorem for Part IA Discrete Mathematics

Note This handout contains several exercises and past papers to the Fermat’s Little Theorem. It also
includes some optional material on its usage in primality testing and some on its extension, i.e.

Fermat-Euler’s Theorem.
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Fermat’s Theorem

Proof
Lemma 1. For all primes p, then

(
p
0

)
≡ 1 (mod p) and

(
p
1

)
≡ 1 (mod p).

Lemma 2. For all primes p and integers 0 < m < p, then
(
p
m

)
≡ 0 (mod p).

Lemma 3 (The Freshman’s Dream). For all natural numbers m,n and primes p,

(m+ n)p ≡ mp + np (mod p).

Lemma 4 (The Dropout Lemma). For all natural numbers m and primes p, (m+ 1)p ≡ mp + 1 (mod p).

Lemma 5 (The many Dropout Lemma). For all natural numbers m and i and primes p, (m + i)p ≡ mp + i
(mod p).

2



Theorem 1 (Fermat’s Little Theorem (Part a)). For all natural numbers i and primes p, ip ≡ i (mod p).

Theorem 2 (Fermat’s Little Theorem (Part b)). For all natural numbers i and primes p, if p - i, then ip−1 ≡ 1
(mod p).

(optional) An alternative proof
Theorem 3 (Fermat’s Little Theorem (Part b)). For all natural numbers i and primes p, if p - i, then ip−1 ≡ 1
(mod p).

Proof.Consider the p− 1 positive multiples of i, i.e.

i, 2i, 3i, . . . , (p− 1)i

Since gcd(i, p) = 1, this means that i has an inverse i−1 in Zp (see the GCD handout). Hence,

i · x ≡ i · y (mod p)⇒ i−1 · i · x ≡ i−1 · i · y (mod p)⇒ x ≡ y (mod p)

Therefore all the multiples have to be different. Also, note that none of the i · x ≡ 0 (mod p), as this would
imply that p | i or p | x, which cannot be true by assumption. So, i, 2i, 3i, . . . , (p − 1)i is a permutation of
1, 2, 3, . . . , (p− 1).

Now, we perform a tricky part. Multiply all the i, 2i, 3i, . . . , (p− 1)i together.

i · 2i · 3i · . . . · (p− 1)i ≡ 1 · 2 · . . . · (p− 1) (mod p)⇒
(1 · 2 · . . . · (p− 1)) ip−1 ≡ 1 · 2 · . . . · (p− 1) (mod p)⇒ (By associativity)

ip−1 · (p− 1)! ≡ (p− 1)! (mod p)⇒ (By factorial definition)

ip−1 ≡ 1 (mod p) (since gcd((p− 1)!, p) = 1)

Further reading: There is also a proof using a combinatorial argument for counting necklaces consisting of
beads of different colours. See the Christmas projects for more details.
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Applications

Divisibility
Example 1. Find the remainder of 4175 when divided by 3.

Proof.By Fermat’s theorem, we have since gcd(41, 3) = 1, 412 ≡ 1 (mod 3). Hence, 4174 ≡ 174 (mod 3) so
4174 ≡ 1 (mod 3). By noticing that 41 ≡ 2 (mod 3) and using the multiplication property of modulo, we get
4175 ≡ 2 (mod 3). Since 0 ≤ 2 < 3, the remainder is 2.

Example 2. (Requires knowledge of Chinese Remainder Theorem) What is the last digit of 2400?

Proof.By Fermat’s theorem we have that 24 ≡ 1 (mod 5) so 2400 ≡ 1 (mod 5). We also know that 2400 ≡ 0
(mod 2), so the only number in Z10 that satisfies both of these modular equations is 6. Hence 2400 ≡ 6
(mod 10).

(Alternative solution: Looking at the last digits for 2i we get 2, 4, 8, 6, 2, 4, 8, 6, . . .. Hence, the values repeat
every 4 multiplications, hence 2400 will have the same digit as 24 = 16, so 6.

Example 3. Let p 6= q be two odd primes, prove that pq−1 + qp−1 ≡ 1 (mod pq).

Proof.By Fermat’s theorem we have pq−1 ≡ 1 (mod q) since gcd(p, q) = 1. Similarly, qp−1 ≡ 1 (mod p).

Hence, q | pq−1 − 1 and p | qp−1 − 1. Therefore, pq | (pq−1 − 1)(qp−1 − 1) so pq | pq−1qp−1 − qp−1 − pq−1 − 1 so
qp−1 − pq−1 ≡ 1 (mod pq).

Lemma 6. If ak ≡ a (mod m) and ak ≡ a (mod n) for m,n co-prime, ak ≡ a (mod mn).
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Proof.Note that ak ≡ a (mod m)⇒ m | ak−a and ak ≡ a (mod n)⇒ n | ak−a. Since m and n are co=prime,
Euclid’s theorem implies that nm | ak − a, i.e. ak ≡ a (mod mn).

Example 4. Show that a21 ≡ a (mod 15) for all a ∈ Z.

Proof.(Method 1) Since 5 is prime, by Fermat’s Little Theorem, for a not a multiple of 5, a4 ≡ 1 (mod 5). By
the exponentiation property of modulo, (a4)5 ≡ (1)5 (mod 5), so a20 ≡ 1 (mod 5), so a21 ≡ a (mod 5). Note
that the last relation holds for a a multiple of 5. Hence, a21 ≡ a (mod 5) for any a.

Similarly, since 3 is prime and 21 = 2 · 10 + 1, we have that a21 ≡ a (mod 3).

Hence, 3 | (a21 − a) and a | (a21 − a). Using Lemma 6, since 3 and 5 are co-prime, we get a21 ≡ a (mod 15).

(Method 2) Using FLT, for any a, a5 ≡ a (mod 5) and so a21 ≡ a · (a5)4 ≡ a · a4 ≡ a5 ≡ a (mod 5).

Similarly, using FLT, for any a, a3 ≡ a (mod 3) and so a21 ≡ (a3)7 ≡ a7 ≡ a3 · a3 · a ≡ a · a · a ≡ a3 ≡ a
(mod 3). Hence, for the same reason as in the first method we get the desired result.

Exercise 1. For all a ∈ Z, a7 ≡ a (mod 42).

Exercise 2. For all a ∈ Z, a13 ≡ a (mod 3 · 7 · 13).

Exercise 3. For all a ∈ Z, a9 ≡ a (mod 30).

Exercise 4. For all a ∈ Z, a5 ≡ a (mod 30).

Exercise 5. Design an exercise like the above.

Exercise 6. Use Fermat’s Little Theorem to verify that 17 | 11121 + 1.

Exercise 7. For every a ∈ Z prove that a and a5 have the same digit.

Exercise 8. Deduce that 17|(1316n+2 + 1) for n ∈ Z+

Exercise 9. Deduce that 13|(912n+4 − 9) for n ∈ Z+

Exercise 10. Show that for p an odd prime:

(a)
p−1∑
k=1

kp−1 ≡ −1 (mod p)

(b)
p−1∑
k=1

kp ≡ 0 (mod p)

Exercise 11. Let a and b be integers and p prime, with ap ≡ bp (mod p). Show that ap ≡ bp (mod p). [Hint:
Show that a ≡ b (mod p) and use the many dropout lemma]
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Computation

Computing the inverse of an element
One of the applications of Fermat’s Little Theorem is to compute the inverse of an element in Zp. In particular,
consider a ∈ Z∗

p, then ap−1 ≡ 1 (mod p). By a simple manipulation, we get

ap−2 · a ≡ 1 (mod p)

Since a has a unique inverse (see GCD handout), it follows that ap−2 is that inverse.

How would you compute this value? For exponentiating any number to a power k in Zm we can use the modular
exponentiation algorithm (essentially npow with the mod operation after every multiplication). This requires
O(log(k)) multiplications.

Example 5. Using Fermat’s Little Theorem, solve 3x ≡ 4 (mod 7).

Proof.The multiplicative inverse of 3 in Z7 is given by rem(35, 7) = 5. Hence, 5 · 3 ≡ 1 (mod 7). By the
multiplication properties of mod , we have

3x ≡ 4 (mod 7)⇒ (5 · 3)x ≡ (5 · 4) (mod 7)⇒ x ≡ 20 (mod 7)⇒ x ≡ 6 (mod 7).

Hence, the solutions are x = 7k + 6 for k ∈ Z.

Implementation Challenge: Implement an algorithm that finds the multiplicative inverse of a in Zm using
the modular exponentiation algorithm.

(grey area) Primality testing
Fermat’s algorithm can be used to test whether a natural is a probable prime or a composite. For example,
one might randomly pick a ∈ {2, 3, . . . , n − 2} and check if ap ≡ a (mod p). If we find any a for which this is
not the case, then it means that n is composite. Otherwise, even if for all values this is true, then we cannot
deduce that a number is prime because the converse of Fermat’s Little Theorem does not hold. In particular,
there exist composite numbers n, called Carmichael number, such that an ≡ a (mod n) for all a < n.

The smallest such number is 561 = 3 · 11 · 17, which we will prove that it is Carmichael.

Example 6. Show that 561 is a Carmichael number.

Proof.Note that 561 = 3 · 11 · 17. By Fermat’s little theorem, for any a not a multiple of 17,

a16 ≡ 1 (mod 17)⇒ (a16)35 ≡ (1)35 (mod 17)⇒ a560 ≡ 1 (mod 17).

Hence, a561 ≡ a (mod 17) (and this holds also for multiples of 17). Similarly, since 560 = 2·280 and 560 = 10·56,
a561 ≡ a (mod 3) and a561 ≡ a (mod 11) hold respectively.

By the Lemma 6, since 3, 11 and 17 are co-prime, a561 ≡ a (mod 561), so 561 is a Carmichael number.

Implementation challenge: Write a program to find as many of the 43 Carmichael numbers under one
million.
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A related notion is that of a pseudo-prime, which is a natural m such that 2m ≡ 2 for m not prime. In 2006P2Q3
you will prove that there is an infinite number of pseudoprimes.

Further reading: In practice, because of the existence of counterexamples, Fermat’s Little Theorem is used as
a subcomponent in more complicated primality test algorithms such as the Miller-Rabin, and Solovay-Strassen.
The success rate of Fermat’s primality test depends on the number of Carmichael numbers and on the proportion
of a ∈ Zn that satisfy an ≡ a for a composite number n. In 1994, it was proven that the there exists an infinite
number of Carmichael numbers along with a lower bound of at least n2/7 such numbers below n. In the project
questions, you can explore Erdős’ proof for an upper bound.

Exercise 12. Show that for a Carmichael number n there cannot exist k > 1 such that k2 | n.

Exercise 13. Let n be a composite square-free natural (i.e. not divisible by any square except for 1), say
n = p1p2 . . . pk, where pi are distinct primes. Show that if pi − 1 | n− 1, then n is a Carmichael number. Why
does this not imply the existence of infinitely many Carmichael numbers?

Exercise 14. Show that 1105 = 5 · 13 · 17 is a Carmichael number.

Exercise 15. Show that 2821 = 7 · 13 · 31 is a Carmichael number.

Exercise 16. Show that 561 | 2561 − 1 and 561 | 3561 − 3.

Note: It is an open question (according to “Elementary Number Theory” by D. M. Burton) if there exist
infinitely many composite numbers n such that n | 2n − 2 and n | 3n − 3.
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Past papers
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COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 2

Discrete Mathematics (MPF)

(b) (i) State Fermat’s Little Theorem. [2 marks]

(ii) Prove that for all natural numbers m and n, and for all prime numbers p, if m ≡ n
(
mod (p − 1)

)
then ∀ k ∈ N. km ≡ kn (mod p). [6 marks]

3

COMPUTER SCIENCE TRIPOS Part IA – 2006 – Paper 2

Discrete Mathematics I (MPF)

(a) State Fermat’s Little theorem, carefully defining any terms that you use. Deduce that 2p ≡ 2 (mod p)
for any prime p. [5 marks]
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(b) Explain how this result can be used to show that a number is composite without actually finding a factor.
Give an example. [3 marks]

(c) Let Mm = 2m − 1 be the mth Mersenne number. Suppose that m is composite. Prove that Mm is
composite. [3 marks]

(d) A composite number m that satisfies 2m ≡ 2 (mod m) is known as a pseudo-prime.

(i) Suppose that m is prime. Prove that Mm is either prime or a pseudo-prime. [3 marks]

(ii) Suppose that m is a pseudo-prime. Prove that Mm is a pseudo-prime. [3 marks]

(iii) Deduce that there are infinitely many pseudo-primes. [3 marks]
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2

COMPUTER SCIENCE TRIPOS Part IA – 2005 – Paper 1

Discrete Mathematics I (MPF)

(a) State the Fermat–Euler theorem, and deduce that p | (2p − 2) for any prime p. [5 marks]

(b) A composite number m that satisfies m | (2m − 2) is known as a pseudo-prime.

Show that 210 ≡ 1 (mod 11) and 210 ≡ 1 (mod 31). Deduce that 341 is a pseudo-prime. [5 marks]
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COMPUTER SCIENCE TRIPOS Part IA – 1999 – Paper 1

Discrete Mathematics (MPF)

State and prove Fermat’s Little Theorem. [8 marks]
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Given a prime, p, with p 6= 2 and p 6= 5, show that there are infinitely many natural numbers, each of which
has 9s as all its digits and which is divisible by p. [8 marks]

(optional) Euler-Fermat’s Theorem
In this section, we are going to discuss Euler’s generalisation of Fermat’s Little Theorem. This theorem was
taught in past versions of this course and has deep connections to many concepts/exercises in the current
version of the course. So, if you have time it might be useful to learn about it (it will also come up in Part II
Cryptography).

We begin with the definition for Euler’s totient function.

Definition 1. For n ∈ N we define Euler’s totient function φ(n) to be equal to the number of natural numbers
k ∈ Zn such that gcd(k, n) = 1.

For example, φ(10) = 4 since there are 4 numbers co-prime to 10 namely 1, 3, 7, 9. We can prove the following
trivial property.

Property 1. For any prime p ∈ N, φ(p) = p− 1.

Proof.Let n ∈ Zp, then gcd(n, p) = 1. Since there are p− 1 of these φ(p) = p− 1

For completeness we will also prove that gcd(n, p) = 1 consider d > 0 such that d | n and d | p, then since p is
prime d = 1 or d = p.
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However, n < p so d = 1. So, any common divisor is 1, hence gcd(n, p) = 1.

Now, we are ready to state the Euler’s extension of Fermat’s little theorem.

Theorem 4. Let n ∈ N and a ∈ N with gcd(a, n) = 1, then

aφ(n) ≡ a (mod n).

Note: For n being a prime number this is Fermat’s Little Theorem.

Proof.Consider r1, . . . , rφ(n) to be the φ(n) numbers in Zn co-prime with n. We will use the fact that for a ∈ Zn
and gcd(a, n) = 1, a has an inverse a−1 ∈ Zn(see the GCD handout), meaning that ari ≡ arj (mod n)⇒ ri ≡ rj
(mod n) (cancellation law).

So consider the values a · r1, a · r2, . . . , a · rφ(n). Being the product to two values co-prime to n, their product
will be co-prime with n, so one of the rj values. By the cancellation law, no two of these can map to the same
rj . Hence, these a · r1, a · r2, . . . , a · rφ(n) are a permutation of r1, r2, . . . , rφ(n).

Now, we will use a trick. Multiplying all the a · r1, a · r2, . . . , a · rφ(n) together we get

a · r1, a · r2, . . . , a · rφ(n) ≡ r1 · r2 · . . . · rφ(n) ≡ (mod n)⇒
aφ(n) · r1 · r2 · . . . · rφ(n) ≡ r1 · r2 · . . . · rφ(n) ≡ (mod n)⇒

aφ(n) ≡ 1 (mod n)

where the last step follows from the fact that r1 · r2 · . . . · rφ(n) is co-prime with n (as the product of values
co-prime to n), so it must have an inverse.

Properties of the φ function
Property 2. Let p be a prime and let a ∈ N for a ≥ 1, then

φ(pa) = pa − pa−1 = pa(1− 1

p
)

Proof.Let’s count the values in Zpa that are not co-prime with pa. If gcd(n, pa) > 1, then gcd(n, p) = pk for
some k ∈ N∗. Hence, we are searching for the multiples of p, i.e. p, 2p, 3p, . . . , pa−1, pa. There are pa/p = pa−1

of these. Therefore, the number of values co-prime with pa are φ(pa) = pa − pa−1 = pa(1− 1
p ).

Property 3. Let a, b ∈ N be positive with gcd(a, b) = 1, then φ(ab) = φ(a) · φ(b).

Proof.This proof requires knowledge of the Chinese Remainder Theorem.

Consider the φ(a) values that are co-prime with a, ra1 , . . . , r
a
φ(a) and similarly rb1, . . . , r

b
φ(b). An integer n will

be co-prime with ab iff it is co-prime with both a and b. A integer n is co-prime with a iff n ≡ rai (mod a) for
some i. So the values n co-prime to ab will be n ≡ rai mod a and n ≡ rbj (mod b) for some i, j.

By the Chinese remainder there is a one-to-one mapping between the pairs of modulo for a and b and the
modulo for ab, hence, there must be φ(a) · φ(b) values (i.e. all possible (rai , r

b
j) pairs) that are co-prime with

ab.

Property 4. For natural n ≥ 2, φ(n) = n ·
(

1− 1
p1

)
·
(

1− 1
p2

)
· . . .

(
1− 1

pk

)
, where pi are the distinct primes

that divide n.
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Proof.By the fundamental theorem of arithmetic we have that n = pa11 · . . . · p
ak
k for ai ≥ 0. Note that

gcd(paii , p
aj
j ) = 1, hence

φ(n) = φ(pa11 · . . . · p
ak
k )

= φ(pa11 ) · . . . · φ(pakk )(by Property 3)

= pa11

(
1− 1

p1

)
· . . . · pakk

(
1− 1

pk

)
(by Property 2)

= pa11 · . . . · p
ak
k ·

(
1− 1

p1

)
· . . . ·

(
1− 1

pk

)
(by re-arrangement)

= n

(
1− 1

p1

)
· . . . ·

(
1− 1

pk

)

Now, we have a simple way to compute the φ(n) given the factorisation of n.

For example, φ(10) = 10 · (1− 1
2 ) · (1− 1

5 ) = 4 or φ(20) = φ(5 · 22) = 20 · (1− 1
5 )(1− 1

2 ) = 8.

Examples (under construction!)
Example 7. (Requires knowledge of the Chinese Remainder Theorem) Find the last two digits of 3400.

Proof.We want to determine the remainder of 3400 when divided by 100, i.e. by 52 · 22. Note that φ(25) = 20
and φ(4) = 1. By Euler-Fermat’s theorem, 320 ≡ 1 (mod 25) so 3400 ≡ 1 mod 25 and 32 ≡ 1 (mod 4) so
3400 ≡ 1 (mod 4). Hence, using the Chinese Remainder Theorem since gcd(4, 100) = 1, 3400 ≡ 1 (mod 100)
and so the last two digits are 01.

Past papers

7

COMPUTER SCIENCE TRIPOS Part IA – 2002 – Paper 1

Discrete Mathematics I (MPF)

(a) State carefully the Fermat–Euler theorem, defining any terms that you use. [4 marks]

(b) Explain how calculating an−1(mod n) for various values of a can be used to show that n is composite
without actually finding its factors. By considering 561 = 3× 11× 17 or otherwise, show that the test is
not perfect and suggest an improvement to make it more selective. [6 marks]
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