
Divisibility for Part IA Discrete Mathematics

Note: This handout contains some basic exercises for divisibility and a reminder of the definitions of the
division algorithm, remainder and modulo.
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Some common identities
Identities are very useful for number theory problems. We will see below examples for proving divisibility and
examples for proving when an expression gives prime numbers.

Exercise 1. Show that
a2 − b2 = (a− b) · (a+ b)

.

Exercise 2. Show that
a3 − b3 = (a− b) · (a2 + ab+ b2)

.

Exercise 3. Show that

an − bn = (a− b) · (an−1 + an−2b+ . . .+ abn−2 + bn−1)

.

Exercise 4. Show that
a3 + b3 = (a+ b) · (a2 − ab+ b2)

.

Exercise 5. Show that
a2n+1 + b2n+1 = (a+ b) · (a2n − a2n−1b+ . . .+ b2n)

.

Division theorem and algorithm
Define the division algorithm and give OCaml code.

Theorem 1. For every natural number m and positive natural number n, the evaluation of divalg(m,n)
terminates, outputing a pair of natural numbers (q0, r0) such that r0 < n and m = q0 · n+ r0.
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Theorem 2. Show that there are unique naturals r and q such that m = n · q + r and 0 ≤ r < n.

Combining the above two theorems state the division theorem.

Remainder properties
There are two points when looking at these basic properties. One it to see how to derive them and the other is
to understand what they mean so that you can use them when needed.

Property 1. For natural numbers r,m`, rem(r ·m+ `,m) = rem(`,m).

Proof.By the division theorem for ` and m, we have

` = quo(`,m) ·m+ rem(`,m).

By adding r ·m on both sides, we have

r ·m+ ` = r ·m+ quo(`,m) ·m+ rem(`,m) = (r + quo(`,m)) ·m+ rem(`,m).

Note that 0 ≤ rem(`,m) < m. Hence, by the uniqueness of the remainder rem(r ·m+ `,m) = rem(`,m).

Property 2. For natural numbers r,m`, rem(k + `,m) = rem(rem(k,m) + `,m).
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Proof.By the division theorem, k = quo(r,m) ·m+ rem(r,m).

rem(k + `,m) = rem(quo(r,m) ·m+ rem(r,m) + `,m).

By the previous property,

rem(quo(r,m) ·m+ rem(r,m) + `,m) = rem(rem(r,m) + `,m).

Property 3. For natural numbers r,m`, rem(k · `,m) = rem(k · rem(`,m),m).

Proof.By the division theorem, ` = quo(`,m) ·m+ rem(`,m), so

rem(k · `,m) = rem(k · (quo(`,m) ·m+ rem(`,m)),m) = rem(k quo(`,m) ·m+ k · rem(`,m),m).

Hence, by Property 1, we have

rem(k quo(`,m) ·m+ k · rem(`,m),m) = rem(k · rem(`,m),m).

In a large class of problems we are required to prove that n | f(k) for some values of k. One approach
to these problems is as follows:
• The division theorem tells us that k = quo(k, n) · n+ r where 0 ≤ r < n.
• By considering all possible values of r, i.e. 0, 1, 2, . . . , n− 1, we expand f(quo(k, n) · n+ r).
• Perform a series of calculations and simplifications that show that f(k) is of the form n · (. . .).

Example 1. Prove that for any natural k, 3 | (k3 − k).

Proof.Consider k = 3`+ r and f(k) = k3 − k = k(k2 − 1) = k(k − 1)(k + 1).
• For r = 0, f(k) = (3`)(3`− 1)(3`+ 1) = 3 · (`(3`− 1)(3`+ 1)).
• For r = 1, f(k) = (3`+ 1)(3`)(3`+ 2) = 3 · ((3`+ 1)`(3`+ 2)).
• For r = 2, f(k) = (3`+ 2)(3`+ 1)(3`+ 3) = 3 · ((3`+ 2)(3`+ 1)(`+ 1)).

Note: Below we will use another technique that avoids factorisation. This is also a direct application
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of Fermat’s Little Theorem.

Example 2. Prove that for any natural k, 6 | k3 + 3k2 − 4k.

Proof.Consider k = 6`+ r and f(k) = k(k2 + 3k − 4) = k(k − 1)(k + 4).
• For r = 0, f(k) = (6`)(6`− 1)(6`+ 4) = 6 · (`)(6`− 1)(6`+ 4).
• For r = 1, f(k) = (6`+ 1)(6`)(6`+ 5) = 6 · (6`+ 1)`(6`+ 5).
• For r = 2, f(k) = (6`+ 2)(6`+ 1)(6`+ 6) = 6 · (6`+ 2)(6`+ 1)(`+ 1).
• For r = 3, f(k) = (6`+ 3)(6`+ 2)(6`+ 1) = 3 · 2 · (3`+ 1)(2`+ 1)(6`+ 1).
• For r = 4, f(k) = (6`+ 4)(6`+ 3)(6`+ 2) = 3 · 2 · (3`+ 2)(3`+ 1)(6`+ 2).
• For r = 5, f(k) = (6`+ 5)(6`+ 4)(6`+ 3) = 2 · 3 · (6`+ 5)(3`+ 2)(2`+ 1).

(Using the fact that 2, 3 are co-prime): Note that since 2 and 3 are co-prime it suffices to check
that 2 | f(k) and 3 | f(k). You can do this as an exercise.

In the following example we take a few shortcuts in the computation:

Example 3. Show that 5 | k5 − k.

Proof.We start by factorising f(k) = k(k4 − 1) = k(k2 − 1)(k2 + 1) = k(k − 1)(k + 1)(k2 + 1). Then
consider k = 5`+ r.
• For r = 0, 1, 4 one of the first three terms respectively is divisible by 5.
• For r = 2, k2 + 1 = (5`+ 2)2 + 1 = 5`2 + 2 · 5`+ 4 + 1 = 5 · (`2 + 2`+ 1).
• For r = 3, k2 + 1 = (5`+ 3)2 + 1 = 5`2 + 2 · 5`+ 9 + 1 = 5 · (`2 + 2`+ 2).

Example 4. Find the possible values of k such that 3 | (2k + 1).

Proof.Consider k = 3`+ r where 0 ≤ r < 3 and f(k) = 2k + 1.

• For r = 0, f(k) = 2 · (3`+ 0) + 1 = 3 · (2`) + 1. Hence, 3 - f(k).

• For r = 1, f(k) = 2 · (3`+ 1) + 1 = 3 · (2`+ 1). Hence 3 | f(k).

• For r = 2, f(k) = 2 · (2`+ 2) + 1 = 3 · (2`) + 5. Hence 3 - f(k).

So, only for integers of the form 3k + 1, 3 | f(k).

Example 5. Prove that if k is an odd integer then 12 | (3k2 + 12k + 21).
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Proof.Since k is odd, it can be written as k = 2`+ 1 for some ` ∈ Z. So,

3k2+12k+21 = 3(2k+1)2+12(2k+1)+21 = 3(4k2+4k+1)+12(2k+1)+21 = 12(k2+3k+1)+24 = 12 ·(. . .).

Example 6. Show that the product of n consecutive naturals is divisible by n.

Proof.The reason why this holds is that within n consecutive multiples there is a multiple of n. But we need to
formalise this. Let k be the first of these naturals, then the product of the n naturals is

P = k(k + 1) · . . . (k + (n− 2)) · (k + (n− 1))

Assume k = n · k′ + r for 0 ≤ r < n. If r = 0, then n | k, so n | P . Otherwise, n > n − r > 0, so
k + n− r = n · k′ + r + n− r = n(k′ + 1), so n | (k + n− r) and hence n | P .

Exercise 6. Prove that for every natural k, A = (5k + 2)(3k + 7) is even.

Exercise 7. Find the values of k ∈ Z such that 6 | (k3 + 5k).

Exercise 8. Define an f(k) such that for every natural k, 10 | f(k).

Exercise 9. Find the values of k such that 5 | 6k + 3.

Exercise 10. Find the remainder of A = 9999 + 9999 + 9999 + 1 with 9.

Exercise 11. Find the remainder of A = 12! + 50 with 33.

In the supervision work, you proved that:
• the product of two even numbers is even
• the product of two odd numbers is odd
• the sum of two even numbers is even
• the sum of two odd numbers is odd

These are useful facts which you can you to deduce the parity of several expressions.

Example 7. Prove that x = k2 + k + 1 is odd for all natural k.

Proof.Assume k is even. Then k2 is even, k is even, so k2 + k is even and k2 + k + 1 is odd.
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Assume k is odd. Then k2 is odd, k is odd, so k2 + k is even and k2 + k + 1 is odd.

A generalisation of this is to find the possible remainders for various integers. For example the square of
a natural can take the form 4` or 4`+2. This means that the two other forms 4`+1 and 4`+3. Let’s prove
this. Consider the square of an odd number k = 2`+1, then k2 = (2`+1)2 = 4`2+4`+1 = 4 (`2 + `)︸ ︷︷ ︸

k

+1.

Consider the square of an even number k = 2`, then k2 = (2`)2 = 4 `2︸︷︷︸
k

.

Example 8. Let k be a natural, prove that A =
√

4k + 2 is non-integer.

Proof.
A =

√
4k + 2⇒ A2 = 4k + 2

But we know that the square of a number is of the form 4` + 1 or 4` (for ` ∈ N), so there cannot be
such A and k.

Exercise 12. Prove that for odd a, b ∈ N, the natural a2 + b2 cannot be the square of a number.

Exercise 13. Prove that (3k + 2)(x+ 5) is even for all natural k.

Example 9. Prove that the square of an odd number is of the form 8k + 1.

Proof.Consider n = 2`+1. Then n2 = (2`+1)2 = 4`2 +4`+1 = 4`(`+1)+1. Since ` and `+1 are consecutive,
one of them is even, so `(`+ 1) is even say 2`′ for `′ ∈ N. Then, n2 = 4 · (2`′) + 1 = 8`′ + 1.

Example 10. Let k be an odd number, show that 32 | (k2 + 3)(k2 + 7).

Proof.By the previous exercise, k2 = 8k′ + 1 for some k′ ∈ N, so (k2 + 3)(k2 + 7) = (8k′ + 1 + 3)(8k′ + 1 + 7) =
(8k′ + 4)(8k′ + 8) = 4(2k′ + 1)8(k′ + 1) = 32 · (...).

Exercise 14. Let k be an odd number, show that 16 | k4 − 1.

Exercise 15. Let a and b be odd, then prove that 8 | (a2 − b2).

Exercise 16. Find the remainder of n4 − n2 − 1 with 2.

Exercise 17. Let a, b be naturals and a+ 3b+ 20002021. Prove that 2 | (a+ b).

Exercise 18. (a) Show that for a odd, 16 | a4 − 1.

(b) Let a, b ∈ N be such that ab = 20212021, show that 16 | (a4 + b4 − 1).

Exercise 19. Prove that the equation x2 − 19992001x+ 20012007 = 0 does not have any integer solutions.

Exercise 20. Prove that if a and b are odd naturals, then the equation x20 + ax11 + b = 0 has no integer
solutions.

Exercise 21. Show that for a, b, c naturals, the number (a+b)(b+c)(c+a)
2 is natural.
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Div
Define n | m.

Properties
Show that d | n and n | m implies that d | m.

Show that d | n and d | n implies that d | n+m.

Show that d | n, then d | n ·m.

[Linearity] Show that if d | n and d | m, then d | an+ am.
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Attention ! m | k and n | k does not imply that mn | k.
Attention ! k | mn does not imply that k | m or k | n.

Now let’s see how to apply the linearity property in some examples.

Example 11. Let a, b be naturals such that 7 | (45 + a) and 7 | (3− b). Prove that 7 | (a+ b).

Proof.We want to combine 45 + a and 3− b such that the term a+ b appears. We do this using subtraction:

7 | (45 + a) and 7 | (3− b)⇒ 7 | (45 + a− (3− b))⇒ 7 | (42 + a+ b).

Since 7 | 42, we get that 7 | (42 + a+ b− 42), so 7 | (a+ b).

Example 12. Let a, b be naturals such that 11 | (5a+ 6b), prove that 11 | (6a+ 5b).

Proof.Trivially, 11 | 11(a+ b), so 11 | (11a+ 11b− (5a+ 6b)) which gives 11 | (6a+ 5b).

Example 13. Let n, d be naturals such that d | n2 + n+ 1 and d | n2 − n+ 1. Show that d | 2.

Proof.By the linearity property of divisibility, by taking the sum

d | n2 + n+ 1 and d | n2 − n+ 1⇒ d | (n2 + n+ 1 + (n2 − n+ 1))⇒ d | 2n2 + 2

and by taking the difference,

d | n2 + n+ 1 and d | n2 − n+ 1⇒ d | (n2 + n+ 1− (n2 − n+ 1))⇒ d | 2n.

Hence, d | 2n2 + 2 and d | 2n. So, d | (2n2 + 2− n · (2n))⇒ d | 2.

Note: By noticing that n2 + n+ 1 is odd this means that d | 1 (Why? ).

Example 14. Let d, n be naturals, such that d | n3 + n+ 1 and d | n2 − n+ 1. Show that d = 1.
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Proof.The first step is to combine n3 + n+ 1 and n2 − n+ 1 so that n3 vanishes. So,

d | (n3 + n+ 1− n · (n2 − n+ 1)n2)⇒ d | (n2 + 1)

Now we return to the second given equation,

d | (n2 + 1− (n2 − n+ 1))⇒ d | n

which implies d | n2 and hence d | (n2 − n+ 1 + (n2) + n)⇒ d | 1. Hence, d = 1.

Example 15. Find all naturals n such that (n+ 2) | (n2 + 4).

Proof.One way of doing this is, n + 2 | (n + 2)2 ⇒ n + 2 | (n2 + 4n + 4). By linearity of div,
n+ 2 | (n2 + 4n+ 4− (n2 + 4))⇒ n+ 2 | 4n. Now we need to get something with 4n, so n+ 2 | 4(n+ 2), so by
linearity n + 2 | 8. So we just need to try the different divisors of 8, i.e. n + 2 = 2, n + 2 = 4 and n + 2 = 8.
These give the solutions n = 0, 2, 6. (Note that you have to verify that n+ 2 | (n2 + 4) Why? )

Exercise 22. Show that for naturals d, n such that d | (5n+ 3) and d | (8n+ 5) show that d = 1.

Exercise 23. Show that for naturals d, n such that d | (4k + 2) and d | (k2 + k), show that d = 2.

Exercise 24. Show that for naturals a, b, d such that d | (5a+ 17b) and d | (2a+ 7b), d | a and d | b.

Exercise 25. Find the largest natural that divides both a = n2 + n+ 2 and b = n2 − n+ 2.

Mod
Create a section similar to div and rem, containing the definition and properties of mod.
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Using (a + b)n ≡ an (mod b)

We will use the following relations to prove the divisibility relation:

(a+ b)n ≡ an (mod b)

Let us return to the following example:

Example 16. Prove that for any natural k, 3 | (k3 − k).

Proof.Consider k = 3` + r and f(k) = k3 − k. Instead of factorising f(k), we can use the fact that
(3`+ r)3 − (3`− r) ≡ r3 − r (mod 3). So, it suffices to check:
• For r = 0, r3 − r = 0.
• For r = 1, r3 − r = 1− 1 = 0.
• For r = 2, r3 − r = 23 − 2 = 6 ≡ 0 (mod 3).

Note: Sometimes it is convenient to take r = −1 instead of r = 2, which is valid since 2 ≡ −2 (mod 3).

Example 17. Prove that any natural of the form n4 + 4 is composite, for n > 1 and n not a multiple of 5.

Proof.Consider numbers of the form 5k+ r for 0 < r < 5. Then (5k+ r)4 +4 ≡ (5k)4 + r4 +4 ≡ r4 +4 (mod 5).
So it remains to find the possible values for r4. For r = 1, 2, 3, 4, we get r4 = 1, 16, 81, 256 which are equivalent
to 1, 1, 1, 1. Hence, adding 4 gives a multiple of 5.

Example 18. Let a = 52021 + 92021 − 2, show that 4 | a.

Proof.52021 = (4 + 1)2021 ≡ 1 (mod 4) and 92021 = (8 + 1)2021 ≡ 1 (mod 8)⇒ 92021 ≡ 1 (mod 4).

Combining these, 52021 + 92021 − 2 ≡ 1 + 1− 2 ≡ 0 (mod 4).

Exercise 26. Prove that A = 302003 + 612004 is divisible by 31.

Exercise 27. Prove that for all naturals n ≥ 1, A = 2n · 5n + 3032 is divisible by 9.

Using the identities that you proved above, for natural n, we have

(a− b) | an − bn

and for any odd natural n, we also have,

(a+ b) | an + bn

Example 19. Show that 17 | 32n + 23n for odd natural n.
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Proof.32n + 23n = 9n + 8n. Hence, 17 = (9 + 8) | (9n + 8n).

Example 20. Show that 24 | (72n − 52n) for every natural n.

Proof.We know that 72n − 52n = 49n − 25n. So, 24 = 49− 25 | 49n − 25n.

More exercises
Example 21. Find all integers k such that (k − 2) | 7.

Proof.7 has four integer divisors −1, 1,−7, 7. These give k = −5, k = 1, k = 3 and k = 9.

Example 22. Find all integers x and y such that x+ y = xy.

Proof.To begin with, notice that there should not be many solutions to this because the RHS will become much
larger than the LHS (e.g. take y = 2, x+ 2 = 2x). An idea is to factor out one of the two terms,

x+ y = xy ⇔ y = x(y − 1).

Which means that y − 1 | y. Hence, y − 1 | (y − 1 − y) ⇒ y − 1 | −1, which gives y − 1 = 1 ⇒ y = 2 or
y − 1 = −1⇒ y = 0. For y = 2, we get x = 2 and for y = 0 we get x = 0.

Exercise 28. Find integers x and y, such that 12x+ y(1− 2x) = 1.

Exercise 29. Prove that for integers x and y, x2 − 3y = 17 has no solutions.

Exercise 30. Prove that for naturals a, b, c, the differences a− b, b− c and c− a, divide A = a2(b− c) + b2(c−
a) + c2(a− b).
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Exercise 31. (a) Prove that a3 + b3 + c3 = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca) + 3abc.

(b) Show that for a, b, c naturals, 6 | (a+ b+ c) implies 6 | (a3 + b3 + c3).

Exercise 32. For what values of n is
∑n

k=1 k! a square?

Divisibility with induction
Example 23. Show that for natural n, 7 | (2n+2 + 32n+1).

Proof.(Base case) For n = 0, 2n+2 + 32n+1 = 4 + 3 = 7.

(Induction step) Assume true for n = k, i.e. 7` = 2k+2 + 32k+1, we will show that it is true for n = k + 1,

2(k+1)+2 + 32(k+1)+1 = 2k+2 · 21 + 32k+1 · 32 = (7`− 32k+1) · 2 + (32k+1) · 9 = 7(2`) + 7 · (32k+1) = 7 · (. . .)

Exercise 33. (a) 7|(52n + 3× 25n−2).

(b) 13|(3n+2 + 42n+1).

(c) 27|(5n+2 + 25n+1).

Divisibility criteria and problems with digits

Whenever we are given to do an operation with the digits of a number N , it is convenient to write
N = xk−1xk−2 . . . x1x0 where the number has k digits. This means that in base 10 (for 0 ≤ xi ≤ 9),

N =

k−1∑
i=0

xi · 10i.

Similarly in the binary base, for 0 ≤ xi ≤ 1),

N =

k−1∑
i=0

xi · 2i.

Example 24. The sum of a 2-digit number N is 12. If we swap the digits, then the result is smaller
by 18. Find the number.
s

Proof.Let N = x1x0. The sum of the digits being 12 means that x1 + x0 = 12. The swapped
number is N ′ = x0x1 = 10x0 + x1. Hence, there difference being 18 means that N − N ′ = 18 ⇒
10x1 + x0 − (10x0 + x1) = 9(x1 − x0) = 18⇒ x1 − x0 = 2. Hence, x = 7 and y = 5. So N = 75.

Example 25. Show that N is divisible by 9 iff the sum of digits of N in base 10 are divisible by 9.
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Proof.

N =

k−1∑
i=0

xi · 10i =

k−1∑
i=0

xi · (9 + 1)i ≡
k−1∑
i=0

xi · 1i ≡
k−1∑
i=0

xi (mod 9)

Hence, 9 | N iff N ≡ 0 (mod 9) iff
∑k−1

i=0 xi (mod 9).

Example 26. Let x and y be naturals such that (i) x+ y = 514 and (ii) y is obtained from x by deleting the
last digit.

Proof.(Solution 1) Note that x has to be a two digit number otherwise the sum of x and y would be above
1000. So x = x2x1x0 and y = x2x1. Hence, x+ y = 100x2 + 10x1 + x0 + 10x2 + x1 = 110x2 + 11x1 + x0 = 514.
Note that if x2 = 5, then 110x2 > 514. Also, if x2 = 3, then 11x1 + x0 = 184, but this is not possible even if
x1 = x0 = 9. Hence, x2 = 4 and 11x1 + x0 = 74. Again, if x1 < 6, then the sum will be too small or if x1 > 6,
then the sum will be too large. So x1 = 6 and x0 = 8. So the numbers are x = 468 and y = 46.

(Solution 2) An alternative approach is to write x = 10y + d where d is the last digit. So, 10y + d + y =
11y + d = 514. One solution is when y = quo(514, 11) = 46 and d = rem(514, 11) = 8. If we increasing y by 1
then the sum is too large, while if we decrease it by 1 it is too small. Hence, x = 468 and y = 46.

Exercise 34. Show that N is divisible by 3 iff the sum of digits of N in base 10 are divisible by 9.

Exercise 35. The positive integer N is expressed in base 9 as (anan−1 . . . a0)9.

(a) Show that N is divisible by 3 if the least significant digit, a0 , is divisible by 3.

(b) Show that N is divisible by 2 if the sum of its digits is even.

(c) Without using a conversion to base 10, determine whether or not (464860583)9 is divisible by 12.

Exercise 36. (Assumes knowledge of gcd)

(a) By solving 10x ≡ 1 (mod 7), show that −2 is an inverse of 10 (mod 7).

(b) Show that if 7 - a then 7|x iff 7 | a · x.

(c) Show that the following divisibility criterion for x works for 7:

(i) Remove the last digit from x to get x1:(n−1).

(ii) Subtract twice the last digit from x′ = x1:(n−1) − 2x0.

(iii) Repeat for x′.

(iv) 7 | x iff 7 | x′.
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(d) Determine whether 7 divides 259 and 2481.

Exercise 37. Find the digits x and y such that A = 476x212y is a multiple of 45.

Exercise 38. Find the digit x such that x98 + 86x+ 6x9 = 1678.

Exercise 39. Find the digits x and y such that abab− baba = 7272.

Prime numbers basics
Give the definition of a prime number.

Example 27. Show that if p, p+ 2 and p+ 4 are primes then p = 3.

Proof.Assume p = 3k for some k ∈ N, then 3k is prime only if k = 1. This gives the triple 3, 5, 7.

Assume p = 3k + 1 for some k ∈ N, then the three primes are 3k + 1, 3k + 3 and 3k + 4. So the second prime
3k+ 3 should be divisible by 3. Hence, it must be 3, but then 1, 3, 4 are not primes, so p cannot have this form.

Assume p = 3k + 2 for some k ∈ N, then the three primes are 3k + 2, 3k + 4 and 3k + 6. Hence, the third
prime is 3(k + 2), but this has two factors greater than 1 for any k, so it cannot be prime. Therefore, there is
no prime of this form.

(optional) Computing prime numbers (under construction!)
Show that a composite number has a prime factor smaller than

√
n.

Show how to compute the divisors of a number in
√
n time.

Implementation challenge: Read about the sieve of Eratosthenes method to compute the prime numbers.
(See the Christmas exercises).

Finding all primes of a particular form
One common task is to search for all primes of a particular form.

Example 28. Find all primes of the form k3 − 1 for natural k ≥ 1.
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Proof.Here is another example, where factorisation comes useful.

k3 − 1 = (k − 1)(k2 + k + 1)

In order for k3− 1 to be prime it should be not be expressible as the product of two naturals greater than one.
So one of the factors k − 1 and k2 + k + 1 has to be 1.

(Case 1): k − 1 = 1, so k = 2. This gives k3 − 1 = 7, which is indeed prime.

(Case 2): k2 + k + 1 = 1⇒ k(k + 1) = 0, which does not have roots k ≥ 1.

Example 29. Find all primes of the form k2 − 3k + 4 for k ∈ Z.

Proof.Let’s start with factorising this expression f(k) = k2 − 3k − 4 = (k + 1)(k − 4). Since we want f(k) to
be prime, one of the two terms has to be 1 or −1. We take the four possible cases:

• k + 1 = 1, gives k = 0, for which f(k) = −4 (not prime).

• k + 1 = −1, gives k = −2, for which f(k) = 6 (not prime).

• k − 4 = 1, gives k = 5, for which f(k) = 6 (not prime).

• k − 4 = −1, gives k = 3, for which f(k) = 4 (not prime).

Example 30. Find all values of natural k such that k − 3, k − 2, k + 6 are all prime.

Proof.Note that k − 3 and k − 2 are consecutive so one is even and the other is odd. The only even prime is 2,
hence, k = 5 and the three primes are 2, 3, 11.

Exercise 40. Let p be a prime, find all naturals n such that n2 + n+ p = 1982.

Exercise 41. Find all primes p and q such that a = pp+1 + qq+1 is also prime.

Open problems: There exist some very similar problems that are are still not solved. This shows that the
area is not yet fully understood.

• Twin primes conjecture: Do there exist infinitely many primes of the form p and p+ 2?
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• Cousin primes conjecture: Do there exist infinitely many primes of the form p and p+ 4?

• k-tuple conjecture: Are there infinitely many triples of primes (p, p+ 2, p+ 6)? Are there infinitely many
triples of primes (p, p + 4, p + 6)? (Recall that in the divisibility handout you proved that 3 divides one
of p, p+ 2, p+ 4)

See also the Fundamental Theorem of Arithmetic handout.

Proving properties of prime numbers
Example 31. Let p 6= 2, 5 be a ptime, then 10 | p2 − 1 or 10 | p2 + 1.

Proof.One option is to take all possible remainders with division by 10. Note that because p is prime, the
possible remainders r are just 1, 3, 7, 9 (a remainder of 5, 0 implies division by 5 and an even remainder implies
division by 2). Hence,

• for r = 1, p2 − 1 ≡ 0 (mod 10).

• for r = 3, p2 − 1 ≡ 8 (mod 10) and p2 + 1 ≡ 0 (mod 10).

• for r = 7, p2 − 1 ≡ 8 (mod 10) and p2 + 1 ≡ 0 (mod 10).

• for r = 9, p2 − 1 ≡ 0 (mod 10).

Which verifies that for all cases 10 | p2 − 1 or 10 | p2 + 1.

Past papers

8

COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 2

Discrete Mathematics (MPF)

(a) Prove that, for all natural numbers n,

n13 ≡ n (mod 1365)

You may use any standard results provided that you state them clearly. [5 marks]
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7

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 2

Discrete Mathematics (MPF)

(a) Let m be a fixed positive integer.

(i) For an integer c, let Kc = { k ∈ N | k ≡ c (mod m) }.
Show that, for all c ∈ Z, the set Kc is non-empty. [2 marks]

(ii) For an integer c, let κc be the least element of Kc.

Prove that for all a, b ∈ Z, a ≡ b (mod m) iff κa = κb. [4 marks]

3

COMPUTER SCIENCE TRIPOS Part IA – 2007 – Paper 2

Discrete Mathematics I (MPF)

(a) Given a, b ∈ N with a ≥ b prove carefully that there are unique values q, r ∈ N such that a = qb+ r and
0 ≤ r < b. [6 marks]
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