
Computation Theory
Solution Notes for Example Sheet 3

In this document you will find some solution notes for the problems of Example Sheet 3 of Computation Theory.
If you find any mistake or any typos, please do let me know. Also, I am happy to hear (and include them in
the notes (with credit) if you want) about alternative solutions to the problems or variations of a problem that
you came up with.

Lecture 7

Exercise 1
(a) Define projni , succ and zero.

(b) Show that all of these are RM computable.

(a) The projection function projni : Nn → N (for n ∈ N) is defined as projni (x1, . . . , xn) , xi.
The successor function succ : N→ N is defined as succ(x) , x+ 1.
The zero function zeron : Nn → N (for n ∈ N) is defined as zero(x1, . . . , xn) , 0.

See Lecture 7 slide 12.

(b) See Example Sheet 1.

Exercise 2
(a) What is Kleene equivalence of two expressions?

(b) Define composition of multi-dimensional functions.

(c) Show that composition of RM computable functions is RM computable.

(a) Kleene equivalence A ≡ B of two possible undefined expressions A,B, means that either both A and B
are undefined or they are both defined and equal.

See Lecture 7 slide 14.

(b) The composition of functions f ∈ Nn ⇀ N and g1, . . . , gn ∈ Nm ⇀ N, if the partial function h ∈ Nm ⇀ N
satisfying for all x1, . . . , xm ∈ N ,

h(x1, . . . , xm) ≡ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

Usually, h is denoted by f ◦ [g1, . . . , gn].

See Lecture 7 slide 16.

(c) The idea is to compute y1 = g1(x1, . . . , xm), y2 = g1(x1, . . . , xm) and so on, and then compute R0 =
f(x1, . . . , xn). We need to be careful to erase the contents of the registers used in the computation of g
(say R0, . . . Rn).

See Lecture 7 slide 18.

Lecture 8

Exercise 3
(a) Define primitive recursion (See [2017P6Q4 (a)], [2014P6Q4 (a)], [1999P4Q1 (a)]).

(b) Define primitive recursive functions PRIM (See [2017P6Q4 (b)(i)], [2014P6Q4 (b)],
[2011P6Q4 (a)], [2006P4Q9 (a)], [1995P4Q9 (a)]).

(c) Prove that PRIM functions are total (See [2006P4Q9 (b)]). Deduce that there exist computable
functions that are not PRIM.

(d) Are all total functions primitive recursive? (See [2017P6Q4 (b)(iii)])

(e) Show that the functions add, pred, mult, tsub, exp are primitive recursive (See [2014P6Q4 (c)],
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[2006P4Q9 (c)]).

(f) Show that the following functions are primitive recursive:
i.

Eq0(x, y, z) =

{
y if x = 0

z otherwise.

ii. The bounded summation function for g : Nn+1 → N and f : Nn+1 → N,

g(~x, x) =


0 if x = 0

f(~x, 0) if x = 1

f(~x, 0) + . . .+ f(~x, x− 1) if x > 1

(g) Show that the functions square(x) = x2 and fact(x) = x! are primitive recursive functions (See
[2011P6Q4 (c)])

(a) Given functions f ∈ Nn ⇀ N and g ∈ Nn+2 ⇀ N, the primitive recursion ρn(f, g) ∈ Nn+1 ⇀ N of f and
g, is defined as

(ρn(f, g))(~x, 0) ≡ f(~x)

(ρn(f, g))(~x, x+ 1) ≡ g(~x, x, h(~x, x))

where ≡ is Kleene equivalence: either both the left hand and right hand sides of the equation are undefined
expressions, or they are both defined and equal.

See Lecture 8 slide 8.

(b) The class of primitive recursive functions is the smallest set (with respect to subset inclusion) of numer-
ical functions containing the basic functions (projections, successor, zero) and that is closed under the
operations of primitive recursion and composition.

See Lecture 8 slide 13.

(c) Every f ∈ PRIM is total, because the basic functions (projections, successor, zero) are total, the compo-
sition of two total functions is total (since if f and g1, . . . , gn are total, then g1x1, . . . , gnxn are defined
and so f(g1x1, . . . , gnxn) is defined) and primitive recursion of two total functions is total (since every
branch of ρn(f, g) is function application of f or g).

There exist (strictly) partial functions that are computable.

See Lecture 8 slide 16.

(d) Primitive recursive functions are countable since they are a subset of the RM computable functions,
which are countable. The total functions on the other hand are uncountable as shown in Part IA Discrete
Mathematics.

We can also define a way to count the primitive recursive functions. We assign encode the lists p[0, i, n]q for
projni , p[1]q for succ and p[2, n]q for zeron. For composition of f and g1, . . . , gn, we use p[3, pfq, pg1q, . . . , pgnq]q.
For primitive recursion of ρn(f, g), we use p[4, n, pfq, pgq]q. (This mapping is not bijective).

(e) The addition function is given by ρ1(proj11, succ ◦ proj33), since

add(x1, 0) = x1

add(x1, x2 + 1) = add(x1, x2) + 1

See Lecture 8 slide 9.

The predecessor function is given by ρ0(zero0, proj21).

pred(0) = 0

pred(x1 + 1) = x+ 1

See Lecture 8 slide 10.

The multiplication function is given by ρ1(zero1, add ◦[proj31, proj33])

mult(x1, 0) = 0

mult(x1, x2) = mult(x1, x2) + x1
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See Lecture 8 slide 11.

The truncated subtraction function is given by ρ1(proj11, pred ◦ proj33).

tsub(x, 0) = x

tsub(x, y + 1) = pred(tsub(x, y))

See official solution notes

The exponentiation function is given by ρ2(succ ◦ zero1, mult ◦[proj31, proj33])

exp(x, 0) = 0

exp(x, y + 1) = mult(x, exp(x, y))

(f) i. Eq0(x, y, z) , ρ2(proj21, proj
4
2) ◦ [proj32, proj

3
3, proj

3
1].

ii. The bounded summation ρn(zeron, add ◦[projn+2
n+1, proj

n+2
n+2]).

(g) The square function is defined as sqr , mult ◦[proj21, proj22].

The factorial function is defined as fact(x) = ρ2(succ ◦ zero2, mult ◦[proj21, proj22])

Exercise 4 [RMs implement PRIM] Show that primitive recursion is implementable in RMs. Deduce
that PRIM functions are computable.

We have already shown in Example Sheet 1, all the basic functions are RM computable (Exercise 1). We know
that composition is also primitive recursive (Exercise 2(c)). Hence, we need to show that primitive recursion of
RM computable functions is RM computable. We can compute the recursive equation, using a simple for-loop,
starting from the base case x = 0 and progressing to x = 1, 2, . . . until we reach the target value, in which case
we halt. In each iteration we need to zero all registers R0, . . . , Rn used by the program.

START (X1, . . . , Xn, Rn+1) := (R1, . . . , Rn+1, 0)

F

C = Xn+1

(R1, . . . , Rn, Rn+1, Rn+2) := (X1, . . . , Xn, C, R0)

(R0, Rn+3, . . . , RN) := (0, . . . , 0)G

C+ HALT

See Lecture 8 slide 15.

Exercise 5 [Minimisation]
(a) Define minimisation.

(b) Why might we want to define minimisation?

(c) Implement div.

(d) Show that minimisation is implementable using RMs.

(a) Given a partial function f ∈ Nn+1 ⇀ N, the minimisation of f , µnf ∈ Nn ⇀ N is defined as µnf(x) is
the smallest x such that f(~x, x) = 0 and for each i = 0, . . . , x− 1, f(~x, i) is defined and is positive. If no
such x exists, then it is undefined.

See Lecture 8 slide 18.

(b) Minimisation is the missing part to make primitive recursion equivalent to TMs and to RMs (and to
λ-calculus).
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(c) The result of integer division between x1 and x2 is the least x3 such that x1 < x2(x3 + 1). Let’s consider
an example x1 = 70 and x2 = 8. For x3 = 7 we have x2(x3 + 1) = 8 · 8 = 64 < 70 (so all values x3 < 7
we have < 70, for x3 = 8 we have x2(x3 + 1) = 8 · 9 = 72 > 70.

Hence, we can define integer division as µ2tsub(x1, x2), so for x1 < x2(x3 +1) this will be 0 and otherwise
it will be 1. When x2 = 0, this will always be 0 and hence the minimisation will be undefined.

See Lecture 8 slide 20.

(d) The idea is to loop over x = 0, 1, . . . evaluate f(~x, x) and if it is 0 return x, otherwise continue with x+ 1.

See Lecture 8 slide 24.

Exercise 6
(a) Define partial recursive (PR) functions. (See [2018P6Q5 (a)], [2016P6Q3 (a)], [2006P4Q9

(d)], [1995P4Q9 (a)])

(b) Show that PR functions are RM computable. (See [2016P6Q3 (b)], [1999P4Q1 (b)])

(c) Describe in high-level terms why every computable function is also PR (See [1995P4Q9 (b),(c)]).

(a) A partial function f is partial recursive (f ∈ PR) if it can be built up in finitely many steps from the
basic functions (projection, successor, zero) by use of the operations of composition, primitive recursion
and minimisation.

See Lecture 8 slide 22.

(b) We need to show that the basic functions (projection, successor, zero) (done in Exercise 1), composition
(done in Exercise 2(c)), primitive recursion (done in Exercise 4) and minimisation (done in Exercise 5(d))
are all RM computable.

(c) See Computability: An introduction to recursive function theory (p.106) for showing that the nextM is
partial recursive.

See Lecture 8 slide 25.

Exercise 7 Attempt [2018P6Q5].

See official solution notes

Exercise 8 Attempt [2014P6Q4 (e)].

See official solution notes

Lecture 9 (first part)

Exercise 9
(a) Define the Ackermann function.

(b) In what sense does it grow faster than any primitive recursive function?

(c) (optional - advanced) Read this proof for the Ackermann’s function growing faster than any prim-
itive recursive function.

(a) The Ackermann function ack : N2 → N is defined recursively as

ack(x1, x2) =


x2 + 1 if x1 = 0

ack(x1 − 1, 1) if x2 = 0

ack(x1 − 1, ack(x1, x2 − 1)) otherwise

See Lecture 9 slide 6.

(b) It means that for every primitive recursive function f , ∃Nf .∀x1, x2.f(x1, x2) < ack(x1, x2).

See Lecture 9 slide 6.
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Exercise 10 Attempt [2001P4Q8].

(a) For y = 0, gn+1(y) = f(n+ 1, 0) = f(n, 1) = g
(1)
n (1). Assume, it is true for y = k and consider y = k + 1.

Then, we have,

gn+1(k + 1) = f(n+ 1, k + 1) = f(n, f(n+ 1, k)) = f(n, g
(k+1)
n+1 (1)) = gn+1(g

(k+1)
n+1 (1)) = g

(k+2)
n+1 (1).

Hence, by the principle of natural induction, this holds for all y.

(b) For n = 0, gn is just the sum function. Assume that gn is primitive recursive. Consider the partial recursive
function ρ1(gn(succ ◦ . . . ◦ succ︸ ︷︷ ︸

n times

0), gn ◦proj22). Note: This only works because we are considering a fixed

n.

(c) Assume ack is not total, then there exists a smallest x1 such that ack(x1, x2) is not defined. Note that
x1 > 0. Hence, then gx1

(x2) is not defined and so is gx2+1
x1−1(1). But this contradicts the minimality of x1.

So, ack is total.

(d) As stated in the lecture notes, the Ackermann function is growing faster than any primitive recursive
function.

Exercise 11 [ack is RM computable] Recall the definition of Ackermann’s function ack (slide 102).
Sketch how to build a register machine M that computes ack(x1, x2) in R0 when started with x1 in R1

and x2 in R2 and all other registers zero. [Hint : here’s one way; the next question steers you another
way to the computability of ack. Call a finite list L = [(x1, y1, z1), (x2, y2, z2), ...] of triples of numbers
suitable if it satisfies

� if (0, y, z) ∈ L, then z = y + 1

� if (x+ 1, 0, z) ∈ L, then (x, 1, z) ∈ L

� if (x+ 1, y + 1, z) ∈ L, then there is some u with (x+ 1, y, u) ∈ L and (x, u, z) ∈ L.

The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all the triples
(x′, y′, ack(x, y′)) needed to calculate ack(x, y). Show how to code lists of triples of numbers as numbers
in such a way that we can (in principle, no need to do it explicitly!) build a register machine that
recognises whether or not a number is the code for a suitable list of triples. Show how to use that
machine to build a machine computing ack(x, y) by searching for the code of a suitable list containing a
triple with x and y in it’s first two components.]

[Exercise 9 in Lecturer’s handout]

Exercise 12 Give an example of a function that is not in PRIM. (See [2014P6Q4 (d)])

Any non-computable language is not in PRIM. Also, Ackermann’s function is not in PRIM, because it grows
faster than any language in PRIM.

Lecture 9 (second part)

Further reading:

� Foundations of Functional Programming.

Exercise 13
(a) How are λ-terms defined? (See [2016P6Q4 (a)])

(b) What notational conventions do we follow?

(c) Exercise 1.4 in Hindley and Seldin (2008) Insert the full amount of parentheses in the following
abbreviated terms:

i. xyz(yx),
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ii. λx.uxy,

iii. λu.u(λx.y),

iv. ux(yz)(λv.vy),

v. (λxyz.xz(yz))uvw,

vi. w(λxyz.xz(yz))uv.

(d) What does x#M mean?

(e) What do the terms bound variable, body, binding, bound, free, FV(·), BV(·) and closed term mean?

(f) Determine the free variables and bound variables in the following expressions:
i. λu.λu.λy.uλu.λy.u.

ii. (λxλu.y)((xx)x)((vy)λu.u).

iii. (((λz.z)z)λy.λv.v)(λv.λy.v).

iv. (λx.((xv)u)(λz.zλy.y))

v. You can generate more practice questions here.

(a) λ-terms are build by a collection of variables and two operations:

� (λ-abstraction) λx.M , where x is a variable and M is a λ term.

� (application) M N , where M and N are λ terms.

Alternatively, we can use rule induction to define these. Let V be the set of variables,

x
x ∈ V M

λx.M
x ∈ V M N

M N

See Lecture 9 slide 13.

(b) The following notational conventions where introduced by the lecturer:

� (λx1, . . . , xn.M) stands for (λx1.(λx2. . . . (λxn.M) . . .)).

� (M1 . . .Mn) stands for (. . . (M1 M2) . . .Mn). This is similar to function application in OCaml (and
it can be stated concisely as function application is left-associative).

� λx.M stands for (λx.M) (so we drop the outermost parentheses.

See Lecture 9 slide 14.

(c) i. ((x y) z) (y x)

ii. (λx.((u x) y))

iii. (λu.(u(λx.y)))

iv. (((u x) (y z)) (λv.(v y)))

v. ((((λx.(λy.(λz.((x z) (y z))))) u) v) w)

vi. (((w (λx.(λy.(λz.((x z) (y z)))))) u) v)

(d) x#M means that the variable x does not occur anywhere in the λ-term M .

See Lecture 9 slide 14.

(e) � λ x︸︷︷︸
bound variable

. M︸︷︷︸
body of λ-abstraction

� binding variable: an occurrence of variable x in λx. . . ..

� bound variable: an occurrence of variable x in the body M of some λx.M .

� free variable: an occurrence of variable x that is neither bounding nor bound.

� The set of free variables is defined as FV(x) = {x}, FV(λx.M) = FV(M) − {x} and FV(M N) =
FV(M) ∪ FV(N).

� The set of bound variables is defined as BV(x) = ∅, BV(λx.M) = BV(M) ∪ {x} and BV(M N) ∪
BV(N).
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� closed term/combinator : a λ-term without any free variables.

See Lecture 9 slide 15.

See Lecture 9 slide 17.

(f) The free variables are shown in red and the bound variables are shown in blue:
i. λu.λu.λy.uλu.λy.u.

ii. (λxλu.y)((x x) x)((v y)λu.u).

iii. (((λz.z) z)λy.λv.v)(λv.λy.v).

iv. (λx.((x v) u)(λz.z λy.y))

Exercise 14 [α-equivalence]
(a) Intuitively, what does α-equivalence try to capture?

(b) Define what M{z/x} means.

(c) Define formally α-equivalence.

(d) Show that the following pairs are α-equivalent:
i. A , λxy.x(xy) and B , λuv.u(uv),

ii. A , (λxyz.y(zx(λk.k)))(λxy.yx) and B , (λk`m.`(mk(λa.a)))(λyx.xy).

(e) (optional) Show that α-equivalence is an equivalence relation.

(a) Intuitively, two λ-terms are α-equivalent if they are equal up to renaming variables (variables bound to
the same binding variable should be renamed together).

(b) M{z/x} represents substituting all free occurrences of x with z (and z#M as otherwise for the M = λz.xz,
we would get M{z/x} = λz.zz, which is not the same function).

See Lecture 9 slide 18.

(c) The α-equivalence is defined inductively as

x=α x

z#(M N) M{z/x}=αN{z/y}
λx.M =α λy.N

M =αM
′ N =α

M N =αM ′ N ′

See Lecture 9 slide 19.

(d) i.

z#(λy.x(xy)) (λv.u(uv))

w#(z (z y)) z (z v)

z=α u

z=α z w=α w

(z w) =α(z w)

z (z w) =α z (z w)

(λy.z(z y)) =α(λv.z(z v))

λxy.x (x y) =α λuv.u (u v)

ii. A

(λxyz.y(zx(λk.k))) =α(λk`m.`(mk(λa.a)))

z#(λy.yx) (λx.xy)

w#(y z) (x z)
w=α w z=α z
w z=α w z

(λy.yz) (λx.xz)

(λxy.yx) =α(λyx.xy)

(λxyz.y(zx(λk.k)))(λxy.yx) =α(λk`m.`(mk(λa.a)))(λyx.xy)

w# . . .

u# . . .

v# . . .

u=α u

v=α v

w=α w

b#k a b=α b

λk.k=α λa.a

w(λk.k) =α w(λa.a)

vw(λk.k) =α vw(λa.a)

u(vw(λk.k))) =α u(vw(λa.a))

λz.u(zw(λk.k))) =α(λm.u(mw(λa.a)))

λyz.y(zw(λk.k))) =α(λ`m.`(mw(λa.a)))

A
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Lecture 10

Exercise 15 [Substitution]
(a) Define the substitution operation N [M/x].

(b) Exercise 1.14 in Hindley and Seldin (2008) Evaluate the following substitutions:
i. (λy.x (λw.v w x))[(u v)/x]

ii. (λy.x(λx.x))[(λy.x y)/x]

iii. (y (λv.x v))[(λy.vy)/x]

iv. (λx.z y)[(u v)/x]

(a) The substitution operation is defined as:

� x[M/x] = M

� y[M/x] = y if y 6= x

� (λy.N)[M/x] = λy.N [M/x] if y#(M x)

� (N1 N2)[M/x] = N1[M/x]N2[M/x]

See Lecture 10 slide 3.

(b) i. (λy.u v (λw.v w (u v)))

ii. (λy.(λy.x y)(λx.x))

iii. (y (λz.(λy.vy) z))

iv. (λx.z y)

Exercise 16
(a) Define one-step β-reduction.

(b) Define the many-step β-reduction. (See [2015P6Q4 (a)])

(c) Define the β-conversion. (See [2019P6Q6 (a)(i)])

(a) The one-step β-reduction is defined inductively as follows:

(λx.M) N →M [N/x]

M →M ′

λx.M → λx.M ′
M →M ′

M N →M ′ N ′

M →M ′

N M → N M ′
N =αM M →M ′ M ′=αN

′

N → N ′

See Lecture 10 slide 13.

(b) The many-step β-reduction is defined as follows:

M =αM
′

M �M ′
M →M ′

M �M ′
M �M ′ M ′ �M ′′

M �M ′′

See Lecture 10 slide 19.

(c)

M =αM
′

M =βM ′
M →M ′

M =βM ′
M =βM

′

M ′=βM

M =βM
′ M ′=βM

′′

M =βM ′′
M =βM

′

λx.M =β λx.M ′
M =βM

′ N =β N
′

M N =βM ′ N ′

See Lecture 10 slide 24.

Exercise 17
(a) State the Church-Rosser Theorem and prove its corollary.
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(b) Attempt [2019P6Q6 (a)(iii)].

(a) The Church-Rosser theorem states that: The � relation is confluent meaning that if M1 � M � M2,
then there exists M ′ such that M1 �M ′ �M2.

The corollary states that two terms M1 and M2 are β-convertible iff there exists a term M such that
M1 �M and M2 �M .

(⇐) Assume ∃M.(M1 � M � M2). Since A� B implies that A=β B, M1 =βM and M2 =βM , so (by
transitivity) M1 =βM2.

(⇒) We will prove by rule induction that for every two β-equivalent λ-terms M1 and M2, there exists M
such that M1 �M �M2.

�
M1 =αM2

M1 =β M2
: If M1 =αM2, then we can transform M1 to M2 using substitutions and M2 to M1 using

substitutions. Hence, we can take M = M1 (or M = M2) and then M1 �M �M2.

�
M1→M2

M1 =β M2
: If M1 →M2, then M1 �M2, so we pick M = M2.

�

M1 =β M2

M2 =β M1
: By inductive hypothesis, there exists M such that M1 �M �M2. So, M2 �M �M1.

�

M1 =β M2 M2 =β M3

M1 =β M3
: !! By inductive hypothesis, there exist M4 and M5, such that M1 �M4 �M2

and M2 � M5 � M3. So M4 � M2 � M5. By the Church-Rosser theorem, there exists M such
that M4 �M �M5. Hence, M1 �M4 �M �M5 �M3. So, M1 �M �M3 by transitivity of
�.

�

M1 =β M2

λx.M =β λx.M2
: By inductive hypothesis, there exists M such that M1 � M � M2. Note that if

N � N ′, then λx.N � λx.N ′, by performing the → steps in the body of the function. Hence,
λx.M1 � λx.M � λx.M2.

�

M1 =β M2 M3 =β M4

M1 M3 =β M2 M4
: By inductive hypothesis, there exist M5 and M6 such that M1 � M5 � M2

and M3 �M6 �M4. So, M1 M3 �M5 M6 �M2 M4.

See Lecture 10 slide 29.

(b) By the corollary of the Church-Rosser Theorem, we have M1 �M and M2 �M . Since they are in both
in β-nf, it means that the reductions to M are just α-equivalence steps (if there was a β reduction, they
would not be in β-nf).

See official solution notes

Exercise 18
(a) Define the β-normal form. (See [2019P6Q6 (a)(ii)], [2013P6Q4 (a)(i)])

(b) What properties does this form have?

(c) Do all terms have a β-normal form? (See [2013P6Q4 (a)(iii)])

(d) Show that there exists λ-terms that have both a β-normal form and an infinite chain of reductions
from it.

(e) Exercise 1.28 in Hindley and Seldin (2008) Find the β-normal form for the following terms
(if it exists):

i. (λx.x(xy))z,

ii. (λx.y)z,

iii. (λx.(λy.yx)z)v,

iv. (λx.xxy)(λx.xxy),

v. (λx.xy)(λu.vuu),

vi. (λx.x(x(yz))x)(λu.uv),

vii. (λxy.xyy)(λu.uyx),

viii. (λxyz.xz(yz))((λxy.yx)u)((λxy.yx)v)w.

(a) A λ-term is in β-normal form if it contains no β-redexes (i.e. no sub-terms of the form (λx.M) M ′). A
term M has a β-normal form N if N is in β-normal form and M =β N .

See Lecture 10 slide 32.
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(b) The β-normal form (if it exists) is unique up to α-equivalence.

See Lecture 10 slide 32.

(c) The example given in the lecture notes was the term (λx.y) Ω, where if we β-reduce Ω, we get the same
term (λx.y) Ω (so we can get chains of unbounded length); otherwise we get y (which is β-nf).

See Lecture 10 slide 34.

(d) i. (λx.x(xy))z � z (z y)

ii. (λx.y)z � y,

iii. (λx.(λy.yx)z)v � z v,

iv. (λx.xxy)(λx.xxy)� (λx.xxy)(λx.xxy) y � (λx.xxy)(λx.xxy) y y � . . . (each time the only possible
reduction will be (λx.xxy)(λx.xxy), hence this term has no β-normal form),

v. (λx.x y)(λu.v u u)� (λu.v u u) y � v y y,

vi.

(λx.x(x(yz))x)(λu.uv)� (λu.uv)((λu.uv)(y z))(λu.uv)� ((λu.uv)(y z)) v(λu.uv)

� ((y z) v) v(λu.uv)

vii. (λxy.xyy)(λu.uyx)� λa.(λu.u y x) a a� λa.a y x a

viii.

(λxyz.xz(yz))((λxy.yx)u)((λxy.yx)v)w � (λyz.((λxy.yx)u)z(yz))((λxy.yx)v)w

� (λz.((λxy.yx)u)z(((λxy.yx)v)z))w

� ((λxy.yx)u)w(((λxy.yx)v)w)

� (λy.y u)w(((λxy.yx)v)w)

� (w u)(((λxy.yx)v)w)

� (w u)((λy.y v)w)� (w u)(w v)

Exercise 19
(a) Define normal-order reduction.

(b) Is it similar to call-by-name?

(c) Is there an evaluation analogous to call-by-value? Which one is preferred?

(a) Normal-order reduction refers to the deterministic strategy of first reducing left-most and then outer-most
terms in a λ-term. This reduction has the property that it will find the β-nf if it exists.

See Lecture 10 slide 35.

(b) It is similar to call by name in the sense that it does not evaluate the arguments of a function before
calling the function, but only when the argument is about to be applied.

(c) Yes, there is an analogous, but it has the disadvantage that if you have e.g. zero Ω, then it will try to
evaluate Ω and loop forever, even though the term reduces to 0. A practical disadvantage of the call-by-
name is that the is that evaluates a certain argument multiple times (e.g. λx.x + x + x will evaluate x
three times). In practice, there exist some hybrid schemes like call-by-need (but this also has problems of
its own).

Exercise 20 [Lambda functions in OCaml] (optional) In this exercise, you will implement β-
reduction for lambda terms in OCaml.

(a) Define a type for lambda terms in OCaml.

(b) Define the function substitute n m x that replaces all occurrences of variable x with m inside n.

(c) Define the function single step reduce m that returns (m’, reduced) the reduced term (or the
original term) and whether a reduction was applied.

(d) Define the function multi step reduce m that calls single step reduce until reduced is false.
Verify the reduction works as expected by applying it on the above examples.
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type lambda = Var of string | App of lambda * lambda | Lambda of string * lambda ;;

let rec substitute n m x = match n with

| Var(y) ->

if x = y then m

else n

| App(ell1 , ell2) -> App(substitute ell1 m x, substitute ell2 m x)

| Lambda(z, ell) ->

if x = z then n

else Lambda(z, substitute ell m x);;

let sub_term = Lambda("y", App(Var("x"), Lambda("w", App(App(Var("v"), Var("w")),

Var("x")))));;

substitute sub_term (App(Var("u"), Var("v"))) "x";;

let rec single_step_beta = function

| Var(x) -> (Var(x), false)

| App(Lambda(x, m), n) -> (substitute m n x, true)

| App(ell1 , ell2) ->

let (left , reduced_left) = single_step_beta ell1 in

if reduced_left then (App(left , ell2), true)

else let (right , reduced_right) = single_step_beta ell2 in

(App(ell1 , right), reduced_right)

| Lambda(x, ell) -> let (v, reduced) = single_step_beta ell in

(Lambda(x, v), reduced);;

let term = App(Lambda("x", App(Var("x"), Var("y"))), App(Lambda("y", Lambda("z",

Var("z"))), Var("u")));;

let rec multi_step_beta n =

let (v, reduced) = single_step_beta n in

if reduced then multi_step_beta v

else v;;

Lecture 11

Exercise 21
(a) Define Church’s numerals. (See [2020P6Q6 (a)], [2016P6Q4 (b)], [2010P6Q4 (a)])

(b) What is the difference between ffx and f(f(x)).

(c) Show that n M N =βM
n N .

(d) Prove by induction that (λx1x2.λfx.x1f(x2fx)) n m represents addition.

(a) Church’s numerals are lambda terms used to represent the natural numbers. In this representation, n ,

λf x. f(. . . (f︸ ︷︷ ︸
n times

x)) (Of course, this is not the only valid representation) See Lecture 11 slide 4.

(b) The first term corresponds to (ff) x, while the second corresponds to f(fx).

(c) For n, n M N =β(λfx.fn x) M N =βM
n N .

(d)

λfx.nf(m f x) =β λfx.n f (fmx)(By property (c))

=β λfx.f
n (fmx)(By property (c))

= λfx.fn+mx

The last step is an equality because fn(fmx) is just a different expression for fn+m or f . . . f .

See Lecture 11 slide 6.
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Exercise 22 Define λ-definable functions. (See [2020P6Q6 (c)], [2018P6Q6 (c)], [2010P6Q4 (b)])

A function f ∈ Nn ⇀ N is λ-definable if there is a closed λ-term F that represents it: for all X1, . . . , xn) ∈ Nn
and y ∈ N:

� If f(x1, . . . , xn) = y, then Fx1 . . . xn =β y.

� If f(x1, . . . , xn) ↑, then Fx1 . . . xn has no β-nf.

See Lecture 11 slide 6.

Exercise 23
(a) Show that proj, succ and zero are λ-definable. (See [2020P6Q6 (d)], [2010P6Q4 (c)])

(b) Show how to represent composition. What is the problem here? (See [2013P6Q4 (b)(ii),(iii)])

(c) Define λ-terms for True, False and If. (See [2020P6Q6 (b)], [2019P6Q6 (b)])

(d) Prove that If True MN ≡β M and If False M N =β N .

(e) Define λ-terms for And, Or and Not.

(f) Show that testing for equality with 0 is λ-definable.

(g) Define λ-terms for Pair, Fst and Snd. Show that Fst (Pair M N) =βM (See [2020P6Q6 (e)]).

(h) Define the pred function and prove by induction that it works.

(i) Attempt [2020P6Q6 (f),(g)].

(j) Attempt [2016P6Q4 (c)].

(a) The projection function is simply defined as projni , λx1 . . . xn.xi.

The zero function is zeron , λx1, . . . , xn.0.

The successor function succ , λv f x.f (v f x). See Lecture 11 slide 11.

(b) Composition between total functions can be presented as λx1 . . . xn.F (G1x1 . . . xn) . . . (Gmx1 . . . xn). The
problem is that this construction does not work for when F and G can be partial. A concrete example
is F , zero1 and G , λx.Ω. The composition of this function should be undefined, but F G 0 =
(zero1 (λx.Ω)) 0 =β 0 0 which is in β-nf. See Exercise 27 for how to fix this.

See Lecture 11 slide 14.

(c) These are defined as:

� True , λxy.x

� False , λxy.y

� If , λfxy.f x y

See Lecture 11 slide 19.

(d) If True M N = (λfxy.fxy) (λxy.x) M N =β(λxy.x) M N =βM
If False M N = (λfxy.fxy) (λxy.y) M N =β(λxy.y) M N =β N

See Lecture 11 slide 19.

(e) We give the following definitions:

� And , λf1f2.λxy.f1 (f2 x y) y

This way if either of f1 or f2 returns y, there is no way for the other function to change the result.

� Or , λf1f2.λxy.f1 x (f2 x y)

This way if either of f1 or f2 returns x, there is no way for the other function to change the result.

� Not , λf.λxy.f y x.

This way the outcome of f is reversed.
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(f) The idea is that since n , λfx.fn x (and 0 = λfx.x) we are going to choose an f so that when it is
applied (even once), we get False otherwise we get True. A suitable function is λy.False, so that

0 (λy.False) True = (λfx.x) (λy.False) True=β True

and

n+ 1 (λy.False) True = (λfx.fn+1x) (λy.False) True=β(λy.False)n+1 True

=β(λy.False) True=β False.

(g) The definitions are as follows:

� Pair , λxyf.f x y

� Fst , λf.f True

� Snd , λf.f False

Fst(Pair M N) =β Fst(λf. M N) =β(λf. M N) True=β TrueMN =βM

See Lecture 11 slide 22.

(h) The difficulty with defining the predecessor is that in Church’s numerals we only have access to a function
that is applied n times. The idea is to apply the function (x, y) → (f x, x), so inductively we will be
storing (fn+1x0, f

nx0). Hence, in the end we can just take the item of the pair. A formal proof was given
in the slides.

Pred , λyfx.Snd(y (G f) (Pair x x))

G , λfp.Pair(f (Fst p))(Fst p)

See Lecture 11 slide 23.

(i) This represents the predecessor function. The proof follows by induction as in the lecture notes.

For constructing the predicate Leq we use Pred and Eq0, Namely, we define

Leq m n , λxy.Eq0(y Pred x)

This works because,

Leq m n=β Eq0(n Pred m) =β Eq0(Predn m) =β Eq0(n .−m) =β

{
True if m ≤ n
False otherwise

See Lecture 11 slide 23.

See official solution notes

(j)

Exercise 24 If you are still not fed up with Ackermann’s function ack ∈ N2 → N, show that the λ-term
Ack , λx.x(λfy.y f (f 1)) Succ represents ack (where Succ is as on slide 123).

[Exercise 11 in Lecturer’s handout]

We will prove each of the three branches in the ack definition. Then an inductive argument over all x1 and x2
(which proceeds in a diagonal direction with base case ack 0 0), proves that Ack x1 x2 = ack(x1, x2).

Ack 0 x2 =β(λx.x(λfy.y f (f 1)) Succ) 0 x2

=β 0 (λfy.y f (f 1)) Succ x2

= (λfx.x) (λfy.y f (f 1)) Succ x2 (By definition of 0)

=β Succ x2

=β x2 + 1 (By properties of Succ)
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Consider x2 = 0,

Ack x1 + 1 0 =β(λx.x (λfy.y f (f 1)) Succ) x1 + 1 0

=β x1 + 1 (λfy.y f (f 1)) Succ 0

= (λfx.fx1+1 x) (λfy.y f (f 1)) Succ 0

=β(λfy.y f (f 1))x1+1 Succ 0

=β(λfy.y f (f 1)) ((λfy.y f (f 1))x1 Succ) 0

=β 0 ((λfy.y f (f 1))x1 Succ) (((λfy.y f (f 1))x1 Succ) 1) (by definition of iteration)

=β((λfy.y f (f 1))x1 Succ) 1

=βAck x1 0 (Since it is the same as step 2 for x1)

Consider the case x1 + 1 and x2 + 1, and let F , ((λfy.y f (f 1))x1 Succ),

Ack x1 + 1 x2 + 1 =β x2 + 1 F (F 1) (Following the same steps as above)

=β F
x2+1 (F 1)

=β F
x2+2 1

=β F (F x2+1 1) (We are trying to form the ack(x1, . . .) part)

=β F (x2 F (F 1))

=β F ((λfy.y f (f 1)) F x2)

=β F (((λfy.y f (f 1))x1+1 Succ) x2)

=β F (Ack x1 + 1 x2)

=βAck x1 (Ack x1 + 1 x2)

Exercise 25 Give a definition of a function that is λ-definable but not primitive recursive. [2011P6Q4
(d)].

The Ackermann function is known to grow faster than any primitive recursive function, so it is not primitive
recursive. In Exercise 11, we showed that this is RM-computable, so it is also λ-definable (or otherwise you
can directly define it using lambda terms (see Exercise 26)).

Exercise 26 Attempt [2010P6Q4 (d)].

See official solution notes

Exercise 27 [Correct composition] Let I be the λ-term λx.x.
(a) Show that n I =β I holds for every Church numeral n.

(b) Now consider B , λfgx.g x I (f (g x)). Assuming the fact about normal order reduction mentioned
on Lecture 10 slide 35, show that if partial functions f, g ∈ N ⇀ N are represented by closed
λ-terms F and G respectively, then their composition (f ◦g)(x) ≡ f(g(x)) is represented by B F G.

(c) How does this solve the problem mentioned on Lecture 11 slide 14?

[Exercise 12 in Lecturer’s handout]

(a) n I =β(λfx.fnx) I =β λx.I
nx=β λx.x=β I, where we used that Inx=β x.

This can be proven more formally using induction. The bases case I0x=β x holds. Assume true for n,
then In+1 x=β I

n(Ix) =β I
nx=β x.

(b) According to the slides, normal-order reduction always finds the β-nf if it exists. If g x is defined, then it
evaluates to some n and so normal-order reduction gives:

(λfgx.g x I (f (g x))) f g x=β g x I (f (g x)) =β n I (f (g x)) =β I (f (g x)) =β f (g x) =β f n

So the composition has a β-nf iff f n has a β-nf, as desired.
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Otherwise, if g x is undefined, i.e. it does not have a β-nf, then when attempting normal-order reduction
on g x I (f (g x)), we will not be able to find one.

(c) The problem with the way composition was defined in the slides was that when the outer function is
undefined and the inner is defined, we could still end up with a defined function.

Lecture 12

Exercise 28
(a) Why do we need the fixed point combinator in showing that primitive recursion is λ-definable?

How is it used?

(b) Define Curry’s fixed point combinator Y and show that it satisfies the desired property.

(c) Define Turing’s combinator and show that it satisfies the desired property. (See [2015P6Q4 (c)])

(d) Attempt [2019P6Q6 (d),(e)].

(e) Show that the square and fact are λ-definable. (See [2011P6Q4 (c)])

(a) The combinator Y is needed in order to make a recursive function call. More specifically, because it
satisfies Y M =βM(Y M), given a λ-term M , we can apply it recursively. In implementing primitive

recursion, we define M , (λz~xx.If(Eq0x)(F~x)(G ~x (Pred x)(z ~x (Pred x)))) and primitive recursion is
defined as Y M .

See Lecture 12 slide 15.

(b) Curry’s fixed point combinator Y is defined Y , λf.(λx.f(x x))(λx.f(x x)).

Y M → (λx.M (x x))(λx.M (x x))→M ((λx.M (x x)) (λx.M (x x)))

and similarly,

M(Y M) = M((λf.(λx.f(x x))(λx.f(x x)))M)→M((λx.M(x x))(λx.M(x x)))

Hence, Y M =βM(Y M).

See Lecture 12 slide 11.

(c) Turing’s fixed point combinator is given by Θ , A A, where A , λxy.y(x x y). It satisfies the desired
property, since

Θ M = A A M = (λxy.y (x x y)) A M →M (A A M)

See Lecture 12 slide 14.

(d) As in the hint, consider the λ-term M (Y K), where K = (λx.If (M x) B A). Now assume that
M (Y K) =β True, then

M (Y K) =βM (K (Y K)) (since Y is a fixed-point combinator)

=βM (K (Y K)) = M ((λx.If (M x) B A) (Y K))

=βM (If (M (Y K)) B A)

=βM (If (M True) B A) (by assumption)

=βM B=β False

which implies thatM (Y K) =β False, which leads to a contradiction. Similarly, assumeM (Y K) =β False,

M (Y K) =βM (If (M (Y K)) B A)

=βM (If (M False) B A) (by assumption)

=βM A=β True

which implies that M (Y K) =β True, which leads to a contradiction.

(e) Square can be defined as λx.Mult x x.
The factorial function can be defined recursively: M , λzx.If Eq0(x) 1 (Mult x (z (Predx))), where z
is the recursive function. Hence, Fact , λx.Y M x.
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Exercise 29
(a) Explain how fixed-point combinators are used in the λ-definition of minimisation.

(b) Deduce that every total recursive function is λ-definable. Collect the arguments and make an
outline of the proof.

(a) Minimisation is defined as λx.Y (λz~xx.If (Eq0(F ~x x)) x (z ~x (Succ x)))~x 0. The fixed-point combinator
allows the inner λ to be applied recursively with access to the recursive function through variable z.

(b) We have show that the basic functions (projection, successor, zero) in Exercise 23(a), composition in
Exercise 27, primitive recursion in Exercise 28(a) and minimisation in part (b) are λ-definable. Hence,
every total recursive function is λ-definable.

Note: We have not shown the definition of minimisation for partial functions, hence we cannot make
the conclusion that all partial recursive functions are representable in λ calculus. See Theorem 4.23 in
Hindley and Seldin’s “Lambda-calculus and combinators, an introduction” (2008).

Exercise 30 Give a high-level argument for why every λ-definable function is RM computable. (See
[2018P6Q6 (d)])

See official solution notes

Exercise 31 Describe the Church-Turing thesis. Why is this not called a theorem? What examples did
you come across in the lectures?

It is a high-level claim, that any formal definition of an algorithm will lead to model that is equivalent to Turing
Machines (and λ-calculus, partial recursive functions, register machines). This means that the other formalisms
will also have the same limitations (uncomputable functions and undecidable problems).
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