Computation Theory Solution Notes for Example Sheet 3

In this document you will find some solution notes for the problems of Example Sheet 3 of Computation Theory. If you find any mistake or any typos, please do let me know. Also, I am happy to hear (and include them in the notes (with credit) if you want) about alternative solutions to the problems or variations of a problem that you came up with.

Lecture 7

Exercise 1

(a) Define $\operatorname{proj}_{i}^{n}$, succ and zero.
(b) Show that all of these are RM computable.
(a) The projection function $\operatorname{proj}_{i}^{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}($ for $n \in \mathbb{N})$ is defined as $\operatorname{proj}_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \triangleq x_{i}$.

The successor function succ : $\mathbb{N} \rightarrow \mathbb{N}$ is defined as $\operatorname{succ}(x) \triangleq x+1$.
The zero function zero ${ }^{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ (for $\left.n \in \mathbb{N}\right)$ is defined as $\operatorname{zero}\left(x_{1}, \ldots, x_{n}\right) \triangleq 0$.
See Lecture 7 slide 12.
(b) See Example Sheet 1.

Exercise 2

(a) What is Kleene equivalence of two expressions?
(b) Define composition of multi-dimensional functions.
(c) Show that composition of RM computable functions is RM computable.
(a) Kleene equivalence $A \equiv B$ of two possible undefined expressions A, B, means that either both A and B are undefined or they are both defined and equal.

See Lecture 7 slide 14
(b) The composition of functions $f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ and $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$, if the partial function $h \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$ satisfying for all $x_{1}, \ldots, x_{m} \in N$,

$$
h\left(x_{1}, \ldots, x_{m}\right) \equiv f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

Usually, h is denoted by $f \circ\left[g_{1}, \ldots, g_{n}\right]$.

See Lecture 7 slide 16 .

(c) The idea is to compute $y_{1}=g_{1}\left(x_{1}, \ldots, x_{m}\right), y_{2}=g_{1}\left(x_{1}, \ldots, x_{m}\right)$ and so on, and then compute $\mathrm{R}_{0}=$ $f\left(x_{1}, \ldots, x_{n}\right)$. We need to be careful to erase the contents of the registers used in the computation of g (say $\mathrm{R}_{0}, \ldots \mathrm{R}_{\mathrm{n}}$).

See Lecture 7 slide 18 .

Lecture 8

Exercise 3

(a) Define primitive recursion (See [2017P6Q4 (a)], [2014P6Q4 (a)], 1999P4Q1 (a)]).
(b) Define primitive recursive functions PRIM (See [2017P6Q4 (b)(i)], [2014P6Q4 (b)], [2011P6Q4 (a)], [2006P4Q9 (a)], [1995P4Q9 (a)]).
(c) Prove that PRIM functions are total (See 2006 P4Q9 (b)]). Deduce that there exist computable functions that are not PRIM.
(d) Are all total functions primitive recursive? (See 2017P6Q4 (b)(iii)])
(e) Show that the functions add, pred, mult, tsub, exp are primitive recursive (See [2014P6Q4 (c)],
[2006P4Q9 (c)]).
(f) Show that the following functions are primitive recursive:
i.

$$
\mathrm{Eq}_{0}(x, y, z)= \begin{cases}y & \text { if } x=0 \\ z & \text { otherwise }\end{cases}
$$

ii. The bounded summation function for $g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ and $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$,

$$
g(\vec{x}, x)= \begin{cases}0 & \text { if } x=0 \\ f(\vec{x}, 0) & \text { if } x=1 \\ f(\vec{x}, 0)+\ldots+f(\vec{x}, x-1) & \text { if } x>1\end{cases}
$$

(g) Show that the functions square $(x)=x^{2}$ and fact $(x)=x$! are primitive recursive functions (See 2011P6Q4 (c)])
(a) Given functions $f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ and $g \in \mathbb{N}^{n+2} \rightharpoonup \mathbb{N}$, the primitive recursion $\rho^{n}(f, g) \in \mathbb{N}^{n+1} \rightharpoonup \mathbb{N}$ of f and g, is defined as

$$
\begin{aligned}
\left(\rho^{n}(f, g)\right)(\vec{x}, 0) & \equiv f(\vec{x}) \\
\left(\rho^{n}(f, g)\right)(\vec{x}, x+1) & \equiv g(\vec{x}, x, h(\vec{x}, x))
\end{aligned}
$$

where \equiv is Kleene equivalence: either both the left hand and right hand sides of the equation are undefined expressions, or they are both defined and equal.

See Lecture 8 slide 8 .

(b) The class of primitive recursive functions is the smallest set (with respect to subset inclusion) of numerical functions containing the basic functions (projections, successor, zero) and that is closed under the operations of primitive recursion and composition.

See Lecture 8 slide 13

(c) Every $f \in$ PRIM is total, because the basic functions (projections, successor, zero) are total, the composition of two total functions is total (since if f and g_{1}, \ldots, g_{n} are total, then $g_{1} x_{1}, \ldots, g_{n} x_{n}$ are defined and so $f\left(g_{1} x_{1}, \ldots, g_{n} x_{n}\right)$ is defined) and primitive recursion of two total functions is total (since every branch of $\rho^{n}(f, g)$ is function application of f or $\left.g\right)$.
There exist (strictly) partial functions that are computable.

See Lecture 8 slide 16

(d) Primitive recursive functions are countable since they are a subset of the RM computable functions, which are countable. The total functions on the other hand are uncountable as shown in Part IA Discrete Mathematics.

We can also define a way to count the primitive recursive functions. We assign encode the lists $\ulcorner[0, i, n]\urcorner$ for $\operatorname{proj}_{i}^{n},\ulcorner[1]\urcorner$ for succ and $\ulcorner[2, n]\urcorner$ for zero ${ }^{n}$. For composition of f and g_{1}, \ldots, g_{n}, we use $\left\ulcorner\left[3,\ulcorner f\urcorner,\left\ulcorner g_{1}\right\urcorner, \ldots,\left\ulcorner g_{n}\right\urcorner\right]\right\urcorner$. For primitive recursion of $\rho^{n}(f, g)$, we use $\ulcorner[4, n,\ulcorner f\urcorner,\ulcorner g\urcorner]\urcorner$. (This mapping is not bijective).
(e) The addition function is given by $\rho^{1}\left(\operatorname{proj}_{1}^{1}, \operatorname{succ} \circ \operatorname{proj}_{3}^{3}\right)$, since

$$
\begin{aligned}
\operatorname{add}\left(x_{1}, 0\right) & =x_{1} \\
\operatorname{add}\left(x_{1}, x_{2}+1\right) & =\operatorname{add}\left(x_{1}, x_{2}\right)+1
\end{aligned}
$$

See Lecture 8 slide 9

The predecessor function is given by $\rho^{0}\left(\right.$ zero $\left.^{0}, \operatorname{proj}_{1}^{2}\right)$.

$$
\begin{aligned}
\operatorname{pred}(0) & =0 \\
\operatorname{pred}\left(x_{1}+1\right) & =x+1
\end{aligned}
$$

See Lecture 8 slide 10

The multiplication function is given by $\rho^{1}\left(\right.$ zeror 1, add $\left.\circ\left[\operatorname{proj}_{1}^{3}, \operatorname{proj}_{3}^{3}\right]\right)$

$$
\begin{aligned}
\operatorname{mult}\left(x_{1}, 0\right) & =0 \\
\operatorname{mult}\left(x_{1}, x_{2}\right) & =\operatorname{mult}\left(x_{1}, x_{2}\right)+x_{1}
\end{aligned}
$$

The truncated subtraction function is given by $\rho^{1}\left(\operatorname{proj}_{1}^{1}, \operatorname{pred} \circ \operatorname{proj}_{3}^{3}\right)$.

$$
\begin{aligned}
\operatorname{tsub}(x, 0) & =x \\
\operatorname{tsub}(x, y+1) & =\operatorname{pred}(\operatorname{tsub}(x, y))
\end{aligned}
$$

See official solution notes
The exponentiation function is given by $\rho^{2}\left(\operatorname{succ} \circ\right.$ zero $\left.^{1}, \operatorname{mult} \circ\left[\operatorname{proj}_{1}^{3}, \operatorname{proj}_{3}^{3}\right]\right)$

$$
\begin{aligned}
\exp (x, 0) & =0 \\
\exp (x, y+1) & =\operatorname{mult}(x, \exp (x, y))
\end{aligned}
$$

(f) i. $\operatorname{Eq}_{0}(x, y, z) \triangleq \rho^{2}\left(\operatorname{proj}_{1}^{2}, \operatorname{proj}_{2}^{4}\right) \circ\left[\operatorname{proj}_{2}^{3}, \operatorname{proj}_{3}^{3}, \operatorname{proj}_{1}^{3}\right]$.
ii. The bounded summation $\rho^{n}\left(\right.$ zero $\left.^{n}, \operatorname{add} \circ\left[\operatorname{proj}_{n+1}^{n+2}, \operatorname{proj}_{n+2}^{n+2}\right]\right)$.
(g) The square function is defined as sqr $\triangleq \operatorname{mult} \circ\left[\operatorname{proj}_{1}^{2}, \operatorname{proj}_{2}^{2}\right]$.

The factorial function is defined as $\operatorname{fact}(x)=\rho^{2}\left(\operatorname{succ} \circ\right.$ zero $\left.^{2}, \operatorname{mult} \circ\left[\operatorname{proj}_{1}^{2}, \operatorname{proj}_{2}^{2}\right]\right)$
Exercise 4 [RMs implement PRIM] Show that primitive recursion is implementable in RMs. Deduce that PRIM functions are computable.

We have already shown in Example Sheet 1, all the basic functions are RM computable (Exercise 1). We know that composition is also primitive recursive (Exercise 2(c)]. Hence, we need to show that primitive recursion of RM computable functions is RM computable. We can compute the recursive equation, using a simple for-loop, starting from the base case $x=0$ and progressing to $x=1,2, \ldots$ until we reach the target value, in which case we halt. In each iteration we need to zero all registers R_{0}, \ldots, R_{n} used by the program.

See Lecture 8 slide 15.

Exercise 5 [Minimisation]

(a) Define minimisation.
(b) Why might we want to define minimisation?
(c) Implement div.
(d) Show that minimisation is implementable using RMs.
(a) Given a partial function $f \in \mathbb{N}^{n+1} \rightharpoonup \mathbb{N}$, the minimisation of $f, \mu^{n} f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is defined as $\mu^{n} f(x)$ is the smallest x such that $f(\vec{x}, x)=0$ and for each $i=0, \ldots, x-1, f(\vec{x}, i)$ is defined and is positive. If no such x exists, then it is undefined.

See Lecture 8 slide 18 .
(b) Minimisation is the missing part to make primitive recursion equivalent to TMs and to RMs (and to λ-calculus).
(c) The result of integer division between x_{1} and x_{2} is the least x_{3} such that $x_{1}<x_{2}\left(x_{3}+1\right)$. Let's consider an example $x_{1}=70$ and $x_{2}=8$. For $x_{3}=7$ we have $x_{2}\left(x_{3}+1\right)=8 \cdot 8=64<70$ (so all values $x_{3}<7$ we have <70, for $x_{3}=8$ we have $x_{2}\left(x_{3}+1\right)=8 \cdot 9=72>70$.
Hence, we can define integer division as $\mu^{2} \operatorname{tsub}\left(x_{1}, x_{2}\right)$, so for $x_{1}<x_{2}\left(x_{3}+1\right)$ this will be 0 and otherwise it will be 1 . When $x_{2}=0$, this will always be 0 and hence the minimisation will be undefined.

See Lecture 8 slide 20
(d) The idea is to loop over $x=0,1, \ldots$ evaluate $f(\vec{x}, x)$ and if it is 0 return x, otherwise continue with $x+1$.

See Lecture 8 slide 24

Exercise 6

(a) Define partial recursive ($P R$) functions. (See [2018P6Q5 (a)], [2016P6Q3 (a)], [2006P4Q9 (d), 1995P4Q9 (a)])
(b) Show that PR functions are RM computable. (See [2016P6Q3 (b)], 1999P4Q1 (b)])
(c) Describe in high-level terms why every computable function is also PR (See 1995P4Q9 (b),(c)]).
(a) A partial function f is partial recursive $(f \in \mathrm{PR})$ if it can be built up in finitely many steps from the basic functions (projection, successor, zero) by use of the operations of composition, primitive recursion and minimisation.

See Lecture 8 slide 22.
(b) We need to show that the basic functions (projection, successor, zero) (done in Exercise 1), composition (done in Exercise 2(c)), primitive recursion (done in Exercise 4) and minimisation (done in Exercise 5) are all RM computable.
(c) See Computability: An introduction to recursive function theory (p.106) for showing that the next ${ }_{M}$ is partial recursive.

See Lecture 8 slide 25.

Exercise 7 Attempt 2018P6Q5].

> | See official solution notes |
| :--- |

Exercise 8 Attempt [2014P6Q4 (e)].

See official solution notes

Lecture 9 (first part)

Exercise 9

(a) Define the Ackermann function.
(b) In what sense does it grow faster than any primitive recursive function?
(c) (optional - advanced) Read this proof for the Ackermann's function growing faster than any primitive recursive function.
(a) The Ackermann function ack : $\mathbb{N}^{2} \rightarrow \mathbb{N}$ is defined recursively as

$$
\operatorname{ack}\left(x_{1}, x_{2}\right)= \begin{cases}x_{2}+1 & \text { if } x_{1}=0 \\ \operatorname{ack}\left(x_{1}-1,1\right) & \text { if } x_{2}=0 \\ \operatorname{ack}\left(x_{1}-1, \operatorname{ack}\left(x_{1}, x_{2}-1\right)\right) & \text { otherwise }\end{cases}
$$

See Lecture 9 slide 6
(b) It means that for every primitive recursive function $f, \exists N_{f} . \forall x_{1}, x_{2} \cdot f\left(x_{1}, x_{2}\right)<\operatorname{ack}\left(x_{1}, x_{2}\right)$.

See Lecture 9 slide 6

Exercise 10 Attempt [2001P4Q8].

(a) For $y=0, g_{n+1}(y)=f(n+1,0)=f(n, 1)=g_{n}^{(1)}(1)$. Assume, it is true for $y=k$ and consider $y=k+1$. Then, we have,

$$
g_{n+1}(k+1)=f(n+1, k+1)=f(n, f(n+1, k))=f\left(n, g_{n+1}^{(k+1)}(1)\right)=g_{n+1}\left(g_{n+1}^{(k+1)}(1)\right)=g_{n+1}^{(k+2)}(1)
$$

Hence, by the principle of natural induction, this holds for all y.
(b) For $n=0, g_{n}$ is just the sum function. Assume that g_{n} is primitive recursive. Consider the partial recursive function $\rho^{1}(\underbrace{g_{n}(\operatorname{succ} \circ \ldots \circ \operatorname{succ}}_{n \text { times }} 0), g_{n} \circ \operatorname{proj}_{2}^{2})$. Note: This only works because we are considering a fixed n.
(c) Assume ack is not total, then there exists a smallest x_{1} such that ack $\left(x_{1}, x_{2}\right)$ is not defined. Note that $x_{1}>0$. Hence, then $g_{x_{1}}\left(x_{2}\right)$ is not defined and so is $g_{x_{1}-1}^{x_{2}+1}(1)$. But this contradicts the minimality of x_{1}. So, ack is total.
(d) As stated in the lecture notes, the Ackermann function is growing faster than any primitive recursive function.

Exercise 11 [ack is RM computable] Recall the definition of Ackermann's function ack (slide 102). Sketch how to build a register machine M that computes ack $\left(x_{1}, x_{2}\right)$ in R_{0} when started with x_{1} in R_{1} and x_{2} in R_{2} and all other registers zero. [Hint: here's one way; the next question steers you another way to the computability of ack. Call a finite list $L=\left[\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots\right]$ of triples of numbers suitable if it satisfies

- if $(0, y, z) \in L$, then $z=y+1$
- if $(x+1,0, z) \in L$, then $(x, 1, z) \in L$
- if $(x+1, y+1, z) \in L$, then there is some u with $(x+1, y, u) \in L$ and $(x, u, z) \in L$.

The idea is that if $(x, y, z) \in L$ and L is suitable then $z=\operatorname{ack}(x, y)$ and L contains all the triples $\left(x^{\prime}, y^{\prime}\right.$, ack $\left.\left(x, y^{\prime}\right)\right)$ needed to calculate ack (x, y). Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing ack (x, y) by searching for the code of a suitable list containing a triple with x and y in it's first two components.]
[Exercise 9 in Lecturer's handout]

Exercise 12 Give an example of a function that is not in PRIM. (See 2014 P 6 Q 4 (d)])
Any non-computable language is not in PRIM. Also, Ackermann's function is not in PRIM, because it grows faster than any language in PRIM.

Lecture 9 (second part)

Further reading:

- Foundations of Functional Programming.

Exercise 13

(a) How are λ-terms defined? (See [2016P6Q4 (a)])
(b) What notational conventions do we follow?
(c) Exercise 1.4 in Hindley and Seldin (2008) Insert the full amount of parentheses in the following abbreviated terms:
i. $x y z(y x)$,
ii. $\lambda x . u x y$,
iii. $\lambda u . u(\lambda x . y)$,
iv. $u x(y z)(\lambda v . v y)$,
v. $(\lambda x y z \cdot x z(y z)) u v w$,
vi. $w(\lambda x y z . x z(y z)) u v$.
(d) What does $x \# M$ mean?
(e) What do the terms bound variable, body, binding, bound, free, $\mathrm{FV}(\cdot), \mathrm{BV}(\cdot)$ and closed term mean?
(f) Determine the free variables and bound variables in the following expressions:
i. $\lambda u \cdot \lambda u \cdot \lambda y \cdot u \lambda u \cdot \lambda y . u$.
ii. $(\lambda x \lambda u . y)((x x) x)((v y) \lambda u . u)$.
iii. $(((\lambda z . z) z) \lambda y \cdot \lambda v \cdot v)(\lambda v . \lambda y \cdot v)$.
iv. $(\lambda x .((x v) u)(\lambda z . z \lambda y . y))$
v. You can generate more practice questions here.
(a) λ-terms are build by a collection of variables and two operations:

- (λ-abstraction) $\lambda x . M$, where x is a variable and M is a λ term.
- (application) $M N$, where M and N are λ terms.

Alternatively, we can use rule induction to define these. Let V be the set of variables,

$$
\bar{x} x \in V \quad \frac{M}{\lambda x \cdot M} x \in V \quad \frac{M N}{M N}
$$

See Lecture 9 slide 13.

(b) The following notational conventions where introduced by the lecturer:

- $\left(\lambda x_{1}, \ldots, x_{n} \cdot M\right)$ stands for $\left(\lambda x_{1} \cdot\left(\lambda x_{2} \ldots\left(\lambda x_{n} \cdot M\right) \ldots\right)\right)$.
- $\left(M_{1} \ldots M_{n}\right)$ stands for $\left(\ldots\left(M_{1} M_{2}\right) \ldots M_{n}\right)$. This is similar to function application in OCaml (and it can be stated concisely as function application is left-associative).
- $\lambda x . M$ stands for $(\lambda x . M)$ (so we drop the outermost parentheses.

See Lecture 9 slide 14

(c) i. $((x y) z)(y x)$
ii. $(\lambda x \cdot((u x) y))$
iii. $(\lambda u .(u(\lambda x . y)))$
iv. $(((u x)(y z))(\lambda v .(v y)))$
v. $((((\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z))))) u) v) w)$
vi. $(((w(\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z)))))) u) v)$
(d) $x \# M$ means that the variable x does not occur anywhere in the λ-term M.

See Lecture 9 slide 14.
(e) • $\lambda \underbrace{x}_{\text {bound variable body of } \lambda \text {-abstraction }}$

- binding variable: an occurrence of variable x in $\lambda x \ldots .$.
- bound variable: an occurrence of variable x in the body M of some $\lambda x . M$.
- free variable: an occurrence of variable x that is neither bounding nor bound.
- The set of free variables is defined as $\mathrm{FV}(x)=\{x\}, \mathrm{FV}(\lambda x . M)=\mathrm{FV}(M)-\{x\}$ and $\mathrm{FV}(M N)=$ $\mathrm{FV}(M) \cup \mathrm{FV}(N)$.
- The set of bound variables is defined as $\mathrm{BV}(x)=\emptyset, \mathrm{BV}(\lambda x \cdot M)=\mathrm{BV}(M) \cup\{x\}$ and $\mathrm{BV}(M N) \cup$ $\mathrm{BV}(N)$.
- closed term/combinator: a λ-term without any free variables.

> | See Lecture 9 slide 15 |
| :--- |
| See Lecture 9 slide 17 |

(f) The free variables are shown in red and the bound variables are shown in blue:
i. $\lambda u \cdot \lambda u \cdot \lambda y \cdot u \lambda u \cdot \lambda y . u$.
ii. $(\lambda x \lambda u . y)((x x) x)((v y) \lambda u . u)$.
iii. $(((\lambda z . z) z) \lambda y . \lambda v . v)(\lambda v . \lambda y . v)$.
iv. $(\lambda x .((x v) u)(\lambda z . z \lambda y . y))$

Exercise 14 [α-equivalence]

(a) Intuitively, what does α-equivalence try to capture?
(b) Define what $M\{z / x\}$ means.
(c) Define formally α-equivalence.
(d) Show that the following pairs are α-equivalent:
i. $A \triangleq \lambda x y \cdot x(x y)$ and $B \triangleq \lambda u v . u(u v)$,
ii. $A \triangleq(\lambda x y z . y(z x(\lambda k . k)))(\lambda x y . y x)$ and $B \triangleq(\lambda k \ell m \cdot \ell(m k(\lambda a \cdot a)))(\lambda y x . x y)$.
(e) (optional) Show that α-equivalence is an equivalence relation.
(a) Intuitively, two λ-terms are α-equivalent if they are equal up to renaming variables (variables bound to the same binding variable should be renamed together).
(b) $M\{z / x\}$ represents substituting all free occurrences of x with z (and $z \# M$ as otherwise for the $M=\lambda z . x z$, we would get $M\{z / x\}=\lambda z . z z$, which is not the same function).

See Lecture 9 slide 18
(c) The α-equivalence is defined inductively as

$$
\overline{x={ }_{\alpha} x} \quad \frac{z \#(M N) M\{z / x\}={ }_{\alpha} N\{z / y\}}{\lambda x \cdot M={ }_{\alpha} \lambda y \cdot N} \quad \frac{M={ }_{\alpha} M^{\prime} N={ }_{\alpha}}{M N={ }_{\alpha} M^{\prime} N^{\prime}}
$$

See Lecture 9 slide 19
(d)

Lecture 10

Exercise 15 [Substitution]

(a) Define the substitution operation $N[M / x]$.
(b) Exercise 1.14 in Hindley and Seldin (2008) Evaluate the following substitutions:
i. $(\lambda y \cdot x(\lambda w . v w x))[(u v) / x]$
ii. $(\lambda y \cdot x(\lambda x \cdot x))[(\lambda y \cdot x y) / x]$
iii. $(y(\lambda v \cdot x v))[(\lambda y . v y) / x]$
iv. $(\lambda x . z y)[(u v) / x]$
(a) The substitution operation is defined as:

- $x[M / x]=M$
- $y[M / x]=y$ if $y \neq x$
- $(\lambda y \cdot N)[M / x]=\lambda y \cdot N[M / x]$ if $y \#(M x)$
- $\left(N_{1} N_{2}\right)[M / x]=N_{1}[M / x] N_{2}[M / x]$
(b) i. $(\lambda y . u v(\lambda w . v w(u v)))$
ii. $(\lambda y \cdot(\lambda y \cdot x y)(\lambda x \cdot x))$
iii. $(y(\lambda z .(\lambda y . v y) z))$
iv. ($\lambda x . z y)$

Exercise 16

(a) Define one-step β-reduction.
(b) Define the many-step β-reduction. (See 2015P6Q4 (a)])
(c) Define the β-conversion. (See $2019 P 6 \mathrm{Q} 6$ (a)(i)])
(a) The one-step β-reduction is defined inductively as follows:

$$
\begin{array}{rcc}
\overline{(\lambda x . M)} N \rightarrow M[N / x] & \frac{M \rightarrow M^{\prime}}{\lambda x . M \rightarrow \lambda x \cdot M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M \rightarrow \rightarrow M^{\prime} N^{\prime}} \\
\frac{M \rightarrow M^{\prime}}{N M \rightarrow N M^{\prime}} & \frac{N={ }_{\alpha} M}{} \quad \frac{M \rightarrow M^{\prime}}{} M^{\prime}={ }_{\alpha} N^{\prime} \\
N \rightarrow N^{\prime}
\end{array}
$$

(b) The many-step β-reduction is defined as follows:

$$
\frac{M={ }_{\alpha} M^{\prime}}{M \rightarrow M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M \rightarrow M^{\prime}} \quad \frac{M \rightarrow M^{\prime} \quad M^{\prime} \rightarrow M^{\prime \prime}}{M \rightarrow M^{\prime \prime}}
$$

See Lecture 10 slide 19 ,
(c)

$$
\begin{array}{llll}
& \frac{M={ }_{\alpha} M^{\prime}}{M={ }_{\beta} M^{\prime}} & \frac{M \rightarrow M^{\prime}}{M={ }_{\beta} M^{\prime}} & \frac{M={ }_{\beta} M^{\prime}}{M^{\prime}={ }_{\beta} M} \\
\frac{M={ }_{\beta} M^{\prime}}{M={ }_{\beta} M^{\prime \prime}} M_{\beta} M^{\prime \prime} & \frac{M={ }_{\beta} M^{\prime}}{\lambda x \cdot M={ }_{\beta} \lambda x \cdot M^{\prime}} & \frac{M={ }_{\beta} M^{\prime}}{M={ }_{\beta} N^{\prime}} \\
M N={ }_{\beta} M^{\prime} N^{\prime}
\end{array}
$$

Exercise 17

(a) State the Church-Rosser Theorem and prove its corollary.
(b) Attempt [2019P6Q6 (a)(iii)].
(a) The Church-Rosser theorem states that: The \rightarrow relation is confluent meaning that if $M_{1} \longleftrightarrow M \rightarrow M_{2}$, then there exists M^{\prime} such that $M_{1} \rightarrow M^{\prime} \longleftarrow M_{2}$.
The corollary states that two terms M_{1} and M_{2} are β-convertible iff there exists a term M such that $M_{1} \rightarrow M$ and $M_{2} \rightarrow M$.
(\Leftarrow) Assume $\exists M .\left(M_{1} \rightarrow M \longleftarrow M_{2}\right)$. Since $A \rightarrow B$ implies that $A={ }_{\beta} B, M_{1}={ }_{\beta} M$ and $M_{2}={ }_{\beta} M$, so (by transitivity) $M_{1}={ }_{\beta} M_{2}$.
(\Rightarrow) We will prove by rule induction that for every two β-equivalent λ-terms M_{1} and M_{2}, there exists M such that $M_{1} \rightarrow M \leftarrow M_{2}$.

- $\frac{M_{1}={ }_{\alpha} M_{2}}{M_{1}={ }_{\beta} M_{2}}$: If $M_{1}={ }_{\alpha} M_{2}$, then we can transform M_{1} to M_{2} using substitutions and M_{2} to M_{1} using substitutions. Hence, we can take $M=M_{1}$ (or $M=M_{2}$) and then $M_{1} \rightarrow M \leftarrow M_{2}$.
- $\frac{M_{1} \rightarrow M_{2}}{M_{1}=M_{2}}$: If $M_{1} \rightarrow M_{2}$, then $M_{1} \rightarrow M_{2}$, so we pick $M=M_{2}$.
- $\frac{M_{1}=_{\beta} M_{2}}{M_{2}=_{\beta} M_{1}}$: By inductive hypothesis, there exists M such that $M_{1} \rightarrow M \longleftarrow M_{2}$. So, $M_{2} \rightarrow M \longleftarrow M_{1}$.
- $\frac{M_{1}=_{\beta} M_{2} M_{2}=_{\beta} M_{3}}{M_{1}=_{\beta} M_{3}}$: !! By inductive hypothesis, there exist M_{4} and M_{5}, such that $M_{1} \rightarrow M_{4} \leftarrow M_{2}$ and $M_{2} \rightarrow M_{5} \leftarrow M_{3}$. So $M_{4} \leftarrow M_{2} \rightarrow M_{5}$. By the Church-Rosser theorem, there exists M such that $M_{4} \rightarrow M \leftarrow M_{5}$. Hence, $M_{1} \rightarrow M_{4} \rightarrow M \leftarrow M_{5} \leftarrow M_{3}$. So, $M_{1} \rightarrow M \leftarrow M_{3}$ by transitivity of แ.
- $\frac{M_{1}={ }_{\beta} M_{2}}{\lambda x \cdot M={ }_{\beta} \lambda x \cdot M_{2}}$: By inductive hypothesis, there exists M such that $M_{1} \rightarrow M \longleftarrow M_{2}$. Note that if $N \rightarrow N^{\prime}$, then $\lambda x . N \rightarrow \lambda x \cdot N^{\prime}$, by performing the \rightarrow steps in the body of the function. Hence, $\lambda x . M_{1} \rightarrow \lambda x . M \nleftarrow \lambda x . M_{2}$.
- $\frac{M_{1}={ }_{\beta} M_{2} M_{3}={ }_{\beta} M_{4}}{M_{1} M_{3}={ }_{\beta} M_{2} M_{4}}$: By inductive hypothesis, there exist M_{5} and M_{6} such that $M_{1} \rightarrow M_{5} \leftarrow M_{2}$ and $M_{3} \rightarrow M_{6} \leftarrow M_{4}$. So, $M_{1} M_{3} \rightarrow M_{5} M_{6} \rightarrow M_{2} M_{4}$.

See Lecture 10 slide 29 .
(b) By the corollary of the Church-Rosser Theorem, we have $M_{1} \rightarrow M$ and $M_{2} \rightarrow M$. Since they are in both in β-nf, it means that the reductions to M are just α-equivalence steps (if there was a β reduction, they would not be in β-nf).

See official solution notes

Exercise 18

(a) Define the β-normal form. (See [2019P6Q6 (a)(ii)], [2013P6Q4 (a)(i)])
(b) What properties does this form have?
(c) Do all terms have a β-normal form? (See [2013P6Q4 (a)(iii)])
(d) Show that there exists λ-terms that have both a β-normal form and an infinite chain of reductions from it.
(e) Exercise 1.28 in Hindley and Seldin (2008) Find the β-normal form for the following terms (if it exists):
i. $(\lambda x \cdot x(x y)) z$,
ii. $(\lambda x . y) z$,
iii. $(\lambda x \cdot(\lambda y \cdot y x) z) v$,
iv. $(\lambda x . x x y)(\lambda x . x x y)$,
v. $(\lambda x . x y)(\lambda u . v u u)$,
vi. $(\lambda x \cdot x(x(y z)) x)(\lambda u . u v)$,
vii. $(\lambda x y \cdot x y y)(\lambda u . u y x)$,
viii. $(\lambda x y z . x z(y z))((\lambda x y . y x) u)((\lambda x y . y x) v) w$.
(a) A λ-term is in β-normal form if it contains no β-redexes (i.e. no sub-terms of the form $\left.(\lambda x . M) M^{\prime}\right)$. A term M has a β-normal form N if N is in β-normal form and $M={ }_{\beta} N$.
(b) The β-normal form (if it exists) is unique up to α-equivalence.
(c) The example given in the lecture notes was the term $(\lambda x . y) \Omega$, where if we β-reduce Ω, we get the same term $(\lambda x . y) \Omega$ (so we can get chains of unbounded length); otherwise we get y (which is β-nf).

See Lecture 10 slide 34.

(d) i. $(\lambda x \cdot x(x y)) z \rightarrow z(z y)$
ii. $(\lambda x . y) z \rightarrow y$,
iii. $(\lambda x \cdot(\lambda y \cdot y x) z) v \rightarrow z v$,
iv. $(\lambda x \cdot x x y)(\lambda x \cdot x x y) \rightarrow(\lambda x \cdot x x y)(\lambda x \cdot x x y) y \rightarrow(\lambda x \cdot x x y)(\lambda x \cdot x x y) y y \rightarrow \ldots$ (each time the only possible reduction will be $(\lambda x . x x y)(\lambda x . x x y)$, hence this term has no β-normal form),
v. $(\lambda x . x y)(\lambda u . v u u) \rightarrow(\lambda u . v u u) y \rightarrow v y y$,
vi.

$$
\begin{aligned}
(\lambda x . x(x(y z)) x)(\lambda u . u v) & \rightarrow(\lambda u . u v)((\lambda u . u v)(y z))(\lambda u . u v) \rightarrow((\lambda u . u v)(y z)) v(\lambda u . u v) \\
& \rightarrow((y z) v) v(\lambda u . u v)
\end{aligned}
$$

vii. $(\lambda x y . x y y)(\lambda u . u y x) \rightarrow \lambda a .(\lambda u . u$ y $x) a a \rightarrow \lambda a . a y x a$
viii.

$$
\begin{aligned}
(\lambda x y z \cdot x z(y z))((\lambda x y \cdot y x) u)((\lambda x y \cdot y x) v) w & \rightarrow(\lambda y z \cdot((\lambda x y \cdot y x) u) z(y z))((\lambda x y \cdot y x) v) w \\
& \rightarrow(\lambda z \cdot((\lambda x y \cdot y x) u) z(((\lambda x y \cdot y x) v) z)) w \\
& \rightarrow((\lambda x y \cdot y x) u) w(((\lambda x y \cdot y x) v) w) \\
& \rightarrow(\lambda y \cdot y u) w(((\lambda x y \cdot y x) v) w) \\
& \rightarrow(w u)(((\lambda x y \cdot y x) v) w) \\
& \rightarrow(w u)((\lambda y \cdot y v) w) \rightarrow(w u)(w v)
\end{aligned}
$$

Exercise 19

(a) Define normal-order reduction.
(b) Is it similar to call-by-name?
(c) Is there an evaluation analogous to call-by-value? Which one is preferred?
(a) Normal-order reduction refers to the deterministic strategy of first reducing left-most and then outer-most terms in a λ-term. This reduction has the property that it will find the β-nf if it exists.

See Lecture 10 slide 35.
(b) It is similar to call by name in the sense that it does not evaluate the arguments of a function before calling the function, but only when the argument is about to be applied.
(c) Yes, there is an analogous, but it has the disadvantage that if you have e.g. zero Ω, then it will try to evaluate Ω and loop forever, even though the term reduces to 0 . A practical disadvantage of the call-byname is that the is that evaluates a certain argument multiple times (e.g. $\lambda x . x+x+x$ will evaluate x three times). In practice, there exist some hybrid schemes like call-by-need (but this also has problems of its own).

Exercise 20 [Lambda functions in OCaml] (optional) In this exercise, you will implement β reduction for lambda terms in OCaml.
(a) Define a type for lambda terms in OCaml.
(b) Define the function substitute $n \mathrm{~m} x$ that replaces all occurrences of variable x with m inside n .
(c) Define the function single_step_reduce m that returns (m ', reduced) the reduced term (or the original term) and whether a reduction was applied.
(d) Define the function multi_step_reduce m that calls single_step_reduce until reduced is false. Verify the reduction works as expected by applying it on the above examples.

```
type lambda = Var of string | App of lambda * lambda | Lambda of string * lambda;;
let rec substitute n m x = match n with
| Var(y) ->
        if x = y then m
    else n
| App(ell1, ell2) -> App(substitute ell1 m x, substitute ell2 m x)
| Lambda(z, ell) ->
        if x = z then n
        else Lambda(z, substitute ell m x); ;
let sub_term = Lambda("y", App(Var("x"), Lambda("w", App(App(Var("v"), Var("w")),
        Var("x"))))); ;
substitute sub_term (App(Var("u"), Var("v"))) "x";;
let rec single_step_beta = function
| Var(x) -> (Var(x), false)
| App(Lambda(x, m), n) -> (substitute m n x, true)
| App(ell1, ell2) ->
        let (left, reduced_left) = single_step_beta ell1 in
            if reduced_left then (App(left, ell2), true)
            else let (right, reduced_right) = single_step_beta ell2 in
                    (App(ell1, right), reduced_right)
| Lambda(x, ell) -> let (v, reduced) = single_step_beta ell in
        (Lambda(x, v), reduced); ;
let term = App(Lambda("x", App(Var("x"), Var("y"))), App(Lambda("y", Lambda("z",
        Var("z"))), Var("u"))); ;
let rec multi_step_beta n =
        let (v, reduced) = single_step_beta n in
            if reduced then multi_step_beta v
            else v;;
```


Lecture 11

Exercise 21

(a) Define Church's numerals. (See [2020P6Q6 (a)], [2016P6Q4 (b)], [2010P6Q4 (a)])
(b) What is the difference between $f f x$ and $f(f(x))$.
(c) Show that $\underline{n} M N={ }_{\beta} M^{n} N$.
(d) Prove by induction that $\left(\lambda x_{1} x_{2} \cdot \lambda f x \cdot x_{1} f\left(x_{2} f x\right)\right) \underline{n} \underline{m}$ represents addition.
(a) Church's numerals are lambda terms used to represent the natural numbers. In this representation, $\underline{n} \triangleq$ $\lambda f x \cdot \underbrace{f(\ldots(f}_{n \text { times }} x))$ (Of course, this is not the only valid representation)
(b) The first term corresponds to $(f f) x$, while the second corresponds to $f(f x)$.
(c) For $\underline{n}, \underline{n} M N={ }_{\beta}\left(\lambda f x \cdot f^{n} x\right) M N={ }_{\beta} M^{n} N$.
(d)

$$
\begin{aligned}
\lambda f x \cdot \underline{n} f(\underline{m} f x) & ={ }_{\beta} \lambda f x \cdot \underline{n} f\left(f^{m} x\right)(\text { By property (c)) } \\
& ={ }_{\beta} \lambda f x \cdot f^{n}\left(f^{m} x\right)(\text { By property (c)) } \\
& =\lambda f x \cdot f^{n+m} x
\end{aligned}
$$

The last step is an equality because $f^{n}\left(f^{m} x\right)$ is just a different expression for f^{n+m} or $f \ldots f$.
See Lecture 11 slide 6

Exercise 22 Define λ-definable functions. (See [2020P6Q6 (c)], [2018P6Q6 (c)], [2010P6Q4 (b)])
A function $f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ is λ-definable if there is a closed λ-term F that represents it: for all $\left.X_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n}$ and $y \in \mathbb{N}$:

- If $f\left(x_{1}, \ldots, x_{n}\right)=y$, then $F \underline{x_{1}} \ldots \underline{x_{n}}={ }_{\beta} \underline{y}$.
- If $f\left(x_{1}, \ldots, x_{n}\right) \uparrow$, then $F \underline{x_{1}} \cdots \underline{x_{n}}$ has no β-nf.

Exercise 23

(a) Show that proj, succ and zero are λ-definable. (See [2020P6Q6 (d)], [2010P6Q4 (c)])
(b) Show how to represent composition. What is the problem here? (See 2013P6Q4 (b)(ii),(iii)])
(c) Define λ-terms for True, False and If. (See 2020P6Q6 (b)], 2019P6Q6 (b)])
(d) Prove that If True $M N \equiv_{\beta} M$ and If False $M N={ }_{\beta} N$.
(e) Define λ-terms for And, Or and Not.
(f) Show that testing for equality with 0 is λ-definable.
(g) Define λ-terms for Pair, Fst and Snd. Show that Fst (Pair $M N$) $={ }_{\beta} M$ (See [2020P6Q6 (e)]).
(h) Define the pred function and prove by induction that it works.
(i) Attempt [2020P6Q6 (f),(g)].
(j) Attempt 2016P6Q4 (c)].
(a) The projection function is simply defined as $\operatorname{proj}_{i}^{n} \triangleq \lambda x_{1} \ldots x_{n} \cdot x_{i}$.

The zero function is zero ${ }^{n} \triangleq \lambda x_{1}, \ldots, x_{n} . \underline{.}$.
The successor function succ $\triangleq \lambda v f x . f(v f x)$.
(b) Composition between total functions can be presented as $\lambda x_{1} \ldots x_{n} . F\left(G_{1} x_{1} \ldots x_{n}\right) \ldots\left(G_{m} x_{1} \ldots x_{n}\right)$. The problem is that this construction does not work for when F and G can be partial. A concrete example is $F \triangleq$ zero 1 and $G \triangleq \lambda x . \Omega$. The composition of this function should be undefined, but $F G \underline{0}=$ $\left(\operatorname{zero}^{1}(\lambda x . \Omega)\right) \underline{0}={ }_{\beta} \underline{0} \underline{0}$ which is in β-nf. See Exercise 27 for how to fix this.

See Lecture 11 slide 14
(c) These are defined as:

- True $\triangleq \lambda x y . x$
- False $\triangleq \lambda x y . y$
- If $\triangleq \lambda f x y . f x y$

See Lecture 11 slide 19
(d) If True $M N=(\lambda f x y . f x y)(\lambda x y \cdot x) M N={ }_{\beta}(\lambda x y . x) M N={ }_{\beta} M$

If False $M N=(\lambda f x y . f x y)(\lambda x y . y) M N={ }_{\beta}(\lambda x y . y) M N={ }_{\beta} N$
See Lecture 11 slide 19
(e) We give the following definitions:

- And $\triangleq \lambda f_{1} f_{2} \cdot \lambda x y \cdot f_{1}\left(f_{2} x y\right) y$

This way if either of f_{1} or f_{2} returns y, there is no way for the other function to change the result.

- $\mathbf{O r} \triangleq \lambda f_{1} f_{2} \cdot \lambda x y \cdot f_{1} x\left(f_{2} x y\right)$

This way if either of f_{1} or f_{2} returns x, there is no way for the other function to change the result.

- Not $\triangleq \lambda f . \lambda x y . f y x$.

This way the outcome of f is reversed.
(f) The idea is that since $\underline{n} \triangleq \lambda f x . f^{n} x$ (and $\underline{0}=\lambda f x . x$) we are going to choose an f so that when it is applied (even once), we get False otherwise we get True. A suitable function is λy.False, so that

$$
\underline{0}(\lambda y . \text { False }) \text { True }=(\lambda f x . x)(\lambda y . \text { False }) \text { True }={ }_{\beta} \text { True }
$$

and

$$
\begin{aligned}
\underline{n+1}(\lambda y . \text { False }) \text { True } & =\left(\lambda f x . f^{n+1} x\right)(\lambda y . \text { False }) \text { True }=_{\beta}(\lambda y . \text { False })^{n+1} \text { True } \\
& ={ }_{\beta}(\lambda y . \text { False }) \text { True }={ }_{\beta} \text { False. }
\end{aligned}
$$

(g) The definitions are as follows:

- Pair $\triangleq \lambda x y f$.f $x y$
- Fst $\triangleq \lambda f . f$ True
- Snd $\triangleq \lambda f . f$ False
$\boldsymbol{F s t}($ Pair $M N)={ }_{\beta} \operatorname{Fst}(\lambda f . M N)={ }_{\beta}(\lambda f . M N) \operatorname{True}={ }_{\beta} \operatorname{True} M N={ }_{\beta} M$
See Lecture 11 slide 22
(h) The difficulty with defining the predecessor is that in Church's numerals we only have access to a function that is applied n times. The idea is to apply the function $(x, y) \rightarrow(f x, x)$, so inductively we will be storing $\left(f^{n+1} x_{0}, f^{n} x_{0}\right)$. Hence, in the end we can just take the item of the pair. A formal proof was given in the slides.

$$
\begin{aligned}
\text { Pred } & \triangleq \lambda y f x \cdot \mathbf{S n d}(y(G f)(\text { Pair } x x)) \\
G & \triangleq \lambda f p \cdot \operatorname{Pair}(f(\text { Fst } p))(\text { Fst } p)
\end{aligned}
$$

See Lecture 11 slide 23
(i) This represents the predecessor function. The proof follows by induction as in the lecture notes. For constructing the predicate Leq we use Pred and $\mathbf{E q} \mathbf{q}_{0}$, Namely, we define

$$
\operatorname{Leq} \underline{m} \underline{n} \triangleq \lambda x y \cdot \mathbf{E q}_{0}(y \text { Pred } x)
$$

This works because,

$$
\operatorname{Leq} \underline{m} \underline{n}={ }_{\beta} \mathbf{E q}_{0}(\underline{n} \operatorname{Pred} \underline{m})={ }_{\beta} \mathbf{E q}_{0}\left(\mathbf{P r e d}^{n} \underline{m}\right)={ }_{\beta} \mathbf{E q}_{0}(\underline{n \dot{\perp}})={ }_{\beta} \begin{cases}\text { True } & \text { if } m \leq n \\ \text { False } & \text { otherwise }\end{cases}
$$

See official solution notes
(j)

Exercise 24 If you are still not fed up with Ackermann's function ack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$, show that the λ-term Ack $\triangleq \lambda x . x(\lambda f y . y f(f \underline{1}))$ Succ represents ack (where Succ is as on slide 123).
[Exercise 11 in Lecturer's handout]
We will prove each of the three branches in the ack definition. Then an inductive argument over all x_{1} and x_{2} (which proceeds in a diagonal direction with base case ack $\underline{0} \underline{0}$), proves that $\operatorname{Ack} \underline{x_{1}} \underline{x_{2}}=\underline{\operatorname{ack}}\left(x_{1}, x_{2}\right)$.

$$
\text { Ack } \begin{aligned}
\underline{0} \underline{x_{2}} & ={ }_{\beta}(\lambda x \cdot x(\lambda f y \cdot y f(f \underline{1})) \text { Succ }) \underline{0} \underline{x_{2}} \\
& ={ }_{\beta} \underline{0}(\lambda f y \cdot y f(f \underline{1})) \text { Succ } \underline{x_{2}} \\
& =(\lambda f x \cdot x)(\lambda f y \cdot y f(f \underline{1})) \text { Succ } \underline{x_{2}}(\text { By definition of } \underline{0}) \\
& ={ }_{\beta} \operatorname{Succ} \underline{x_{2}} \\
& ={ }_{\beta} \underline{x_{2}+1}(\text { By properties of Succ })
\end{aligned}
$$

Consider $x_{2}=0$,

$$
\text { Ack } \begin{aligned}
\underline{x_{1}+1} \underline{0} & ={ }_{\beta}(\lambda x \cdot x(\lambda f y . y f(f \underline{1})) \text { Succ }) \underline{x_{1}+1} \underline{0} \\
& ={ }_{\beta} \underline{x_{1}+1}(\lambda f y . y f(f \underline{1})) \text { Succ } \underline{0} \\
& =\left(\lambda f x . f^{x_{1}+1} x\right)(\lambda f y \cdot y f(f \underline{1})) \text { Succ } \underline{0} \\
& ={ }_{\beta}(\lambda f y \cdot y f(f \underline{1}))^{x_{1}+1} \mathbf{S u c c} \underline{0} \\
& ={ }_{\beta}(\lambda f y \cdot y f(f \underline{1}))\left((\lambda f y \cdot y f(f \underline{1}))^{x_{1}} \mathbf{S u c c}\right) \underline{0} \\
& ={ }_{\beta} \underline{0}\left((\lambda f y \cdot y f(f \underline{1}))^{x_{1}} \text { Succ }\right)\left(\left((\lambda f y \cdot y f(f \underline{1}))^{x_{1}} \text { Succ }\right) \underline{1}\right) \text { (by definition of iteration) } \\
& ={ }_{\beta}\left((\lambda f y \cdot y f(f \underline{1}))^{x_{1}} \text { Succ }\right) \underline{1} \\
& ={ }_{\beta} \text { Ack } \underline{x_{1}} \underline{0}\left(\text { Since it is the same as step } 2 \text { for } x_{1}\right)
\end{aligned}
$$

Consider the case $x_{1}+1$ and $x_{2}+1$, and let $F \triangleq\left((\lambda f y . y f(f \underline{1}))^{x_{1}}\right.$ Succ $)$,

$$
\text { Ack } \begin{aligned}
\underline{x_{1}+1} \underline{x_{2}+1} & ={ }_{\beta} \underline{x_{2}+1} F(F \underline{1}) \text { (Following the same steps as above) } \\
& ={ }_{\beta} F^{x_{2}+1}(F \underline{1}) \\
& ={ }_{\beta} F^{x_{2}+2} \underline{1} \\
& ={ }_{\beta} F\left(F^{x_{2}+1} \underline{1}\right)\left(\text { We are trying to form the ack }\left(x_{1}, \ldots\right)\right. \text { part) } \\
& ={ }_{\beta} F\left(\underline{x_{2}} F(F \underline{1})\right) \\
& ={ }_{\beta} F\left((\lambda f y \cdot y f(f \underline{1})) F \underline{x_{2}}\right) \\
& ={ }_{\beta} F\left(\left((\lambda f y \cdot y f(f \underline{1}))^{x_{1}+1} \text { Succ }\right) \underline{x_{2}}\right) \\
& ={ }_{\beta} F\left(\operatorname{Ack} \underline{x_{1}+1} \underline{x_{2}}\right) \\
& ={ }_{\beta} \operatorname{Ack} \underline{x_{1}}\left(\operatorname{Ack} \underline{x_{1}+1} \underline{x_{2}}\right)
\end{aligned}
$$

Exercise 25 Give a definition of a function that is λ-definable but not primitive recursive. [2011P6Q4] (d)].

The Ackermann function is known to grow faster than any primitive recursive function, so it is not primitive recursive. In Exercise 11, we showed that this is RM-computable, so it is also λ-definable (or otherwise you can directly define it using lambda terms (see Exercise 26).

Exercise 26 Attempt 2010P6Q4 (d)].

Exercise 27 [Correct composition] Let I be the λ-term $\lambda x . x$.
(a) Show that $\underline{n} I={ }_{\beta} I$ holds for every Church numeral \underline{n}.
(b) Now consider $B \triangleq \lambda f g x . g x I(f(g x))$. Assuming the fact about normal order reduction mentioned on Lecture 10 slide 35, show that if partial functions $f, g \in \mathbb{N} \rightharpoonup \mathbb{N}$ are represented by closed λ-terms F and G respectively, then their composition $(f \circ g)(x) \equiv f(g(x))$ is represented by $B F G$.
(c) How does this solve the problem mentioned on Lecture 11 slide 14?
[Exercise 12 in Lecturer's handout]
(a) $\underline{n} I={ }_{\beta}\left(\lambda f x \cdot f^{n} x\right) I={ }_{\beta} \lambda x \cdot I^{n} x={ }_{\beta} \lambda x \cdot x={ }_{\beta} I$, where we used that $I^{n} x={ }_{\beta} x$.

This can be proven more formally using induction. The bases case $I^{0} x={ }_{\beta} x$ holds. Assume true for n, then $I^{n+1} x={ }_{\beta} I^{n}(I x)={ }_{\beta} I^{n} x={ }_{\beta} x$.
(b) According to the slides, normal-order reduction always finds the β-nf if it exists. If $g \underline{x}$ is defined, then it evaluates to some \underline{n} and so normal-order reduction gives:

$$
(\lambda f g x . g x I(f(g x))) f g \underline{x}={ }_{\beta} g \underline{x} I(f(g \underline{x}))={ }_{\beta} \underline{n} I(f(g \underline{x}))={ }_{\beta} I(f(g \underline{x}))={ }_{\beta} f(g \underline{x})={ }_{\beta} f \underline{n}
$$

So the composition has a β-nf iff $f \underline{n}$ has a β-nf, as desired.

Otherwise, if $g \underline{x}$ is undefined, i.e. it does not have a β-nf, then when attempting normal-order reduction on $g \underline{x} I(f(g \underline{x}))$, we will not be able to find one.
(c) The problem with the way composition was defined in the slides was that when the outer function is undefined and the inner is defined, we could still end up with a defined function.

Lecture 12

Exercise 28

(a) Why do we need the fixed point combinator in showing that primitive recursion is λ-definable? How is it used?
(b) Define Curry's fixed point combinator Y and show that it satisfies the desired property.
(c) Define Turing's combinator and show that it satisfies the desired property. (See [2015P6Q4 (c)])
(d) Attempt [2019P6Q6 (d),(e)].
(e) Show that the square and fact are λ-definable. (See [2011P6Q4 (c)])
(a) The combinator Y is needed in order to make a recursive function call. More specifically, because it satisfies $Y M={ }_{\beta} M(Y M)$, given a λ-term M, we can apply it recursively. In implementing primitive recursion, we define $M \triangleq\left(\lambda z \vec{x} x \cdot \mathbf{I f}\left(\mathbf{E q}_{0} x\right)(F \vec{x})(G \vec{x}(\right.$ Pred $x)(z \vec{x}($ Pred $\left.x)))\right)$ and primitive recursion is defined as $Y M$.

See Lecture 12 slide 15
(b) Curry's fixed point combinator Y is defined $Y \triangleq \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$.
$Y M \rightarrow(\lambda x \cdot M(x x))(\lambda x . M(x x)) \rightarrow M((\lambda x . M(x x))(\lambda x \cdot M(x x)))$
and similarly,

$$
M(Y M)=M((\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) M) \rightarrow M((\lambda x \cdot M(x x))(\lambda x \cdot M(x x)))
$$

Hence, $Y M={ }_{\beta} M(Y M)$.
See Lecture 12 slide 11.
(c) Turing's fixed point combinator is given by $\Theta \triangleq A A$, where $A \triangleq \lambda x y \cdot y(x x y)$. It satisfies the desired property, since

$$
\Theta M=A A M=(\lambda x y \cdot y(x x y)) A M \rightarrow M(A A M)
$$

See Lecture 12 slide 14
(d) As in the hint, consider the λ-term $M(Y K)$, where $K=(\lambda x$.If $(M x) B A)$. Now assume that $M(Y K)={ }_{\beta}$ True, then

$$
\begin{aligned}
M(Y K) & ={ }_{\beta} M(K(Y K))(\text { since } Y \text { is a fixed-point combinator) } \\
& ={ }_{\beta} M(K(Y K))=M((\lambda x . \text { If }(M x) B A)(Y K)) \\
& ={ }_{\beta} M(\mathbf{I f}(M(Y K)) B A) \\
& ={ }_{\beta} M(\mathbf{I f}(M \text { True }) B A) \text { (by assumption) } \\
& ={ }_{\beta} M B={ }_{\beta} \text { False }
\end{aligned}
$$

which implies that $M(Y K)={ }_{\beta}$ False, which leads to a contradiction. Similarly, assume $M(Y K)={ }_{\beta}$ False,

$$
\begin{aligned}
M(Y K) & ={ }_{\beta} M(\mathbf{I f}(M(Y K)) B A) \\
& ={ }_{\beta} M(\mathbf{I f}(M \text { False }) B A) \text { (by assumption) } \\
& ={ }_{\beta} M A={ }_{\beta} \text { True }
\end{aligned}
$$

which implies that $M(Y K)={ }_{\beta}$ True, which leads to a contradiction.
(e) Square can be defined as λx.Mult $x x$.

The factorial function can be defined recursively: $M \triangleq \lambda z x$.If $\mathbf{E q}_{0}(x) \underline{1}($ Mult $x(z(\mathbf{P r e d} x)))$, where z is the recursive function. Hence, Fact $\triangleq \lambda x . Y M x$.

Exercise 29

(a) Explain how fixed-point combinators are used in the λ-definition of minimisation.
(b) Deduce that every total recursive function is λ-definable. Collect the arguments and make an outline of the proof.
(a) Minimisation is defined as $\lambda x . Y\left(\lambda z \vec{x} x . \mathbf{I f}\left(\mathbf{E q}_{0}(F \vec{x} x)\right) x(z \vec{x}(\mathbf{S u c c} x))\right) \vec{x} \underline{0}$. The fixed-point combinator allows the inner λ to be applied recursively with access to the recursive function through variable z.
(b) We have show that the basic functions (projection, successor, zero) in Exercise 23 (a) composition in Exercise 27, primitive recursion in Exercise 2q(a) and minimisation in part (b) are λ-definable. Hence, every total recursive function is λ-definable.
Note: We have not shown the definition of minimisation for partial functions, hence we cannot make the conclusion that all partial recursive functions are representable in λ calculus. See Theorem 4.23 in Hindley and Seldin's "Lambda-calculus and combinators, an introduction" (2008).

Exercise 30 Give a high-level argument for why every λ-definable function is RM computable. (See [2018P6Q6 (d)])

> See official solution notes

Exercise 31 Describe the Church-Turing thesis. Why is this not called a theorem? What examples did you come across in the lectures?

It is a high-level claim, that any formal definition of an algorithm will lead to model that is equivalent to Turing Machines (and λ-calculus, partial recursive functions, register machines). This means that the other formalisms will also have the same limitations (uncomputable functions and undecidable problems).

