
Computation Theory

Solution Notes for Example Sheet 1
In this document you will �nd some solution notes for the problems of Example Sheet 1 of Computation Theory.
If you �nd any mistake or any typos, please do let me know. Also, I am happy to hear (and include them in
the notes (with credit) if you want) about alternative solutions to the problems or variations of a problem that
you came up with.

Lecture 1

Exercise 1 What are decision problems?

A decision problem has the form: Given an element s ∈ S and a property P , output 0 or 1 depending on
whether P (s) holds.

See Lecture 1 slide 9.

Exercise 2 De�ne the Halting problem. Explain the informal argument of why the Halting problem is
undecidable.

The halting problem is the decision problem concerning the set of all (program, input) pairs and the property
is whether the program when given the speci�c input terminates.

See Lecture 1 slide 15.
Assume that there exists a program H that can decide this property. Then, consider the program H ′ that
modi�es H so that if H(x, x) outputs 1, then H ′ loops (otherwise it halts). Consider the pair v = (H ′, H ′).
Then H((H ′, H ′)) terminates (since H terminates for all inputs), so H ′(H ′) terminates, so H((H ′, H ′)) does
not terminate (contradiction).

See Lecture 1 slide 19.
What are the assumptions that we are making? Why is this not rigorous?

Lecture 2

Exercise 3
(a) De�ne a register machine (RM). (See [2010P6Q3 (a)] or [2007P3Q7 (a)(i)])

(b) De�ne a register machine con�guration. (See [2009P6Q3 (a)] or [1999P3Q9 (b)])

(c) De�ne a register machine computation (See [2010P6Q3 (a)] or [1999P3Q9 (a)]). What do we
mean when we say that the execution of an RM is deterministic?

(d) What are the two ways that an RM halts?

(e) How can you modify a program to turn all erroneous halts into proper halts?

(a) A register machine M consists of �nitely many registers R0, . . . , Rm each capable of storing a natural
number, together with a program P consisting of a �nite list of instructions

L0 : body0, L1 : body1, . . . Ln : bodyn

where each body i takes one of three possible forms:

� R+
i → L: add 1 to the contents of the ith register and then jump to the instruction labelled L;

� R−i → L,L′: if the contents of the ith register is > 0, then subtract 1 from it and jump to the
instruction labelled L, otherwise jump to the instruction labelled L′;

� HALT : stop executing instructions.

See Lecture 2 slide 5.

1

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-1.pdf#page=9
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-1.pdf#page=15
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-1.pdf#page=19
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p3q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p3q9.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=5

(b) A con�guration (`, [r0, r1, . . . , rn]) of a register machine consists of the label ` of the current program in-
struction together with a list [r0, r1, . . . , rn] of the current contents of the machine's registersR0, R1, . . . , Rn.

See Lecture 2 slide 17.

(c) A computation of a RM is a (�nite or in�nite) sequence of con�gurations c0, c1, c2, . . . where

� c0 = (0, r0, . . . , rn) is an initial con�guration

� each c = (`, r0, ..., rn) in the sequence determines the next con�guration in the sequence (if any) by
carrying out the program instruction labelled L` with registers containing r0, . . . , rn.

By deterministic, we mean that for a given program, a given con�guration and a given instruction `, there
is a unique next con�guration.

See Lecture 2 slide 18.

(d) A RM halts when it reaches a halting con�guration, i.e.

� either `th instruction in program has body HALT (a �proper halt�)

� or ` is greater than the number of instructions in program, so that there is no instruction labelled
L` (an �erroneous halt�)

See Lecture 2 slide 21.

(e) We compute the number L of instructions in the program and then loop through the branch instructions,
checking if the target labels are < L. Those that are ≥ L, we replace with L + 1 and insert a HALT

instruction at the end of the program. This means that erroneous halts will be converted to proper HALTS
at instruction L.

(Alternative- a bit more wasteful), append HALT instructions to the program until all labels are valid.

Exercise 4 [RM graphical representation] De�ne the graphical representation for the RM programs.

In the graphical representation for the RM programs, nodes represent instructions and arcs represent jumps
between instructions. Let [L] denote the node of the instruction at label L, then the instructions are represented
as follows:

instruction representation

R+ → L R+ [L]

R− → L, L′ R−

[L]

[L′]

HALT HALT

L0 START [L0]

See Lecture 2 slide 23.
Given a graphical representation, how can you recover the RM program?

Exercise 5
(a) De�ne a partial function.

(b) Why is the relation between initial and �nal register contents of a RM a partial function?

(c) De�ne a total function.

(d) Show that a total function is always a partial function.

(e) De�ne the notations f(x) ↓, f(x) ↑, X → Y and X ⇀ Y .

(f) Give an example of an RM program that is a total function and an RM program that is partial
(but not total).

2

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=17
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=18
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=21
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=23

(a) A partial function from X to Y is any subset f ⊆ X × Y such that

∀x ∈ X.∀y ∈ Y.(x, y) ∈ f ∧ (x, y′) ∈ f ⇒ y = y′.

See Lecture 2 slide 30.

(b) The RM computations are deterministic so, if for some register values R there exists a sequence to a halt,
then the con�guration will be unique, so the condition of a partial function is satis�ed.

(c) A partial function f : X ⇀ Y is total i� ∀x ∈ X.∃y ∈ y.(x, y) ∈ f (or equivalently ∀x ∈ X.f(x) ↓).
See Lecture 2 slide 33.

(d) A total function is a partial function (by de�nition) that satis�es the additional property that every x
has a mapping.

(e) � f(x) ↓⇔ ∃y ∈ Y.f(x) = y,

� f(x) ↓⇔ ¬∃y ∈ Y.f(x) = y,

� X → Y := {f | f a total function},
� X ⇀ Y := {f | f a partial function}.

See Lecture 2 slide 32.

(f) A trivial example of a total function f(x) = 0, represented by

START HALT

and a trivial example of a partial function (that is not total) is the completely unde�ned function:

START R+0

Exercise 6 [RM Computable]
(a) What does it mean for a function to be RM computable? (See [2013P6Q3 (b)] or [2010P6Q3

(b)] or [2007P3Q7 (b)(i)] or [2005P3Q7 (c)])

(b) What is the IO convention?

(a) f(x1, . . . , xn) is register machine computable if there is a register machine M with at least n+1 registers
such that for all (x1, . . . , xn) ∈ Nn and all y ∈ N, the computation of M starting with R0 = 0, R1 =
x1, . . . , Rn = xn and all other registers zeroed halts with R0 = y if and only if f is de�ned at (x1, . . . , xn)
and takes value y there.

See Lecture 2 slide 34.

(b) The I/O convention states that registers R1, . . . , Rn in the initial con�guration store the function's argu-
ments (with all others zeroed); and in the halting con�guration register R0 stores it's value (if any).

See Lecture 2 slide 34.

Exercise 7 In this exercise, you will investigate a simple register machine emulator.
(a) In the �rm.zip� �le execute the �Examples.java� �le and see the execution for an add and a copy

program.

(b) Write a similar program for multiplying two integers and execute it. (Use the debug �ag to output
the con�guration sequence and the �ag maxIter to set an upper bound on the computation steps).

public static void multiplySolution () {

Program program = new Program(Arrays.asList(

SUB(R(1), L(1), L(6)),

SUB(R(2), L(2), L(4)),

ADD(R(0), L(3)),

ADD(R(3), L(1)),

3

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=30
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=33
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=32
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p3q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2005p3q7.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=34
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=34

SUB(R(3), L(5), L(0)),

ADD(R(2), L(4)),

HALT

), doNotAllowErroneousHalts);

RegisterMachine rm = new RegisterMachine ();

rm.setDebug(true);

RegisterConfiguration config = new RegisterConfiguration (4);

config.setRegister (1, BigInteger.valueOf (2));

config.setRegister (2, BigInteger.valueOf (3));

rm.execute(program , config);

System.out.println(config);

}

The debug output for inputs 2 and 3 was:

(0, [R0=0;R1=2;R2=3;R3=0;])

(1, [R0=0;R1=1;R2=3;R3=0;])

(2, [R0=0;R1=1;R2=2;R3=0;])

(3, [R0=1;R1=1;R2=2;R3=0;])

(1, [R0=1;R1=1;R2=2;R3=1;])

(2, [R0=1;R1=1;R2=1;R3=1;])

(3, [R0=2;R1=1;R2=1;R3=1;])

(1, [R0=2;R1=1;R2=1;R3=2;])

(2, [R0=2;R1=1;R2=0;R3=2;])

(3, [R0=3;R1=1;R2=0;R3=2;])

(1, [R0=3;R1=1;R2=0;R3=3;])

(4, [R0=3;R1=1;R2=0;R3=3;])

(5, [R0=3;R1=1;R2=0;R3=2;])

(4, [R0=3;R1=1;R2=1;R3=2;])

(5, [R0=3;R1=1;R2=1;R3=1;])

(4, [R0=3;R1=1;R2=2;R3=1;])

(5, [R0=3;R1=1;R2=2;R3=0;])

(4, [R0=3;R1=1;R2=3;R3=0;])

(0, [R0=3;R1=1;R2=3;R3=0;])

(1, [R0=3;R1=0;R2=3;R3=0;])

(2, [R0=3;R1=0;R2=2;R3=0;])

(3, [R0=4;R1=0;R2=2;R3=0;])

(1, [R0=4;R1=0;R2=2;R3=1;])

(2, [R0=4;R1=0;R2=1;R3=1;])

(3, [R0=5;R1=0;R2=1;R3=1;])

(1, [R0=5;R1=0;R2=1;R3=2;])

(2, [R0=5;R1=0;R2=0;R3=2;])

(3, [R0=6;R1=0;R2=0;R3=2;])

(1, [R0=6;R1=0;R2=0;R3=3;])

(4, [R0=6;R1=0;R2=0;R3=3;])

(5, [R0=6;R1=0;R2=0;R3=2;])

(4, [R0=6;R1=0;R2=1;R3=2;])

(5, [R0=6;R1=0;R2=1;R3=1;])

(4, [R0=6;R1=0;R2=2;R3=1;])

(5, [R0=6;R1=0;R2=2;R3=0;])

(4, [R0=6;R1=0;R2=3;R3=0;])

(0, [R0=6;R1=0;R2=3;R3=0;])

(6, [R0=6;R1=0;R2=3;R3=0;])

[R0=6;R1=0;R2=3;R3=0;]

Exercise 8 (optional) In this exercise, you can experiment and implement various extensions to the RM
emulator (of course you can create your own from scratch).
(a) Add an instruction that adds two register values and stores the result in the third one. (This is

mostly to understand how the current emulator works, you will not need this for subsequent steps)

4

(b) Create a function that takes a program and a mapping for the registers (e.g. {R1 → R2, R2 →
R4, R5 → R3}) and returns a new program where operations are performed on the mapped registers.

(c) Write a function that concatenates various programs together, so that one executes after the other.
Note: You need to change the labels and also replace HALT instructions.

(d) Use the previous two operations to create a program that uses copy (de�ning it once) and add.

(e) Write a function that takes three programsM1, M2 andM3 and returns a program that implements
if M1 then M2 else M3. (You need to de�ne its semantics)

(f) Write a function that takes two programs M1 and M2 and returns a program that implements
while M1 do M2.

(g) Write a function that takes a program M and three registers and implements
for Ri = R1 to R2 do M .

(h) Write a program that computes the Fibonacci numbers using the high-level constructs.

(i) (optional - more of Compiler Design) Implement a parser for reading RM programs and converting
them to abstract syntax trees (which are just lists in this case).

Exercise 9 [High-level constructs] Show that the following high-level constructs can be implemented
using RMs.
(a) (sequential composition) If M1 and M2 are programs, then there exists a program M3 that is

equivalent to �rst executing M1 and then M2.

(b) (if-then-else statements) If M1, M2 and M3 are programs, then there exists a program M4 that is
equivalent to if M1 then M2 else M3. (You need to de�ne the exact semantics for if)

(c) (while-do) If M1 and M2 are programs, then there exists a progam M3 that is equivalent to
while M1 do M2. (Again, you need to de�ne the exact semantics for while)

(d) (optional) Similarly, de�ne a program that is equivalent to a for-loop.

(e) Give a high-level argument for why any function computable using a high-level programming lan-
guage is computable using a RM. Is the other direction true?

Before we begin, let us introduce the =⇒ notation in RM diagrams, where M =⇒M ′ means replacing all HALT
and redirecting all erroneous halts of M to the �rst instruction of M ′. (The redirection can be implemented by
adding to an irrelevant register and then subtracting from that)
(a) The composition of two RMs M1 and M2 is simply going to be:

START M1 M2 HALT

If we want to obtain a program from this, then we also need to add an o�set to all labels of M1.

See Lecture 2 slide 43.

(b) Assume that M1 is a program that sets register R to either 0 or 1 indicating whether its function is false or
true respectively. Then we de�ne the semantics of the if-statement to be: execute M1 if R = 1 otherwise
execute M2 if R = 0. This is achieved by the program below:

START M1 R−

M2

M3

HALT

See Lecture 2 slide 43.

(c) Assume that M is a program that sets register R to either 0 or 1 based on whether its function is false or
true. then we de�ne while to mean execute M2 as long as R is 1. This is achieved by the program below:

5

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=43
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=43

START M1 R−

M2

HALT

See Lecture 2 slide 43.

(d) There are a few ways to de�ne the for-loop. One is for Ri = 0 to n where n cannot be modi�ed, and a
program M (which uses Ri is executed). This is achieved by the program below:

START R−i R−n

HALT

M

R+i

An alternative is to implement for(M1;M2;M3){M4} where M2 is assumed to produce a boolean in
register R as above.

START M1 M2 R− HALT

M4

M3

(e) We can map the control structures to RM programs and using these we can create memories and arrays,
so we should be able to implement any (famous) high-level language. The other direction is a bit more
subtle. It depends on speci�cs of the programming language. For example, there should not be any
constrain on the size of arrays/memory allocated.

What are some potentials problems that could break these abstractions?

Exercise 10 [Projection] Show that the �rst projection function p21 : N2 → N, where p21(x, y) , x, is
RM computable. Write the RM program and create a diagram for this. Similarly, argue that the second
projection function p22(x, y) , y is RM computable.

For the �rst projection function, we have the following code:

L0 : R−1 → L1, L2

L1 : R+0 → L0

L2 : HALT

START R−1

R+0

HALT

For the second projection function, we change 1→ 2:

L0 : R−2 → L1, L2

L1 : R+0 → L0

L2 : HALT

START R−2

R+0

HALT

Exercise 11 [Constant] Show that the constant function c : N→ N, where c(x) , n for �xed n ∈ N is
RM computable. Write the RM program and create a diagram for this.

6

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=43

L1 : R+0 → L1

L2 : R+0 → L2

...

Ln : R+0 → Ln+1

Ln+1 : HALT

START R+0 R+0
. . . R+0 HALT

How can you do this with fewer register operations?

Exercise 12 [Addition] Show that the addition function add : N2 → N, where add(x, y) , x+ y is RM
computable. Write the RM program and create a diagram for this.

L0 : R−1 → L1, L2

L1 : R+0 → L0

L2 : R−2 → L3, L4

L3 : R+0 → L2

L4 : HALT

START R−1

R+0

R−2

R+0

HALT

See Lecture 2 slide 36.

Exercise 13 [Multiplication] Show that the multiplication functionmult : N2 → N, wheremult(x, y) ,
x ·y is RM computable. Write the RM program and create a diagram for this. (See [2007P3Q7 (b)(ii)]
for variant)

L0 : R−1 → L1, L6

L1 : R−2 → L2, L4

L2 : R+0 → L3

L3 : R+3 → L1

L4 : R−3 → L5, L0

L5 : R+2 → L4

L6 : HALT

START R−1

R−2

R+0R+3

R−3

R+2

HALT

See Lecture 2 slide 37.

Exercise 14 [Max] Show that the max function max : N2 → N is RM computable. Write the RM
program and create a diagram for this. (See [2018P6Q6 (b)(ii)])

The maximum is R1 plus the di�erence R2 − R1 (if this is positive and 0 otherwise).

L0 : R−1 → L1, L3

L1 : R−2 → L2, L2

L2 : R+0 → L0

L3 : R−2 → L4, L5

L4 : R+0 → L3

L5 : HALT

START R−1

R−2

R+0

R−2

R+0

HALT

7

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=36
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p3q7.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-2.pdf#page=37
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q6.pdf

Exercise 15 [Truncated subtraction] Show that the truncated subtraction function tsub : N2 → N,
where

tsub(x, y) ,

{
x− y if y ≤ x

0 if y > x

is RM computable. Write the RM program and create a diagram for this. (See [2010P6Q3 (e)] for
variant)

L0 : R−2 → L1, L2

L1 : R−1 → L0, L0

L2 : R−1 → L3, L4

L3 : R+0 → L2

L4 : HALT

START R−2

R−1

R−1

R+0

HALT

Exercise 16 [Comp] Show that the comp function comp : N2 → N, where

comp(x, y) ,

{
0 if x ≤ y

1 otherwise

is RM computable. Write the RM program and create a diagram for this. (See [2018P6Q6 (b)(iii)])

The idea is to compute tsub and then check if it is positive (and output 1) otherwise halt.

L0 : R−2 → L1, L2

L1 : R−1 → L0, L0

L2 : R−1 → L3, L4

L3 : R+0 → L4

L4 : HALT

START R−2

R−1

R−1

R+0

HALT

Exercise 17 [Undef] Show that the undef function f : N ⇀ N is RM computable. (See [2013P6Q3
(c) (i)])

Any RM that loops forever is good here:

L0 : R+0 → L0
START R+0

Exercise 18 [Integer division] Show that the integer division function div : N2 → N, where

div(x, y) ,

{
quo(x, y) if y > 0

0 if y = 0

is RM computable. Write the RM program and create a diagram for this.

8

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf

L0 : R−2 → L1, L2

L1 : R+3 → L0

L2 : R−3 → L3, L5

L3 : R−1 → L4, L6

L4 : R+2 → L2

L5 : R+0 → L0

L6 : HALT

START R−2

R+3

R−3

R−1

R+2

R+0

HALT

Exercise 19 [Mod] Show that the mod (basically [·]· as de�ned in Discrete Maths) function mod :
N2 → N, where

mod(x, y) , tsub(x, y · (div(x, y))

is RM computable. Outline the construction of an RM program that computes this function.

One way is to use the functions that we have de�ned in previous exercises and combine them as stated in the
exercise statement.
Alternatively, we can modify the above code for div:

L0 : R−2 → L1, L2

L1 : R+3 → L0

L2 : R−3 → L3, L0

L3 : R−1 → L4, L5

L4 : R+2 → L2

L5 : R−2 → L6, L7

L6 : R+0 → L5

L7 : HALT

START R−2

R+3

R−3 R−1

R+2

R−2

R+0

HALT

Exercise 20 [Binary Exponential] Show that the binary exponential function e : N→ N, where

e(x) , 2x

is RM computable. Write the RM program and create a diagram for this. (See [2013P6Q3 (c) (iii)]
for variant)

L0 : R+0 → L1

L1 : R−1 → L2, L7

L2 : R−0 → L3, L5

L3 : R+2 → L4

L4 : R+2 → L2

L5 : R−2 → L6, L1

L6 : R+0 → L5

L7 : HALT

START R+0 R−1

R−0 R+2 R+2

R−2 R+0

HALT

9

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf

Exercise 21 [Exponentiation] Show that the exponentiation function pow : N2 → N, where

pow(x, y) , xy

is RM computable. Outline the construction of an RM program that computes this function.

We can construct an RM using the high-level constructs and map them to an RM program (as discussed in
Exercise 9).

START

Z := 1

WHILE R2 > 0 :

T := Z · R0

Z := T

HALT

Exercise 22 [Binary Logarithm] Show that the binary logarithm function log2 : N→ N, where

log2(x) ,

{
largest y such that 2y ≤ x if x > 0

0 if x = 0

is RM computable. Write the RM program and create a diagram for this.

The main idea is to construct powers of two and check if these are greater than the number.

L0 : R−1 → L2, L1

L1 : HALT

L2 : R+2 → L3

L3 : R−2 → L4, L7

L4 : R+3 → L5

L5 : R+3 → L6

L6 : R+4 → L3

L7 : R−1 → L8, L10

L8 : R+2 → L9

L9 : R−4 → L7, L7

L10 : R−4 → L11, L12

L11 : HALT

L12 : R+0 → L13

L13 : R−2 → L14, L15

L14 : R+1 → L13

L15 : R−3 → L16, L2

L16 : R+2 → L15

START R−1

HALT

R+2 R−2

R+3

R+3

R+4

R−1

R+2

R−4

R−4

HALT

R+0 R−2

R+1

R−3

R+2

Alternatively, we could repeatedly divide the number, until it becomes 0.

10

Exercise 23 [Fibonacci Numbers] Show that the Fibonacci number function Fib : N→ N, where

Fib(n) ,

{
Fib(n− 1) + Fib(n− 2) if n ≥ 2

n otherwise

is RM computable. Outline the construction of an RM program that computes this function.

You can de�ne the RM program in terms of high-level constructs, as a simple while loop.
Alternatively, you can directly implement it:

L0 : R−1 → L2, L1

L1 : HALT

L2 : R+0 → L3

L3 : R−1 → L5, L4

L4 : HALT

L5 : R−0 → L6, L7

L6 : R+3 → L5

L7 : R−2 → L8, L9

L8 : R+0 → L7

L9 : R−3 → L10, L3

L10 : R+0 → L11

L11 : R+2 → L9

START R−1

HALT

R+0 R−1

HALT

R−0

R+3

R−2

R+0

R−3

R+0

R+2

Exercise 24 [Boolean logic] Show that the binary logic functions and, or and xor are computable.

We represent true by 1 and false by 0. (There are di�erent valid representations, like 0 is false and any n > 0
is true).
The and function is implemented as:

L0 : R−1 → L1, L3

L1 : R−2 → L2, L3

L2 : R+0 → L3

L3 : HALT

START R−1 R−2 R+0

HALT

The or function is implemented as:

L0 : R−1 → L2, L1

L1 : R−2 → L2, L3

L2 : R+0 → L3

L3 : HALT

START R−1 R−2

R+0

HALT

The xor function is implemented as:

11

L0 : R−1 → L1, L3

L1 : R−2 → L4, L2

L2 : R+0 → L4

L3 : R−2 → L2, L4

L4 : HALT

START R−1

R−2

R+0

R−2

HALT

Exercise 25 [Reverse engineer the program 1] Attempt [2010P6Q3 (d)].

We start by creating the digram for this RM program:

START R1
− R2

− R0
+ R3

+

R3
−

R2
+

HALT

The L0 instruction is used to implement a while loop over R1. In each iteration R2 is added to R0 and to R3 (so
that it can restore R2 in instructions L4 and L5). Hence, if initially R1 = x and R2 = y, then after the execution
of the program R0 will store x · y.

Exercise 26 [Reverse engineer the program 2] Attempt [1999P3Q9 (c)] (x′ means x+).

Assume initially that S = 2x(2y + 1) for some natural x and y.
The �rst part zeros A and then checks if S is zero. If it is, we reach EXIT 0. Otherwise, S is copied to Z .
Then, S = Z/2 (if Z is odd then it also terminates). Then A is incremented and S is moved to Z so that another
iteration can be executed. This process repeats until Z is odd. At that point A = x (number of times that
division with 2 was successful) and S = y (�oor of the division of the remaining odd number with 2).

Lecture 3

Exercise 27 [Numerical codings of pairs]
(a) De�ne 〈〈x, y〉〉.
(b) Why is this a bijection between N× N and N \ {0}?
(c) Show that the encoding and decoding functions are computable. (See [2017P6Q3 (a)(i),(ii)])

(d) De�ne 〈x, y〉.
(e) Why is this a bijection between N× N and N?
(f) Show that the encoding and decoding functions are computable.

(a) 〈〈x, y〉〉 , 2x(2y + 1).

See Lecture 3 slide 8.

(b) The binary representation of the result is given by y | 1 | 0 . . . 0︸ ︷︷ ︸
x zeros

. The function is injective because assuming

that (x1, y1) and (x2, y2) map to the same value v = y | 1 | 0 . . . 0︸ ︷︷ ︸
x zeros

, then x = x1 = x2 (as the number of

trailing zeros must be equal) and y = y1 = y2 (as the remaining digits must be equal).

12

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p6q3.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=8

For surjectivity, consider a value v that is non-zero. Since it is non-zero we can �nd the least signi�cant
1 in its binary representation at position ` so v = z | 1 | 0 . . . 0︸ ︷︷ ︸

`

. For x = ` and y = z, we get 〈〈`, z〉〉 = v.

Hence, the function is bijective.

See Lecture 3 slide 9.

(c) Look at Exercise 28 for encoding and at Exercise 26 for decoding.

(d) 〈x, y〉 , 2x(2y + 1)− 1

See Lecture 3 slide 8.

(e) The function is still injective because x = y ⇔ x− 1 = y − 1. For 〈〈·, ·〉〉 because it is surjective we have
that for every value v > 0, there exists a pair (x, y) such that v = 〈〈x, y〉〉 ⇒ v− 1 = 〈〈x, y〉〉 − 1 = 〈x, y〉.
Hence, for every v ≥ 0, there exists a pair (x, y) such that 〈x, y〉 = v. Hence, the function is bijective.

See Lecture 3 slide 9.

(f) For encoding we just compute 〈〈x, y〉〉 and subtract 1 (which will always result in taking the non-zero
branch). For decoding, we increment the value by 1 and then decode using 〈〈x, y〉〉.

Exercise 28 [Reverse engineer the program 3] Attempt [2006P3Q7 (a)].

The program has the following diagram:

START Z+ L− Z− X−

Z+ Z+

HALT

If the program starts with X = 0, L = l and Z = 0, then when it halts: X = 0, L = 2x(2l + 1) and Z = 0.
The �rst time X− is reached the program, L = 2l + 1 and Z = 0. Then in each iteration Z = 2L and then Z is
moved to L. There are x iterations, so this has the e�ect of multiplying by 2x.

Exercise 29 [Numerical codings of lists]
(a) Show how a list is encoded using the numerical codings of pairs.

(b) Is this encoding bijective?

(c) Show that the encoding and decoding are computable.

(d) (optional) Show how you could obtain an injective mapping for OCaml datatypes.

(e) (optional) Show how to implement the for-each construct.

(a) For ` ∈ listN, de�ne p`q ∈ N by induction on the length of the list `:{
p`q , 0

px :: `q 〈〈x, p`q〉〉 = 2x(2 · p`q+ 1)

or p[x1;x2; . . . ;xn]q = 〈〈x1, 〈〈x2, . . . 〈〈xn, 0〉〉, . . .〉〉〉〉.
See Lecture 3 slide 12.

(b) We can prove by induction that if the list is ` = [x1;x2; . . . ;xn], then p`q = 1 0 . . . 0︸ ︷︷ ︸
x1 zeros

1 0 . . . 0︸ ︷︷ ︸
x2 zeros

. . . 1 0 . . . 0︸ ︷︷ ︸
xn zeros

.

Hence, two encodings are equal i� the length sequences of zeros are equal (injective). For surjectivity, we
can construct a list of naturals, by counting the number of zeros between consecutive ones.

See Lecture 3 slide 16.

(c) The encoding is computable because 〈〈·, ·〉〉 is computable.

(d) Assume that we have a datatype that has constructors Ai (for i = 1, . . . , k) and takes `k arguments
t1, . . . , t`k . Then we can encode it as pi; pt1q; pt2q; . . . pt`kqq. Note: The function need not be bijective.

(e) Assume that the list of interest is placed in Rxs and the body of the for-each loop is implemented by M
which uses the current element x of the list in register Rx.

13

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=9
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=8
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=9
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p3q7.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=12
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=16

START R−
xs

DECODE Rxs
to 〈〈Rx, Rxs〉〉

M

HALT

Exercise 30 [Instruction encodings]
(a) Explain how RM instructions are encoded.

(b) How can these be decoded?

(c) Show that both the encoding and decoding functions are computable.

(d) Is this encoding a bijection?

(a) There are three types of instructions, so we just have to �nd a mapping for each. In the lectures, you
used the following mapping: 

pR+i → Ljq , 〈〈2i, j〉〉
pR−i → Lj , Lkq , 〈〈2i+ 1, 〈j, k, 〉〉〉
pHALTq , 0

See Lecture 3 slide 17.

(b) An encoding v can be decoded as follows: (1) check if v is zero (if yes, the HALT), (2) decode the 〈〈a, b〉〉
and (i) if a is odd then a = 2i+ 1 and decode b using 〈j, k〉 and (ii) if a is even, then b is the jump label.

See Lecture 3 slide 18.

(c) The encoding and decoding functions are computable since 〈〈·, ·〉〉 and 〈·, ·〉 have computable encodings
and decodings.

(d) Yes, since 〈〈·, ·〉〉 is and HALT occupies 0.

Exercise 31 [Program encodings]
(a) How is an RM program encoded?

(b) Why did the lecturer choose to have errorneous halts as well as proper halts?

(a) A RM program is just a list of instructions. Since we have a mapped instructions to naturals, we can just
encode the list of naturals.

See Lecture 3 slide 17.

(b) Erroneous halts are allowed so that the encoding of programs is bijective.

Exercise 32
(a) Attempt [2014P6Q3 (a), (b)].

(b) Read the statements for [2011P6Q3 (a)] and [1996P3Q9 (a)].

See solution notes.

Exercise 33 [Program encoding in the emulator] (optional)
(a) Write a function for the RM emulator that takes a program and returns the index of the program.

(b) Write a function that takes the index of a program and returns the program.

(c) Choose an index of your preference and check if the program terminates. (be careful with erroneous
halts)

14

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=17
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=18
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=17
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1996p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/solutions/2014/2014-p06-q03-solutions.pdf

(d) See also [1999P3Q9 (d)], [1996P3Q9 (a)] or [1995P3Q9 (a)].

Exercise 34 [Counting programs] Attempt the following subquestions from [2007P3Q7 (b)(iii)]:
(a) Explain why there are only countably many computable functions from N→ N.
(b) Deduce that there exists a partial function from N ⇀ N that is not computable. (Any standard

results you use about countable and uncountable sets should be clearly stated, but need not be
proved.)

(c) If a partial function f from N ⇀ N is computable, how many di�erent register machine programs
are there that compute f?

(a) In Lecture 3, you have seen how to obtain a bijection between natural numbers and RM programs. Hence,
RM programs are countable and so are RM computable partial functions (since each computable partial
function is computed by at least one RM).

(b) From last year's Discrete Maths course, the powerset of N is uncountable. But each subset S of N de�nes
a partial function in the following way: for x ∈ S set f(x) = 1 and f(x) = 0 otherwise. Hence, there are
at least as many partial functions (and so uncountable). Hence, there must exists partial functions that
are not computable.

(c) There are in�nitely many. we can just append HALT instructions to the program list.

Lecture 4

Exercise 35 [Universal RM]
(a) De�ne what is the universal RM. (See [2019P6Q5 (a)], [2013P6Q3 (a)], [2007P3Q7 (a) (ii)]

or [1995P3Q9 (b)])

(b) Describe the high level steps for creating a universal machine. (See [1999P3Q9 (e)])

(c) (optional) Implement the universal RM in the emulator. Having implemented the program con-
catenation and the function that permutes the registers used by a program, will make your code
much simpler.

(a) A universal register machine U carries out the following computation, starting with R0 = 0, R1 = e (code
of a program), R2 = a (code of a list of arguments) and all other registers zeroed:

� decode e as a program P

� decode a as a list of register values a1, . . . , an

� carry out the computation of the program P starting with R0 = 0, R1 = a1, . . . , Rn = an (and any
other registers occurring in P set to 0).

See Lecture 3 slide 25.

See Lecture 3 slide 27.

(b)

Exercise 36 [Number of computation steps] Explain how you would use the universal register
machine construction to create RMs for the following:
(a) Show that the function

`(e, x) =

{
number of steps in the computation of e(x) if e(x) halts

undef otherwise

is computable. (See [2013P6Q3 (c) (iv)])

15

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1996p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1995p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p3q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p3q7.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1995p3q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p3q9.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=25
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-3.pdf#page=27
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q3.pdf

(b) Given two programs e1 and e2, show how to create a program e, such that

e(x) =


undef if `(e1, x) = `(e2, x) =∞
e1(x) if `(e1, x) ≤ `(e2, x)

e2(x) otherwise

.

(c) Given a program e and a natural t, write a function

stops(e, x, t) =

{
1 if `(e, x) ≤ t

0 otherwise

.

(a) We can add one more register C to the universal machine, so that just before the execution we increment C.
Then we replace the halting instruction by zeroing the output register and moving the there the contents
of C. Hence, if the program terminates it outputs the number of steps that the machine executes.

(b) We can have a universal machine that interleaves the execution of two RM programs, i.e. executes one
instruction from e1(x) and one instruction from e2(x). When a halting con�guration is encountered for
e1 then we output e1(x) and halt. When a halting con�guration is encountered for e2 we do the same for
e2(x).

(c) We modify the universal machine so that it keeps an additional register C that counts the number of
instructions executed up to that point. Each time that we simulate an instruction we increment the
counter. If a halt occurs, then we output 1 and halt. Otherwise, we check if the counter is equal to t. If
it is, then we output 0 and halt.

16

