Computation Theory Example Sheet 3

Lecture 7

Exercise 1

(a) Define $\operatorname{proj}_{i}^{n}$, succ and zero.
(b) Show that all of these are RM computable.

Exercise 2

(a) What is Kleene equivalence of two expressions?
(b) Define composition of multi-dimensional partial functions $f \in \mathbb{N}^{n} \rightharpoonup \mathbb{N}$ and $g_{1}, \ldots, g_{n} \in \mathbb{N}^{m} \rightharpoonup \mathbb{N}$.
(c) Show that composition of RM computable functions is RM computable.

Lecture 8

Exercise 3

(a) Define primitive recursion (See [2017P6Q4 (a)], [2014P6Q4 (a)], 1999P4Q1 (a)]).
(b) Define primitive recursive functions PRIM (See [2017P6Q4 (b)(i)], [2014P6Q4 (b)], |2011P6Q4 (a)], [2006P4Q9 (a)], |1995P4Q9 (a)|).
(c) Prove that PRIM functions are total (See $\mathbf{2 0 0 6 P 4 Q 9}$ (b)|). Deduce that there exist computable functions that are not PRIM.
(d) Are all total functions primitive recursive? (See [2017P6Q4 (b)(iii)])
(e) Show that the functions add, pred, mult, tsub, exp are primitive recursive (See [2014P6Q4 (c)], [2006P4Q9 (c)|).
(f) Show that the following functions are primitive recursive:
i.

$$
\mathrm{Eq}_{0}(x, y, z)= \begin{cases}y & \text { if } x=0 \\ z & \text { otherwise }\end{cases}
$$

ii. The bounded summation function for $g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ and $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$,

$$
g(\vec{x}, x)= \begin{cases}0 & \text { if } x=0 \\ f(\vec{x}, 0) & \text { if } x=1 \\ f(\vec{x}, 0)+\ldots+f(\vec{x}, x-1) & \text { if } x>1\end{cases}
$$

(g) Show that the functions square $(x)=x^{2}$ and fact $(x)=x$! are primitive recursive functions (See |2011P6Q4 (c)|)

Exercise 4 [RMs implement PRIM] Show that primitive recursion is implementable in RMs. Deduce that PRIM functions are computable.

Exercise 5 [Minimisation]

(a) Define minimisation.
(b) Why might we want to define minimisation?
(c) Implement div.
(d) Show that minimisation is implementable using RMs.

Exercise 6

(a) Define partial recursive ($P R$) functions. (See [2018P6Q5 (a)], [2016P6Q3 (a)], [2006P4Q9 (d)], 1995P4Q9 (a)])
(b) Show that PR functions are RM computable. (See [2016P6Q3 (b)], 1999P4Q1 (b)])
(c) Describe in high-level terms why every computable function is also PR (See $\mid \mathbf{1 9 9 5 P 4 Q 9}$ (b),(c)|).

Exercise 7 Attempt [2018P6Q5].

Exercise 8 Attempt [2014P6Q4 (e)].

Lecture 9 (first part)

Exercise 9

(a) Define the Ackermann function.
(b) In what sense does it grow faster than any primitive recursive function?
(c) (optional - advanced) Read this proof for the Ackermann's function growing faster than any primitive recursive function.

Exercise 10 Attempt 2001P4Q8.

Exercise 11 [ack is RM computable] Recall the definition of Ackermann's function ack (slide 102). Sketch how to build a register machine M that computes ack $\left(x_{1}, x_{2}\right)$ in R_{0} when started with x_{1} in R_{1} and x_{2} in R_{2} and all other registers zero. [Hint: here's one way; the next question steers you another way to the computability of ack. Call a finite list $L=\left[\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots\right]$ of triples of numbers suitable if it satisfies

- if $(0, y, z) \in L$, then $z=y+1$
- if $(x+1,0, z) \in L$, then $(x, 1, z) \in L$
- if $(x+1, y+1, z) \in L$, then there is some u with $(x+1, y, u) \in L$ and $(x, u, z) \in L$.

The idea is that if $(x, y, z) \in L$ and L is suitable then $z=\operatorname{ack}(x, y)$ and L contains all the triples $\left(x^{\prime}, y^{\prime}\right.$, ack $\left.\left(x, y^{\prime}\right)\right)$ needed to calculate $\operatorname{ack}(x, y)$. Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing ack (x, y) by searching for the code of a suitable list containing a triple with x and y in it's first two components.]
[Exercise 9 in Lecturer's handout]

Exercise 12 Give an example of a function that is not in PRIM. (See $\mathbf{2 0 1 4 P 6 Q 4}$ (d)])

Lecture 9 (second part)

Further reading:

- Foundations of Functional Programming

Exercise 13

(a) How are λ-terms defined? (See [2016P6Q4 (a)|)
(b) What notational conventions do we follow?
(c) Exercise 1.4 in Hindley and Seldin (2008) Insert the full amount of parentheses in the following abbreviated terms:
i. $x y z(y x)$,
ii. $\lambda x . u x y$,
iii. $\lambda u . u(\lambda x . y)$,
iv. $u x(y z)(\lambda v . v y)$,
v. $(\lambda x y z . x z(y z)) u v w$,
vi. $w(\lambda x y z . x z(y z)) u v$.
(d) What does $x \# M$ mean?
(e) What do the terms bound variable, body, binding, bound, free, $\mathrm{FV}(\cdot), \mathrm{BV}(\cdot)$ and closed term mean?
(f) Determine the free variables and bound variables in the following expressions:
i. $\lambda u . \lambda u . \lambda y . u \lambda u . \lambda y . u$.
ii. $(\lambda x \lambda u . y)((x x) x)((v y) \lambda u . u)$.
iii. $(((\lambda z . z) z) \lambda y . \lambda v . v)(\lambda v . \lambda y . v)$.
iv. $(\lambda x .((x v) u)(\lambda z . z \lambda y . y))$
v. You can generate more practice questions here.

Exercise 14 [α-equivalence]

(a) Intuitively, what does α-equivalence try to capture?
(b) Define what $M\{z / x\}$ means.
(c) Define formally α-equivalence.
(d) Show that the following pairs are α-equivalent:
i. $A \triangleq \lambda x y \cdot x(x y)$ and $B \triangleq \lambda u v \cdot u(u v)$,
ii. $A \triangleq(\lambda x y z . y(z x(\lambda k . k)))(\lambda x y . y x)$ and $B \triangleq(\lambda k \ell m . \ell(m k(\lambda a . a)))(\lambda y x . x y)$.
(e) (optional) Show that α-equivalence is an equivalence relation.

Lecture 10

Exercise 15 [Substitution]

(a) Define the substitution operation $N[M / x]$.
(b) Exercise 1.14 in Hindley and Seldin (2008) Evaluate the following substitutions:
i. $(\lambda y \cdot x(\lambda w . v w x))[(u v) / x]$
ii. $(\lambda y . x(\lambda x . x))[(\lambda y . x y) / x]$
iii. $(y(\lambda v . x v))[(\lambda y . v y) / x]$
iv. $(\lambda x . z y)[(u v) / x]$

Exercise 16

(a) Define one-step β-reduction.
(b) Define the many-step β-reduction. (See [2015P6Q4 (a)|)
(c) Define the β-conversion. (See [2019P6Q6 (a)(i)])

Exercise 17

(a) State the Church-Rosser Theorem and prove its corollary.
(b) Attempt [2019P6Q6 (a)(iii)].

Exercise 18

(a) Define the β-normal form. (See [2019P6Q6 (a)(ii)], [2013P6Q4 (a)(i)])
(b) What properties does this form have?
(c) Do all terms have a β-normal form? (See [2013P6Q4 (a)(iii)])
(d) Show that there exists λ-terms that have both a β-normal form and an infinite chain of reductions from it.
(e) Exercise 1.28 in Hindley and Seldin (2008) Find the β-normal form for the following terms (if it exists):
i. $(\lambda x \cdot x(x y)) z$,
ii. $(\lambda x . y) z$,
iii. $(\lambda x \cdot(\lambda y \cdot y x) z) v$,
iv. $(\lambda x . x x y)(\lambda x . x x y)$,
v. $(\lambda x . x y)(\lambda u . v u u)$,
vi. $(\lambda x . x(x(y z)) x)(\lambda u . u v)$,
vii. $(\lambda x y \cdot x y y)(\lambda u . u y x)$,
viii. $(\lambda x y z . x z(y z))((\lambda x y \cdot y x) u)((\lambda x y \cdot y x) v) w$.

Exercise 19

(a) Define normal-order reduction.
(b) Is it similar to call-by-name?
(c) Is there an evaluation analogous to call-by-value? Which one is preferred?

Exercise 20 [Lambda functions in OCaml] (optional) In this exercise, you will implement β reduction for lambda terms in OCaml.
(a) Define a type for lambda terms in OCaml.
(b) Define the function substitute n m x that replaces all occurrences of variable x with m inside n .
(c) Define the function single_step_reduce m that returns (m ', reduced) the reduced term (or the original term) and whether a reduction was applied.
(d) Define the function multi_step_reduce m that calls single_step_reduce until reduced is false. Verify the reduction works as expected by applying it on the above examples.

Lecture 11

Exercise 21

(a) Define Church's numerals. (See [2020P6Q6 (a)], [2016P6Q4 (b)], [2010P6Q4 (a)])
(b) What is the difference between $f f x$ and $f(f(x))$.
(c) Show that $\underline{n} M N={ }_{\beta} M^{n} N$.
(d) Prove that $\left(\lambda x_{1} x_{2} \cdot \lambda f x \cdot x_{1} f\left(x_{2} f x\right)\right) \underline{n} \underline{m}$ represents addition.

Exercise 22 Define λ-definable functions. (See [2020P6Q6 (c)], [2018P6Q6 (c)], [2010P6Q4 (b)])

Exercise 23

(a) Show that proj, succ and zero are λ-definable. (See [2020P6Q6 (d)], [2010P6Q4 (c)])
(b) Show how to represent composition. What is the problem here? (See [2013P6Q4 (b)(ii),(iii)])
(c) Define λ-terms for True, False and If. (See [2020P6Q6 (b)], [2019P6Q6 (b)])
(d) Prove that If True $M N \equiv_{\beta} M$ and If False $M N={ }_{\beta} N$.
(e) Define λ-terms for And, Or and Not.
(f) Show that testing for equality with 0 is λ-definable.
(g) Define λ-terms for Pair, Fst and Snd. Show that Fst (Pair $M N$) $={ }_{\beta} M$ (See [2020P6Q6 (e)]).
(h) Define the pred function and prove by induction that it works.
(i) Attempt $2020 \mathrm{P6Q6}$ (f),(g)].
(j) Attempt $2016 \mathrm{P6Q4}$ (c)].

Exercise 24 If you are still not fed up with Ackermann's function ack $\in \mathbb{N}^{2} \rightarrow \mathbb{N}$, show that the λ-term Ack $\triangleq \lambda x . x(\lambda f y . y f(f \underline{1}))$ Succ represents ack (where Succ is as on slide 123).
[Exercise 11 in Lecturer's handout]

Exercise 25 Give a definition of a function that is λ-definable but not primitive recursive. $\mathbf{2 0 1 1 P 6 Q 4}$ (d)].

Exercise 26 Attempt 2010 P 6 Q 4 (d)].

Exercise 27 [Correct composition] Let I be the λ-term $\lambda x . x$.
(a) Show that $\underline{n} I={ }_{\beta} I$ holds for every Church numeral \underline{n}.
(b) Now consider $B \triangleq \lambda f g x . g x I(f(g x))$. Assuming the fact about normal order reduction mentioned on L10S35, show that if partial functions $f, g \in \mathbb{N} \rightharpoonup \mathbb{N}$ are represented by closed λ-terms F and G respectively, then their composition $(f \circ g)(x) \equiv f(g(x))$ is represented by $B F G$.
(c) How does this solve the problem mentioned on L11S14?
[Exercise 12 in Lecturer's handout]

Lecture 12

Exercise 28

(a) Why do we need the fixed point combinator in showing that primitive recursion is λ-definable? How is it used?
(b) Define Curry's fixed point combinator Y and show that it satisfies the desired property.
(c) Define Turing's combinator and show that it satisfies the desired property. (See [2015P6Q4 (c)])
(d) Attempt [2019P6Q6 (d),(e)].
(e) Show that the square and fact are λ-definable. (See [2011P6Q4 (c)])

Exercise 29

(a) Explain how fixed-point combinators are used in the λ-definition of minimisation.
(b) Deduce that every total recursive function is λ-definable. Collect the arguments and make an outline of the proof.

Exercise 30 Give a high-level argument for why every λ-definable function is RM computable. (See [2018P6Q6 (d)])

Exercise 31 Describe the Church-Turing thesis. Why is this not called a theorem? What examples did you come across in the lectures?

