Computation Theory Example Sheet 3

Lecture 7

Exercise 1

- (a) Define $\operatorname{proj}_{i}^{n}$, succ and zero.
- (b) Show that all of these are RM computable.

Exercise 2

- (a) What is *Kleene equivalence* of two expressions?
- (b) Define *composition* of multi-dimensional partial functions $f \in \mathbb{N}^n \to \mathbb{N}$ and $g_1, \ldots, g_n \in \mathbb{N}^m \to \mathbb{N}$.
- (c) Show that composition of RM computable functions is RM computable.

Lecture 8

Exercise 3

- (a) Define primitive recursion (See [2017P6Q4 (a)], [2014P6Q4 (a)], [1999P4Q1 (a)]).
- (b) Define primitive recursive functions PRIM (See [2017P6Q4 (b)(i)], [2014P6Q4 (b)], [2011P6Q4 (a)], [2006P4Q9 (a)], [1995P4Q9 (a)]).
- (c) Prove that PRIM functions are total (See [2006P4Q9 (b)]). Deduce that there exist computable functions that are not PRIM.
- (d) Are all total functions primitive recursive? (See [2017P6Q4 (b)(iii)])
- (e) Show that the functions add, pred, mult, tsub, exp are primitive recursive (See [2014P6Q4 (c)], [2006P4Q9 (c)]).
- (f) Show that the following functions are primitive recursive: i.

$$\operatorname{Eq}_{0}(x, y, z) = \begin{cases} y & \text{if } x = 0\\ z & \text{otherwise.} \end{cases}$$

ii. The bounded summation function for $g: \mathbb{N}^{n+1} \to \mathbb{N}$ and $f: \mathbb{N}^{n+1} \to \mathbb{N}$,

$$g(\vec{x}, x) = \begin{cases} 0 & \text{if } x = 0\\ f(\vec{x}, 0) & \text{if } x = 1\\ f(\vec{x}, 0) + \ldots + f(\vec{x}, x - 1) & \text{if } x > 1 \end{cases}$$

(g) Show that the functions square $(x) = x^2$ and fact(x) = x! are primitive recursive functions (See [2011P6Q4 (c)])

Exercise 4 [RMs implement PRIM] Show that primitive recursion is implementable in RMs. Deduce that PRIM functions are computable.

Exercise 5 [Minimisation]

- (a) Define *minimisation*.
- (b) Why might we want to define minimisation?
- (c) Implement div.
- (d) Show that minimisation is implementable using RMs.

- (a) Define partial recursive (PR) functions. (See [2018P6Q5 (a)], [2016P6Q3 (a)], [2006P4Q9 (d)], [1995P4Q9 (a)])
- (b) Show that PR functions are RM computable. (See [2016P6Q3 (b)], [1999P4Q1 (b)])
- (c) Describe in high-level terms why every computable function is also PR (See [1995P4Q9 (b),(c)]).

Exercise 7 Attempt [2018P6Q5].

Exercise 8 Attempt [2014P6Q4 (e)].

Lecture 9 (first part)

Exercise 9

- (a) Define the Ackermann function.
- (b) In what sense does it grow faster than any primitive recursive function?
- (c) (optional advanced) Read <u>this proof</u> for the Ackermann's function growing faster than any primitive recursive function.

Exercise 10 Attempt [2001P4Q8].

Exercise 11 [ack is RM computable] Recall the definition of Ackermann's function ack (slide 102). Sketch how to build a register machine M that computes $ack(x_1, x_2)$ in R_0 when started with x_1 in R_1 and x_2 in R_2 and all other registers zero. [*Hint*: here's one way; the next question steers you another way to the computability of ack. Call a finite list $L = [(x_1, y_1, z_1), (x_2, y_2, z_2), ...]$ of triples of numbers suitable if it satisfies

- if $(0, y, z) \in L$, then z = y + 1
- if $(x+1, 0, z) \in L$, then $(x, 1, z) \in L$
- if $(x+1, y+1, z) \in L$, then there is some u with $(x+1, y, u) \in L$ and $(x, u, z) \in L$.

The idea is that if $(x, y, z) \in L$ and L is suitable then $z = \operatorname{ack}(x, y)$ and L contains all the triples $(x', y', \operatorname{ack}(x, y'))$ needed to calculate $\operatorname{ack}(x, y)$. Show how to code lists of triples of numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build a register machine that recognises whether or not a number is the code for a suitable list of triples. Show how to use that machine to build a machine computing $\operatorname{ack}(x, y)$ by searching for the code of a suitable list containing a triple with x and y in it's first two components.]

[Exercise 9 in Lecturer's handout]

Exercise 12 Give an example of a function that is not in PRIM. (See [2014P6Q4 (d)])

Lecture 9 (second part)

Further reading:

• Foundations of Functional Programming.

- (a) How are λ -terms defined? (See [2016P6Q4 (a)])
- (b) What notational conventions do we follow?
- (c) Exercise 1.4 in Hindley and Seldin (2008) Insert the full amount of parentheses in the following abbreviated terms:
 - i. xyz(yx),
 - ii. $\lambda x.uxy$,
 - iii. $\lambda u.u(\lambda x.y)$,
 - iv. $ux(yz)(\lambda v.vy)$,
 - v. $(\lambda xyz.xz(yz))uvw$,
 - vi. $w(\lambda xyz.xz(yz))uv$.
- (d) What does x # M mean?
- (e) What do the terms bound variable, body, binding, bound, free, $FV(\cdot)$, $BV(\cdot)$ and closed term mean?
- (f) Determine the free variables and bound variables in the following expressions:
 - i. $\lambda u.\lambda u.\lambda y.u\lambda u.\lambda y.u$.
 - ii. $(\lambda x \lambda u.y)((xx)x)((vy)\lambda u.u).$
 - iii. $(((\lambda z.z)z)\lambda y.\lambda v.v)(\lambda v.\lambda y.v).$
 - iv. $(\lambda x.((xv)u)(\lambda z.z\lambda y.y))$
 - v. You can generate more practice questions <u>here</u>.

Exercise 14 [α -equivalence]

- (a) Intuitively, what does α -equivalence try to capture?
- (b) Define what $M\{z/x\}$ means.
- (c) Define formally α -equivalence.
- (d) Show that the following pairs are α -equivalent: i. $A \triangleq \lambda xy.x(xy)$ and $B \triangleq \lambda uv.u(uv)$,

ii. $A \triangleq (\lambda xyz.y(zx(\lambda k.k)))(\lambda xy.yx)$ and $B \triangleq (\lambda k\ell m.\ell(mk(\lambda a.a)))(\lambda yx.xy).$

(e) (optional) Show that α -equivalence is an equivalence relation.

Lecture 10

Exercise 15 [Substitution]

- (a) Define the substitution operation N[M/x].
- (b) Exercise 1.14 in Hindley and Seldin (2008) Evaluate the following substitutions:
 - i. $(\lambda y.x \ (\lambda w.v \ w \ x))[(u \ v)/x]$
 - ii. $(\lambda y.x(\lambda x.x))[(\lambda y.x y)/x]$
 - iii. $(y (\lambda v.x v))[(\lambda y.vy)/x]$
 - iv. $(\lambda x.z \ y)[(u \ v)/x]$

Exercise 16

- (a) Define one-step β -reduction.
- (b) Define the many-step β -reduction. (See [2015P6Q4 (a)])
- (c) Define the β -conversion. (See [2019P6Q6 (a)(i)])

- (a) State the Church-Rosser Theorem and prove its corollary.
- (b) Attempt [2019P6Q6 (a)(iii)].

Exercise 18

- (a) Define the β-normal form. (See [2019P6Q6 (a)(ii)], [2013P6Q4 (a)(i)])
- (b) What properties does this form have?
- (c) Do all terms have a β -normal form? (See [2013P6Q4 (a)(iii)])
- (d) Show that there exists λ -terms that have both a β -normal form and an infinite chain of reductions from it.
- (e) Exercise 1.28 in Hindley and Seldin (2008) Find the β -normal form for the following terms (if it exists):
 - i. $(\lambda x.x(xy))z$,
 - ii. $(\lambda x.y)z$,
 - iii. $(\lambda x.(\lambda y.yx)z)v$,
 - iv. $(\lambda x.xxy)(\lambda x.xxy)$,
 - v. $(\lambda x.xy)(\lambda u.vuu)$,
 - vi. $(\lambda x.x(x(yz))x)(\lambda u.uv),$
 - vii. $(\lambda xy.xyy)(\lambda u.uyx),$
 - viii. $(\lambda xyz.xz(yz))((\lambda xy.yx)u)((\lambda xy.yx)v)w.$

Exercise 19

- (a) Define *normal-order* reduction.
- (b) Is it similar to *call-by-name*?
- (c) Is there an evaluation analogous to *call-by-value*? Which one is preferred?

Exercise 20 [Lambda functions in OCaml] (optional) In this exercise, you will implement β -reduction for lambda terms in OCaml.

- (a) Define a type for lambda terms in OCaml.
- (b) Define the function substitute n m x that replaces all occurrences of variable x with m inside n.
- (c) Define the function single_step_reduce m that returns (m', reduced) the reduced term (or the original term) and whether a reduction was applied.
- (d) Define the function multi_step_reduce m that calls single_step_reduce until reduced is false. Verify the reduction works as expected by applying it on the above examples.

Lecture 11

Exercise 21

- (a) Define Church's numerals. (See [2020P6Q6 (a)], [2016P6Q4 (b)], [2010P6Q4 (a)])
- (b) What is the difference between ffx and f(f(x)).
- (c) Show that $\underline{n} M N =_{\beta} M^n N$.
- (d) Prove that $(\lambda x_1 x_2 \cdot \lambda f x \cdot x_1 f(x_2 f x)) \underline{n} \underline{m}$ represents addition.

Exercise 22 Define λ-definable functions. (See [2020P6Q6 (c)], [2018P6Q6 (c)], [2010P6Q4 (b)])

- (a) Show that proj, succ and zero are λ -definable. (See [2020P6Q6 (d)], [2010P6Q4 (c)])
- (b) Show how to represent *composition*. What is the problem here? (See [2013P6Q4 (b)(ii),(iii)])
- (c) Define λ -terms for True, False and If. (See [2020P6Q6 (b)], [2019P6Q6 (b)])
- (d) Prove that If True $MN \equiv_{\beta} M$ and If False $M N =_{\beta} N$.
- (e) Define λ -terms for **And**, **Or** and **Not**.
- (f) Show that testing for equality with 0 is λ -definable.
- (g) Define λ -terms for **Pair**, **Fst** and **Snd**. Show that **Fst** (**Pair** $M N =_{\beta} M$ (See [2020P6Q6 (e)]).
- (h) Define the pred function and prove by induction that it works.
- (i) Attempt [2020P6Q6 (f),(g)].
- (j) Attempt [2016P6Q4 (c)].

Exercise 24 If you are still not fed up with Ackermann's function $\mathbf{ack} \in \mathbb{N}^2 \to \mathbb{N}$, show that the λ -term $\mathbf{Ack} \triangleq \lambda x. x(\lambda fy. y \ f \ (f \ \underline{1}))$ Succ represents \mathbf{ack} (where Succ is as on slide 123).

[Exercise 11 in Lecturer's handout]

Exercise 25 Give a definition of a function that is λ -definable but not primitive recursive. [2011P6Q4 (d)].

Exercise 26 Attempt [2010P6Q4 (d)].

Exercise 27 [Correct composition] Let I be the λ -term $\lambda x.x$.

- (a) Show that $\underline{n} I =_{\beta} I$ holds for every Church numeral \underline{n} .
- (b) Now consider $B \triangleq \lambda fgx.g \ x \ I \ (f \ (g \ x))$. Assuming the fact about normal order reduction mentioned on **L10S35**, show that if partial functions $f, g \in \mathbb{N} \to \mathbb{N}$ are represented by closed λ -terms F and G respectively, then their composition $(f \circ g)(x) \equiv f(g(x))$ is represented by $B \ F \ G$.
- (c) How does this solve the problem mentioned on L11S14?

[Exercise 12 in Lecturer's handout]

Lecture 12

Exercise 28

- (a) Why do we need the fixed point combinator in showing that primitive recursion is λ -definable? How is it used?
- (b) Define Curry's fixed point combinator Y and show that it satisfies the desired property.
- (c) Define Turing's combinator and show that it satisfies the desired property. (See [2015P6Q4 (c)])
- (d) Attempt [2019P6Q6 (d),(e)].
- (e) Show that the square and fact are λ -definable. (See [2011P6Q4 (c)])

Exercise 29

- (a) Explain how fixed-point combinators are used in the λ -definition of minimisation.
- (b) Deduce that every total recursive function is λ -definable. Collect the arguments and make an outline of the proof.

Exercise 30 Give a high-level argument for why every λ -definable function is RM computable. (See [2018P6Q6 (d)])

Exercise 31 Describe the *Church-Turing thesis*. Why is this not called a theorem? What examples did you come across in the lectures?