
Computation Theory Example Sheet 3

Lecture 7

Exercise 1
(a) De�ne projni , succ and zero.

(b) Show that all of these are RM computable.

Exercise 2
(a) What is Kleene equivalence of two expressions?

(b) De�ne composition of multi-dimensional partial functions f ∈ Nn ⇀ N and g1, . . . , gn ∈ Nm ⇀ N.
(c) Show that composition of RM computable functions is RM computable.

Lecture 8

Exercise 3
(a) De�ne primitive recursion (See [2017P6Q4 (a)], [2014P6Q4 (a)], [1999P4Q1 (a)]).

(b) De�ne primitive recursive functions PRIM (See [2017P6Q4 (b)(i)], [2014P6Q4 (b)],
[2011P6Q4 (a)], [2006P4Q9 (a)], [1995P4Q9 (a)]).

(c) Prove that PRIM functions are total (See [2006P4Q9 (b)]). Deduce that there exist computable
functions that are not PRIM.

(d) Are all total functions primitive recursive? (See [2017P6Q4 (b)(iii)])

(e) Show that the functions add, pred, mult, tsub, exp are primitive recursive (See [2014P6Q4 (c)],
[2006P4Q9 (c)]).

(f) Show that the following functions are primitive recursive:
i.

Eq0(x, y, z) =

{
y if x = 0

z otherwise.

ii. The bounded summation function for g : Nn+1 → N and f : Nn+1 → N,

g(x⃗, x) =


0 if x = 0

f(x⃗, 0) if x = 1

f(x⃗, 0) + . . .+ f(x⃗, x− 1) if x > 1

(g) Show that the functions square(x) = x2 and fact(x) = x! are primitive recursive functions (See
[2011P6Q4 (c)])

Exercise 4 [RMs implement PRIM] Show that primitive recursion is implementable in RMs. Deduce
that PRIM functions are computable.

Exercise 5 [Minimisation]
(a) De�ne minimisation.

(b) Why might we want to de�ne minimisation?

(c) Implement div.

(d) Show that minimisation is implementable using RMs.

1

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p4q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1995p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2017p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q4.pdf


Exercise 6
(a) De�ne partial recursive (PR) functions. (See [2018P6Q5 (a)], [2016P6Q3 (a)], [2006P4Q9

(d)], [1995P4Q9 (a)])

(b) Show that PR functions are RM computable. (See [2016P6Q3 (b)], [1999P4Q1 (b)])

(c) Describe in high-level terms why every computable function is also PR (See [1995P4Q9 (b),(c)]).

Exercise 7 Attempt [2018P6Q5].

Exercise 8 Attempt [2014P6Q4 (e)].

Lecture 9 (�rst part)

Exercise 9
(a) De�ne the Ackermann function.

(b) In what sense does it grow faster than any primitive recursive function?

(c) (optional - advanced) Read this proof for the Ackermann's function growing faster than any prim-
itive recursive function.

Exercise 10 Attempt [2001P4Q8].

Exercise 11 [ack is RM computable] Recall the de�nition of Ackermann's function ack (slide 102).
Sketch how to build a register machine M that computes ack(x1, x2) in R0 when started with x1 in R1

and x2 in R2 and all other registers zero. [Hint : here's one way; the next question steers you another
way to the computability of ack. Call a �nite list L = [(x1, y1, z1), (x2, y2, z2), ...] of triples of numbers
suitable if it satis�es

� if (0, y, z) ∈ L, then z = y + 1

� if (x+ 1, 0, z) ∈ L, then (x, 1, z) ∈ L

� if (x+ 1, y + 1, z) ∈ L, then there is some u with (x+ 1, y, u) ∈ L and (x, u, z) ∈ L.

The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all the triples
(x′, y′, ack(x, y′)) needed to calculate ack(x, y). Show how to code lists of triples of numbers as numbers
in such a way that we can (in principle, no need to do it explicitly!) build a register machine that
recognises whether or not a number is the code for a suitable list of triples. Show how to use that
machine to build a machine computing ack(x, y) by searching for the code of a suitable list containing a
triple with x and y in it's �rst two components.]

[Exercise 9 in Lecturer's handout]

Exercise 12 Give an example of a function that is not in PRIM. (See [2014P6Q4 (d)])

Lecture 9 (second part)

Further reading:

� Foundations of Functional Programming.

2

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1995p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p6q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1999p4q1.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y1995p4q9.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q4.pdf
https://planetmath.org/ackermannfunctionisnotprimitiverecursive
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2001p4q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p6q4.pdf
https://www.cl.cam.ac.uk/~lp15/papers/Notes/Founds-FP.pdf


Exercise 13
(a) How are λ-terms de�ned? (See [2016P6Q4 (a)])

(b) What notational conventions do we follow?

(c) Exercise 1.4 in Hindley and Seldin (2008) Insert the full amount of parentheses in the following
abbreviated terms:

i. xyz(yx),

ii. λx.uxy,

iii. λu.u(λx.y),

iv. ux(yz)(λv.vy),

v. (λxyz.xz(yz))uvw,

vi. w(λxyz.xz(yz))uv.

(d) What does x#M mean?

(e) What do the terms bound variable, body, binding, bound, free, FV(·), BV(·) and closed term mean?

(f) Determine the free variables and bound variables in the following expressions:
i. λu.λu.λy.uλu.λy.u.

ii. (λxλu.y)((xx)x)((vy)λu.u).

iii. (((λz.z)z)λy.λv.v)(λv.λy.v).

iv. (λx.((xv)u)(λz.zλy.y))

v. You can generate more practice questions here.

Exercise 14 [α-equivalence]
(a) Intuitively, what does α-equivalence try to capture?

(b) De�ne what M{z/x} means.

(c) De�ne formally α-equivalence.

(d) Show that the following pairs are α-equivalent:
i. A ≜ λxy.x(xy) and B ≜ λuv.u(uv),

ii. A ≜ (λxyz.y(zx(λk.k)))(λxy.yx) and B ≜ (λkℓm.ℓ(mk(λa.a)))(λyx.xy).

(e) (optional) Show that α-equivalence is an equivalence relation.

Lecture 10

Exercise 15 [Substitution]
(a) De�ne the substitution operation N [M/x].

(b) Exercise 1.14 in Hindley and Seldin (2008) Evaluate the following substitutions:
i. (λy.x (λw.v w x))[(u v)/x]

ii. (λy.x(λx.x))[(λy.x y)/x]

iii. (y (λv.x v))[(λy.vy)/x]

iv. (λx.z y)[(u v)/x]

Exercise 16
(a) De�ne one-step β-reduction.

(b) De�ne the many-step β-reduction. (See [2015P6Q4 (a)])

(c) De�ne the β-conversion. (See [2019P6Q6 (a)(i)])

3

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p6q4.pdf
https://opendsa.cs.vt.edu/ODSA/Books/PL/html/FreeBoundVariables.html
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q6.pdf


Exercise 17
(a) State the Church-Rosser Theorem and prove its corollary.

(b) Attempt [2019P6Q6 (a)(iii)].

Exercise 18
(a) De�ne the β-normal form. (See [2019P6Q6 (a)(ii)], [2013P6Q4 (a)(i)])

(b) What properties does this form have?

(c) Do all terms have a β-normal form? (See [2013P6Q4 (a)(iii)])

(d) Show that there exists λ-terms that have both a β-normal form and an in�nite chain of reductions
from it.

(e) Exercise 1.28 in Hindley and Seldin (2008) Find the β-normal form for the following terms
(if it exists):

i. (λx.x(xy))z,

ii. (λx.y)z,

iii. (λx.(λy.yx)z)v,

iv. (λx.xxy)(λx.xxy),

v. (λx.xy)(λu.vuu),

vi. (λx.x(x(yz))x)(λu.uv),

vii. (λxy.xyy)(λu.uyx),

viii. (λxyz.xz(yz))((λxy.yx)u)((λxy.yx)v)w.

Exercise 19
(a) De�ne normal-order reduction.

(b) Is it similar to call-by-name?

(c) Is there an evaluation analogous to call-by-value? Which one is preferred?

Exercise 20 [Lambda functions in OCaml] (optional) In this exercise, you will implement β-
reduction for lambda terms in OCaml.
(a) De�ne a type for lambda terms in OCaml.

(b) De�ne the function substitute n m x that replaces all occurrences of variable x with m inside n.

(c) De�ne the function single_step_reduce m that returns (m', reduced) the reduced term (or the
original term) and whether a reduction was applied.

(d) De�ne the function multi_step_reduce m that calls single_step_reduce until reduced is false.
Verify the reduction works as expected by applying it on the above examples.

Lecture 11

Exercise 21
(a) De�ne Church's numerals. (See [2020P6Q6 (a)], [2016P6Q4 (b)], [2010P6Q4 (a)])

(b) What is the di�erence between ffx and f(f(x)).

(c) Show that n M N =β M
n N .

(d) Prove that (λx1x2.λfx.x1f(x2fx)) n m represents addition.

Exercise 22 De�ne λ-de�nable functions. (See [2020P6Q6 (c)], [2018P6Q6 (c)], [2010P6Q4 (b)])

4

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q4.pdf


Exercise 23
(a) Show that proj, succ and zero are λ-de�nable. (See [2020P6Q6 (d)], [2010P6Q4 (c)])

(b) Show how to represent composition. What is the problem here? (See [2013P6Q4 (b)(ii),(iii)])

(c) De�ne λ-terms for True, False and If. (See [2020P6Q6 (b)], [2019P6Q6 (b)])

(d) Prove that If True MN ≡β M and If False M N =β N .

(e) De�ne λ-terms for And, Or and Not.

(f) Show that testing for equality with 0 is λ-de�nable.

(g) De�ne λ-terms for Pair, Fst and Snd. Show that Fst (Pair M N)=β M (See [2020P6Q6 (e)]).

(h) De�ne the pred function and prove by induction that it works.

(i) Attempt [2020P6Q6 (f),(g)].

(j) Attempt [2016P6Q4 (c)].

Exercise 24 If you are still not fed up with Ackermann's function ack ∈ N2 → N, show that the λ-term
Ack ≜ λx.x(λfy.y f (f 1)) Succ represents ack (where Succ is as on slide 123).

[Exercise 11 in Lecturer's handout]

Exercise 25 Give a de�nition of a function that is λ-de�nable but not primitive recursive. [2011P6Q4
(d)].

Exercise 26 Attempt [2010P6Q4 (d)].

Exercise 27 [Correct composition] Let I be the λ-term λx.x.
(a) Show that n I =β I holds for every Church numeral n.

(b) Now consider B ≜ λfgx.g x I (f (g x)). Assuming the fact about normal order reduction mentioned
on L10S35, show that if partial functions f, g ∈ N ⇀ N are represented by closed λ-terms F and
G respectively, then their composition (f ◦ g)(x) ≡ f(g(x)) is represented by B F G.

(c) How does this solve the problem mentioned on L11S14?

[Exercise 12 in Lecturer's handout]

Lecture 12

Exercise 28
(a) Why do we need the �xed point combinator in showing that primitive recursion is λ-de�nable?

How is it used?

(b) De�ne Curry's �xed point combinator Y and show that it satis�es the desired property.

(c) De�ne Turing's combinator and show that it satis�es the desired property. (See [2015P6Q4 (c)])

(d) Attempt [2019P6Q6 (d),(e)].

(e) Show that the square and fact are λ-de�nable. (See [2011P6Q4 (c)])

Exercise 29
(a) Explain how �xed-point combinators are used in the λ-de�nition of minimisation.

(b) Deduce that every total recursive function is λ-de�nable. Collect the arguments and make an
outline of the proof.

5

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p6q4.pdf
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-10.pdf#page=35
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/lecture-11.pdf#page=14
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p6q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p6q6.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2011p6q4.pdf


Exercise 30 Give a high-level argument for why every λ-de�nable function is RM computable. (See
[2018P6Q6 (d)])

Exercise 31 Describe the Church-Turing thesis. Why is this not called a theorem? What examples did
you come across in the lectures?

6

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2018p6q6.pdf

