Computation Theory Example Sheet 2

Lecture 5

Further reading:

- Chapter 4 and 5 in M. Sipser's "Introduction to Computation Theory".
- The handout Computation Theory: Supplementary notes on decidability

Exercise 1 [Halting problem]

(a) Define what it means for an RM to decide the halting problem. (See [2008P5Q10 (a)] or [2005P3Q7 (a)] or 2000P3Q9 (a)])
(b) Prove that no such machine can exist. (See 2017P6Q3 or 2005P3Q7 (c)])
(c) Define what it means for a function to be uncomputable.

Exercise 2 [Unary functions] Does it make a significant difference that we are concentrating on unary functions (instead of n-ary)?

Exercise 3 [Characteristic function]

(a) Define the characteristic function χ_{S} of a set S. Give an example.
(b) Define what it means for a set to be decidable/undecidable? (See 2014P6Q3 (d)] or 2005P4Q9 (a)] or 1995P3Q9 (c)])

Exercise 4 Describe two strategies for proving that a function is uncomputable. Describe a strategy for proving that a set is undecidable.

Exercise 5 [Uncomputable/Undecidable] Do as many of the following until you are confident with proving undecidability/uncomputability:
(a) Show that the set $\left\{x \mid \phi_{x}(0) \downarrow\right\}$ is undecidable.
(b) Show that the function $\left\{(x, 0) \mid \phi_{x}(x) \downarrow\right\}$ is uncomputable.
(c) Show that $\left\{e \mid \phi_{e}\right.$ a total function $\}$ is undecidable.
(d) Attempt [2015P6Q3 (c)] (you can take recursive to mean RM computable here).
(e) Attempt 2014P6Q3 (e).
(f) Attempt $2011 \mathrm{P6Q3}$ (b)].
(g) Attempt $2009 \mathrm{P6Q3}$ (b)].
(h) Attempt 2005 P 4 Q 9 (b)].
(i) (optional) $2008 \mathrm{P} 5 \mathrm{Q10}$ (c)].

Exercise 6 Show that there is a register machine computable partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that both $\{x \in \mathbb{N} \mid f(x) \downarrow\}$ and $\{y \in \mathbb{N} \mid \exists x \in \mathbb{N} . f(x)=y\}$ are register machine undecidable.
[Exercise 4 in Lecturer's handout]

Exercise 7 Suppose S_{1} and S_{2} are subsets of \mathbb{N}. Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ is register machine computable function satisfying: for all $x \in \mathbb{N}, x$ is an element of S_{1} if and only if $f(x)$ is an element of S_{2}. Show that if S_{2} is RM decidable, then so is S_{1}.
[Exercise 5 in Lecturer's handout]

Exercise 8

(a) Show that the set of codes $\left\langle e, e^{\prime}\right\rangle$ of pairs of numbers e and e^{\prime} satisfying $\phi_{e}=\phi_{e^{\prime}}$ is undecidable.
[Exercise 8 in Lecturer's handout]
(b) Show that for any fixed e, the set of codes of equivalent programs is undecidable.
(c) Show that checking if a program e changes the contents of register n is undecidable.
(d) Attempt [1996P3Q9 (c)].

Exercise 9 [Recursive enumerability] Recursive enumerability is a concept that does not appear in the lecture notes, but it appears in several past papers.
(a) Attempt [2012P6Q4] (or [2020P6Q5]).
(b) Attempt [2009P6Q4].
(c) Attempt [2008P6Q10].
(d) (optional) Attempt 1996P4Q8].
(e) (optional) Attempt [2000P4Q8].

Exercise 10 Are there any practical implications of undecidability?

Exercise 11 Define your own undecidable problem.

Lecture 6 / Lecture 7 (first part)

Further reading:

- Chapter 3.1 and 3.3 in M. Sipser's "Introduction to Computation Theory".

Exercise 12

(a) Define Turing Machines (TMs). (See [2012P6Q3 (a)] or [2006P3Q7 (b)(i)] or [2004P3Q7 (b),(c)])
(b) Define a $T M$ computation.
(c) Define what it means for a partial function to be TM computable. (See [2012P6Q3 (b)])
(d) Explain briefly how to enumerate all possible TM computations, so that a given computation can be characterised by a single natural number code c. (See [2001P3Q9 (c)])

Exercise 13 For the example Turing machine given on L6S12, give the register machine program implementing $(S, T, D):=\delta(S, T)$, as described on L6S30. [Note (by lecturer): Tedious!-maybe just do a bit.] [Note (by supervisor): Implement this in Java if you prefer]
[Exercise 7 in Lecturer's handout]

Exercise 14 [RMs can simulate TMs]

(a) Describe the steps in simulating a TM using an RM. (See [2004P3Q7] or [1998P3Q9])
(b) Attempt 2012P6Q3 (d).

Exercise 15 [TM computable]

(a) Explain how lists of naturals are represented on TM tapes.
(b) Define what it means for a partial function to be TM computable.

Exercise 16 [TMs can simulate RMs] Describe the high-level steps for simulating an RM using a TM.

Exercise 17 [TM problems]

(a) Given a Turing machine, is it decidable whether or not for all possible initial configurations the machine will not halt after 100 steps of transition? Justify your answer. 2006 P3Q7 (b)(ii)].
(b) Show that it is not possible to compute the maximum distance travelled by the Turing machine head from its initial position during halting computations as a function of the code c. Any results that you use should be stated clearly. [2001P3Q9 (c)]
(c) Show that it is not possible to compute a bound on the distance of the head from its starting position during HALTing Turing machine computations. [1997P3Q9 (c)]
(d) Show that there is no way of deciding by algorithm whether the blank character will be printed during the course of a general Turing machine computation. [1993P5Q10 (b)]
(e) Create your own TM undecidable program.

Exercise 18 Design a TM that checks if the string $s \in\{0,1\}^{*}$ on the input is a palindrome.

Exercise 19 [Multi-tape TM] (optional)
(a) Show that a TM with multiple tapes and heads can be simulated by a classical TM.
(b) Does this machine have any advantage over classical TMs?

Exercise 20 [Non-deterministic TM] (optional - connection to Complexity Theory) Show that a non-deterministic TM, i.e. one that can perform more than one operations at a single step (similar analogy between DFAs and NFAs) is equivalent to a TM. Does this machine have any advantage over classical TMs?

