Bioinformatics Example Sheet 3

Pattern matching

Exercise 1 [Single pattern matching]
(a) Define the single pattern matching problem.

(b) Give an algorithm for solving this problem. What is the time complexity for your approach?

Further Reading 1 [Efficient string matching] There exist several algorithms that solve the pattern
matching problem in O (n + m) time. The most famous algorithm is that by Knuth-Morris-Pratt (e.g. see
here or here), but a slightly simpler algorithm is the one known as Z-algorithm (e.g. see here).

Exercise 2 [Multiple pattern matching]
(a) Define the multiple pattern matching problem.

(b) Give an algorithm for solving this problem. What is the time complexity of your approach?

Exercise 3 [Trie|
(a) Define the trie data structure for a set S of strings.

(b) Draw the trie data structure for the strings cambridge, cambden, donation, donate, donor, donors,
donator.

(c) How would you represent a trie for the English language in a programming language like C++ or
Java?

(d) Explain how the find-string operation works in a trie with two examples in the trie you constructed
in (b). What is its time complexity?

(e) Explain how the add-string operation works in a trie. What is its time complexity?

(f) (optional) Implement the find-string and add-string operations. (This may help if you get stuck.)

(g) Modify the trie data structure to support counting the number of strings in S that start with a
given prefix.

Exercise 4 [An interview question (optional)] How would you implement the autocomplete feature
for an English keyboard.

Further Reading 2 [An alternative way for efficient pattern matching] There is a way to perform
more efficient multiple pattern matching by extending the ideas of the KMP algorithm. This is known
as the Aho-Corasick algorithm (you can read more about it here and here).

Further Reading 3 [Game on a trie (optional)] Consider a game where players A and B alternate
between appending letters to an initially empty string, in each step forming the prefix of a valid word
(e.g. a word that appears in a dictionary). The one who appends the last valid letter wins. Assuming
that both players play optimally and A plays first, design an algorithm to determine which of the two
players has a winning strategy.

Exercise 5 [Suffix trie]
(a) Define the suffiz trie data structure for a single string s.

(b) Draw the suffix trie data structure for the string mississippi.

(c) What is the time complexity to construct the suffix trie?


https://www-igm.univ-mlv.fr/~lecroq/string/node8.html
https://cp-algorithms.com/string/prefix-function.html
https://cp-algorithms.com/string/z-function.html
https://www.quora.com/How-can-we-implement-a-Trie-data-structure
http://web.stanford.edu/class/archive/cs/cs166/cs166.1166/lectures/02/Small02.pdf
https://cp-algorithms.com/string/aho_corasick.html

(d) How would you use a suffix trie to answer the multiple pattern matching problem?

Exercise 6 [Compressed suffix trie] You may find this visualisation helpful.
(a) What is the worst-case number of nodes used for a suffix trie of a string of length n?

(b) How can you compress the suffix trie? Draw the compressed suffix trie for the string mississippi.

(¢) How would you modify the algorithm for multiple pattern matching to work on the compressed
suffix trie?

Further Reading 4 [Faster construction of suffix trees] The compressed trie is also known as
the suffix tree. There is an algorithm by E. Ukkonen (“On-line construction of suffix trees”) which
constructs the suffix tree in O (n) time, where n is the length of the string. However, the algorithm is
quite involved. There is a slightly simpler approach by constructing the suffix automaton (e.g. see here)
and then converting it to a suffix tree.

Exercise 7 [Other applications of suffix tree (optional)] These are not needed for the course, but
may give you more insights into suffix trees:
(a) Compute the number of different substrings of a string s.

(b) Find the longest common (continuous) substring of strings s; and ss. [Hint: Construct the suffix
tree for the string s; + “$” + s9].

(¢) Find the longest palindromic substring in s. [Hint: Try to reduce it to the longest common substring
problem)].

(d) Find the shortest lexicographical suffix of a string s. Use this to efficiently check if one string is a
cyclic rotation of another.

Genome compression

Exercise 8 [Run-length encoding]
(a) Describe the run-length encoding using an example.

(b) What is the time complexity for encoding and decoding?

Exercise 9 [Burrows-Wheeler encoding] You may find this visualisation helpful.
(a) Explain how the encoding part of the Burrows- Wheeler transform works using “mississippi” as an
example.

(b) Why might this encoding produce strings where same characters are next to one another? When
is this more profound?

(¢) Using normal sorting what is the time and memory complexity of BWT encoding? How does this
improve if you use a suffix tree?

Exercise 10 [Burrows-Wheeler decoding]
(a) Explain how the decoding part of the Burrows- Wheeler transform works by decoding the example
of Exercise [0

(b) Using sorting what is the time and memory complexity of BWT decoding?
(c) Describe the first-last property and argue why it holds.
(d) Show how this property improves time and memory complexity of the BWT decoding.


https://visualgo.net/en/suffixtree
https://cp-algorithms.com/string/suffix-automaton.html
http://guanine.evolbio.mpg.de/cgi-bin/bwt/bwt.cgi.pl

Exercise 11 [Suffix array| You may find this visualisation helpful.
(a) Describe the suffiz array data structure using “mississippi” as an example.

(b) How can you obtain the suffix array from the suffix tree?

(¢c) How can you use the suffix array for pattern matching?

Exercise 12 [Approximate matching]
(a) Define the approximate pattern matching problem.

(b) Describe the seeding approach.
(c) Describe how to do approximate matching using BWT.
)

(d) (+) Describe how to do approximate matching using suffix trees. [Hint: Modify the suffix tree to
do approximate matching with 1 mismatch. Then, with 2 mismatches and so on.]

Algorithms to identify subsequences

Exercise 13 [Probability reminder] Recall the following formulas from the Part IA Probability course:
e Baye’s rule;
e Pr(X=z)=> Pr(Y =y, X=2)=> Pr(X=z|Y=y) Pr(Y =y);

o Pr(X, =1, Xo=29,..., Xy =2n) =Pr(Xy =25 | Xn_1 =2N-1,..., X1 =21) - Pr(Xn_1 =
TN_1,...,X1 = T1).

Exercise 14 [Hidden Markov Models] You may find the following notes helpful.
(a) Define the HMM model including the transition probabilities a;j;, the start probabilities and the
emission probabilities. State the independence assumptions made by the model.

(b) Given a sequence z and a parse 7, derive the joint likelihood Pr(r, ), assuming the parameters of
the HMM are known. What is the time complexity of your algorithm?

(c) Given a sequence z, find the parse 7* that maximises the likelihood Pr(#* | z), assuming the
parameters of the HMM are known. What is the time complexity of your algorithm?

(d) Given a sequence z, show how to compute the parameters that maximise Pr(z).

(e) Give a few examples of problems where HMMs can be applied in Bioinformatics.

Exercise 15 [Evaluation] Define false positives, false negatives, true positives, true negatives and the
Fy score.

Exercise 16 [DNA storage| Attempt [2020P9Q2 (e)].
Exercise 17 [Adleman’s approach] Attempt [2019P8Q2 (d)].

Exercise 18 [Doob-Gillepsie algorithms]
(a) Describe the Doob-Gillepsie algorithms.

(b) Attempt [2010P9Q3 (d)|.
(c) Attempt |2009P9Q3 (d)].


https://visualgo.net/en/suffixarray
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2020p9q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2019p8q2.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p9q3.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p9q3.pdf

