
Algorithms Example Sheet 4: Core

Questions

Solution Notes
In this handout, you will �nd some algorithmic graph theory problems with some solution notes. Some of these
exercises would normally appear as part of the theory. Some of the solutions elaborate on the solution notes by
the lecturer for Example Sheet 4.
These notes have not be fully proofread. So if you �nd any typos/mistakes or have any suggestions (even if very
small), please do let me know.

BFS/DFS

Exercise 4.C.1 [Implementation aspects of DFS]
(a) Give pseudocode for a function dfs_recurse_path(g, s, t) based on dfs_recurse, that returns

a path from s to t.

[Exercise 2 in Lecturer's handout]

(b) Modify your function from part (a) so that it does not visit any further vertices once it has reached
the destination vertex t.

[Exercise 3 in Lecturer's handout]

(c) Do dfs and dfs_recurse (as given in lecture notes) always visit vertices in the same order? Either
prove they do, or give an example of a graph where they do not. You may assume that there is an
ordering on vertices, and that v.neighbours returns a sorted list of v's neighbouring vertices.

If they do not, then modify dfs so they do. Give pseudocode.

[Exercise 4 in Lecturer's handout]

(a) Once the target is reached, construct the answer path and then let each ancestor on the stack append
itself on the path. In the end the path is reversed. (If we use a linked list, then we can also prepend
e�ciently)

from algorithms.graph import *

def dfs_recurse_path(g, s, t):

for v in g.vertices:

v.visited = False

return reversed(path(s, t))

def path(v, t):

if v == t:

return [v]

v.visited = True

p = None

for w in v.neighbours:

if not w.visited:

ans = path(w, t)

if ans is not None:

ans += [v]

p = ans

return p
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ret = dfs_recurse_path(simple_graph_3 , simple_graph_3.vertices [2],

simple_graph_3.vertices [7])

print(f"Path : ")

for x in ret:

print(x)

Note: The solution using a parent or next array is essentially implementing the linked list from scratch.

(b) Note that a simple return statement when we �nd t is not su�cient. Consider the following example,
where s = A and t = F . When F is reached, we return and so I and J will not be visited. But, nodes E,
G, H, K, L will still be visited, when the DFS resumes from a higher ancestor (in this case B).

𝐴

𝐵

𝐶 𝐸

𝐾

𝐿
𝐷

𝐹 𝐻𝐺

𝐽𝐼

So, we need to �nd a way to terminate the search for all ancestors. We do this by breaking the neighbour
for-loop once we �nd a path to t.

from algorithms.graph import *

def dfs_recurse_path(g, s, t):

for v in g.vertices:

v.visited = False

return reversed(path(s, t))

def path(v, t):

if v == t:

return [v] # This alone is not sufficient.

v.visited = True

p = None

for w in v.neighbours:

if not w.visited:

p = path(w, t)

if p is not None:

# Found a path , so we don't need to explore

# any other nodes.

break

if p is not None:

p += [v]

return p

ret = dfs_recurse_path(simple_graph_3 , simple_graph_3.vertices [2],

simple_graph_3.vertices [7])

print(f"Path : ")

for x in ret:

print(x)
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Question: How does the output of this solution compare to the output of the previous solution? If there
are more than one paths from s to t, then the previous solution returns the one discovered last, while this
returns the one discovered �rst.

(c) The two implementations may process the elements in di�erent orders, even in simple graphs as the
following (recursive implementation gives 0, 1, 3, 2, while the iterative gives 0, 3, 2, 1):

1

0

2 3

Failed approach: Reversing the order in which we explore the neighbours in the DFS does not �x the
problem. Consider the above graph, then the iterative stack implementation with reversed neighbours
gives 0, 1, 2, 3.

Solution: One solution is to simulate the call stack, i.e. we can store along with each node, the index
in the neighbours' list (equivalent to storing the local variable in the recursive function). Each time we
pop the top node, we will search for its next non-visited neighbour to explore and append it back to the
stack with increased counter. The code below implements this approach:

from algorithms.graph import *

def dfs(g, s):

for v in g.vertices:

v.seen = False

# The stack initially contains a single element with 0 counter.

toexplore = [(s, 0)]

s.seen = True

while len(toexplore) > 0:

v, cnt = toexplore.pop() # Now visiting vertex v.

if cnt == 0:

print(f"Visiting: {v}")

while cnt < len(v.neighbours):

w = v.neighbours[cnt]

cnt += 1

if not w.seen:

# Add the old node to the stack with increased counter.

toexplore.append ((v, cnt))

# Add the new node to the stack with 0 counter.

toexplore.append ((w, 0))

w.seen = True

# Once we find the first node we should terminate.

break

dfs(simple_graph , simple_graph.vertices [0])

Exercise 4.C.2 [Implementation aspects of BFS]
(a) Modify bfs_path(g, s, t) to �nd all shortest paths from s to t.

[Exercise 6 in Lecturer's handout]

(b) The breadth-�rst search algorithm from lecture notes uses O (1) storage within each vertex object
(to store the seen �ag), plus extra memory for toexplore. What is the worst case memory re-
quirement of toexplore? Give your answer using Ω notation, in terms of V and E. Modify the
algorithm to use O (1) storage within each vertex object, plus O (1) extra memory.
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[Exercise 7 in Lecturer's handout]

(a) We want to store all equally-good parents in the come_from list. Here's how it might be done. Note that
BFS visits vertices in order of distance from start, thus when we push a novel vertex w it must be at
distance +1 compared to v.

from algorithms.graph import *

from queue import Queue

def bfs(g, s):

for v in g.vertices:

v.distance = float('inf')

v.come_from = []

toexplore = Queue ()

toexplore.put(s)

s.distance = 0

while not toexplore.empty():

v = toexplore.get()

for w in v.neighbours:

if w.distance <= v.distance:

continue

w.come_from.append(v) # w must be at dist. v.distance +1

if w. distance == float('inf'):

toexplore.put(w)

w.distance = v.distance + 1

def paths_to(v):

return [p+[v] for w in v.come_from for p in paths_to(w)] if v.come_from

else [[v]]

bfs(simple_graph_3 , simple_graph_3.vertices [0])

paths = paths_to(simple_graph_3.vertices [7])

for path in paths:

print(f"Path : ")

for x in path:

print(x)

Additional questions by the lecturer:
Question 1: The algorithm loops until toexplore is empty. Can you stop sooner?
Question 2: How would we achieve a similar e�ect in the Dijkstra setting, where edges have costs?

(b) The worst-case is Ω(V ) space and this happens, for example, in the star graph when starting the BFS at
vertex s (in the �rst iteration we add all n− 1 vertices). So the memory is Ω(V ):

𝑠

from algorithms.graph import *

def bfs(g, s):

for v in g.vertices:

v.seen = False
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v.left = None

s.seen = True

# The invariant is that

# toexplore = rightmost -> rightmost.left -> rightmost.left.left -> .. ->

leftmost

leftmost = s

rightmost = s

while rightmost is not None:

v = rightmost

print(f"Visiting: {v}")

for w in v. neighbours:

if not w.seen:

# To add something to the queue , access through the leftmost

pointer.

leftmost.left , leftmost = w, w

w.seen = True

rightmost.left , rightmost = None , v.left

bfs(simple_graph_3 , simple_graph_3.vertices [0])

Note: According to the lecturer, this is useful �if you want to search an absolutely gigantic graph, [since]
you have to �nd ways to stream it through memory, without keeping it all in memory�.

Directed Acyclic Graphs (DAGs)

Exercise 4.C.3
(a) Describe the topological sorting algorithm and argue why it works.

(b) What is its time complexity?

(c) Show its operation in the following DAG.

𝑣1
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(d) Give a few examples of DAGs and the interpretation of the topological ordering (e.g. build systems,
neural networks).

Exercise 4.C.4 Given a DAG with weights,
(a) Design an algorithm that �nds the shortest path from s to t in time O (V + E).

(b) Design an algorithm that �nds the longest path from s to t in time O (V + E).

(c) Design an algorithm that counts the number of paths from s to t in time O (V + E).

(d) (optional ++) Design an algorithm that �nds the path of maximum average length (i.e. the sum
of the weights in the path normalised by the number of edges in the path) from s to t in time
O (V + E).

(a) We can �nd the longest path by �rst �nding the topological order of the nodes in the DAG and then

5



looping over the vertices in topological order, we compute the following recursive equation:

d[v] =

{
minu∈incoming(v) d[u] + weight(u → v) if incoming(v) ̸= ∅
∞ otherwise

where d[s] =. The invariant is that when we are at vertex v, we have computed the correct shortest path
for all previous nodes in the topological order (and hence all incoming vertices for v). So, the update for
v will be correct.

Below is an example run on the DAG of the previous exercise.
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You can also run the dynamic programming in the forward direction, so that once you have found the
shortest path to v, you relax the outgoing edges.
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(b) As in the previous question, but we swap the min operator with max.

d[v] =

{
maxu∈incoming(v) d[u] + weight(u → v) if incoming(v) ̸= ∅
−∞ otherwise

(c) As in the previous question, but we swap the max operator with +, weights are set to 0 and d[s] = 1
(since there is one path from s to s):

d[v] =

{∑
u∈incoming(v) d[u] if incoming(v) ̸= ∅

−∞ otherwise

Below, an example run of the algorithm on the previous graph:
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And here are the 5 possible paths:

Note: All these operations can be seen as the same algorithm but under a di�erent semiring.

Exercise 4.C.5 Explain how to model a dynamic programming recurrence relation using a graph. Draw
this graph for the Longest Common Subsequence (LCS) problem with n = 5 and m = 3.

Dijkstra's algorithm

Exercise 4.C.6 In a directed graph with edge weights, give a formal proof of the triangle inequality

d(u, v) ≤ d(u,w) + c(w → v) for all vertices u, v, w with w → v

where d(u, v) is the minimum weight of all paths from u to v (or ∞ if there are no such paths) and
c(w → v) is the weight of edge w → v. Make sure your proof covers the cases where no path exists.

[Exercise 8 in Lecturer's handout]

There are two cases to consider depending on whether there exists a path from u to w:

� If there is no path, then d(u,w) = ∞ and so the RHS of the inequality is ∞, so it will be at least as large
as the LHS.

� If there is a path p = u⇝ w, appending the edge w → v creates a path p′ from u to v (namely u⇝ w → v)
with weight c(p′) = d(u,w) + c(w → v). Because d(u, v) is the weight of the shortest path from u to v, it
must c(p′) ≥ d(u, v) ⇒ d(u,w) + c(w → v) ≥ d(u, v).

Exercise 4.C.7 [Proving shortest path properties] Read section 24.5 in CLRS and provide proofs
for some of the following:
(a) Upper-bound property
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(b) No-path property

(c) Convergence property

(d) Convergence property

(e) Path relaxation property

(f) Predecessor-subgraph property

The proofs are in section 24.5 of CLRS.

Bellman-Ford algorithm

Exercise 4.C.8 In the course of running the Bellman-Ford algorithm, is the following assertion true?
�Pick some vertex v, and consider the �rst time at which the algorithm reaches line 7 with v.minweight

correct i.e. equal to the true minimum weight from the start vertex to v. After one subsequent pass of
relaxing all the edges, u.minweight is correct for all u ∈ neigbours(v).� If it is true, prove it. If not,
provide a counterexample.

[Exercise 14 in Lecturer's handout]

This is not true. Consider the following graph:

𝑢1

𝑠

𝑢2

2

−10

8

In the �rst iteration, we are relaxing s to its correct value s.minweight (which is 0) and setting u1.minweight

= 2 and to u2.minweight = 8. But, the distance to u1 is not the optimal which is −2.
Lecturer's comment: The point of this exercise is to show that mimicking the proof technique in Dijkstra's does
not work for the Bellman-Ford. We need to consider the last correct node in the optimal path for each vertex.

Exercise 4.C.9 An engineer friend tells you there is a simpler way to reweight edges than the method
used in Johnson's algorithm. Let w∗ be the minimum weight of all edges in the graph, and just de�ne
w′(u → v) = w(u → v)− w∗ for all edges u → v. What is wrong with your friend's idea?

[Exercise 25.3-4 in CLRS]

This does not work. Consider the following graph and its transformation:

𝑢1

𝑠

𝑢2

2

−10

8

𝑢1

𝑠
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12

0

18

The shortest path from s to u1 in the original graph is s → u2 → u1 and in the second it is s → u1.
Lecturer's comment: PLEASE tell your students that to answer a question like this they must produce a
concrete example and not some wa�y text.

Exercise 4.C.10 [Floyd-Warshall algorithm] We are given a directed graph where each edge is
labelled with a weight, and where the vertices are numbered 1, . . . , n. Assume it contains no negative
weight cycles. De�ne Fij(k) to be the minimum weight path from i to j, such that every intermediate
vertex is in the set {1, . . . , k}. Give a dynamic programming equation for Fij(k), and a suitable de�nition
for Fij(0).
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Since we are given that the graph does not contain any negative cycles, it means that in the optimal path from
some starting vertex s to some target vertex t (if it exists), will contain a vertex at most once.
Floyd-Warshall algorithm proceeds by determining Fij(k) if there is a path from i to j using only vertices
1, . . . , k. The base case is when k = 0,

Fij(0) =

{
weight(i → j) if i → j

∞ otherwise.

For the general case, there will be a path i⇝ j using vertices 1, . . . , k in one of the following two cases:

� if there was a path i⇝ j using vertices 1, . . . , k − 1.

� if there is a path i⇝ k (using vertices 1, . . . , k− 1) and there is a path k ⇝ j (using vertices 1, . . . , k− 1)

Hence,
Fij(k) = min(Fij(k − 1), Fik(k − 1) + Fkj(k − 1)).

Question: When will the algorithm �nd the optimal path between i and j? If the z is the largest index of the
vertex used in the optimal path, then when computing Fij(z), the algorithm will have already found the path
i⇝ z (since it consists of smaller indices) so Fij(z − 1) contains the correct value and similarly for z ⇝ j.
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