Algorithms Example Sheet 4: Core Questions

$\mathbf{BFS}/\mathbf{DFS}$

Exercise 4.C.1 [Implementation aspects of DFS]

(a) Give pseudocode for a function dfs_recurse_path(g, s, t) based on dfs_recurse, that returns a path from s to t.

[Exercise 2 in Lecturer's handout]

(b) Modify your function from part (a) so that it does not visit any further vertices once it has reached the destination vertex t.

[Exercise 3 in Lecturer's handout]

(c) Do dfs and dfs_recurse (as given in lecture notes) always visit vertices in the same order? Either prove they do, or give an example of a graph where they do not. You may assume that there is an ordering on vertices, and that v.neighbours returns a sorted list of v's neighbouring vertices.

If they do not, then modify dfs so they do. Give pseudocode.

[Exercise 4 in Lecturer's handout]

Exercise 4.C.2 [Implementation aspects of BFS]

(a) Modify bfs_path(g, s, t) to find all shortest paths from s to t.

[Exercise 6 in Lecturer's handout]

(b) The breadth-first search algorithm from lecture notes uses $\mathcal{O}(1)$ storage within each vertex object (to store the seen flag), plus extra memory for toexplore. What is the worst case memory requirement of toexplore? Give your answer using Ω notation, in terms of V and E. Modify the algorithm to use $\mathcal{O}(1)$ storage within each vertex object, plus $\mathcal{O}(1)$ extra memory.

[Exercise 7 in Lecturer's handout]

Directed Acyclic Graphs (DAGs)

Exercise 4.C.3

- (a) Describe the topological sorting algorithm and argue why it works.
- (b) What is its time complexity?
- (c) Show its operation in the following DAG.

(d) Give a few examples of DAGs and the interpretation of the topological ordering (e.g. build systems, neural networks).

Exercise 4.C.4 Given a DAG with weights,

- (a) Design an algorithm that finds the shortest path from s to t in time $\mathcal{O}(V+E)$.
- (b) Design an algorithm that finds the longest path from s to t in time $\mathcal{O}(V+E)$.
- (c) Design an algorithm that counts the number of paths from s to t in time $\mathcal{O}(V+E)$.
- (d) (optional ++) Design an algorithm that finds the path of maximum average length (i.e. the sum of the weights in the path normalised by the number of edges in the path) from s to t in time $\mathcal{O}(V+E)$.

Exercise 4.C.5 Explain how to model a dynamic programming recurrence relation using a graph. Draw this graph for the Longest Common Subsequence (LCS) problem with n = 5 and m = 3.

Dijkstra's algorithm

Exercise 4.C.6 In a directed graph with edge weights, give a formal proof of the triangle inequality

 $d(u,v) \leq d(u,w) + c(w \rightarrow v)$ for all vertices u, v, w with $w \rightarrow v$

where d(u, v) is the minimum weight of all paths from u to v (or ∞ if there are no such paths) and $c(w \to v)$ is the weight of edge $w \to v$. Make sure your proof covers the cases where no path exists.

[Exercise 8 in Lecturer's handout]

Exercise 4.C.7 [Proving shortest path properties] Read section 24.5 in CLRS and provide proofs for some of the following:

- (a) Upper-bound property
- (b) No-path property
- (c) Convergence property
- (d) Convergence property
- (e) Path relaxation property
- (f) Predecessor-subgraph property

Bellman-Ford algorithm

Exercise 4.C.8 In the course of running the Bellman-Ford algorithm, is the following assertion true? "Pick some vertex v, and consider the first time at which the algorithm reaches line 7 with v.minweight correct i.e. equal to the true minimum weight from the start vertex to v. After one subsequent pass of relaxing all the edges, u.minweight is correct for all $u \in neight(v)$." If it is true, prove it. If not, provide a counterexample.

[Exercise 14 in Lecturer's handout]

Exercise 4.C.9 An engineer friend tells you there is a simpler way to reweight edges than the method used in Johnson's algorithm. Let w^* be the minimum weight of all edges in the graph, and just define $w'(u \to v) = w(u \to v) - w^*$ for all edges $u \to v$. What is wrong with your friend's idea?

[Exercise 25.3-4 in CLRS]

Exercise 4.C.10 [Floyd-Warshall algorithm] We are given a directed graph where each edge is labelled with a weight, and where the vertices are numbered $1, \ldots, n$. Assume it contains no negative weight cycles. Define $F_{ij}(k)$ to be the minimum weight path from i to j, such that every intermediate vertex is in the set $\{1, \ldots, k\}$. Give a dynamic programming equation for $F_{ij}(k)$, and a suitable definition for $F_{ij}(0)$.