
Algorithms Example Sheet 3: Core

Questions

Binary Search Trees (BSTs)

Exercise 3.C.1 [Core BST operations]
(a) De�ne binary search trees.

(b) Write pseudocode for each of the following operations, argue about their correctness and state their
time complexity:

1. max()

2. min()

3. find(x)

4. insert(x)

5. (+) delete(x)

6. successor()

7. predecessor()

(c) What is the worst-case height for a BST of n items?

(d) Give an example of a BST that is not a min-heap.

(e) (optional) Attempt [2012P1Q6].

(f) Your friend argues that they have an O(n log log n) time algorithm based on comparisons for cre-
ating a BST. Is this possible?

2-3-4 trees / Red-Black Trees

Recommended reading/useful links:

� Chapters 3.2 and 3.3 in Sedgewick's Algorithms

� Chapter 13 from CLRS

� Chapter 3.3 in Okasaki's "Purely functional data structures"

� 2-3-4 trees visualisation.

� RBT visualisation.

Exercise 3.C.2 [2-3-4 Trees]
(a) De�ne the 2-3-4 trees.

(b) Explain how search works in a 2-3-4 tree.

(c) Describe how a 2-3-4 tree in insertions.

(d) Draw the 2-3 tree that results when you insert the keys Y L P M X H C R A E S in that order into
an initially empty tree.

(e) Draw all the structurally di�erent 2-3-4 trees of size 1 to 6.

Exercise 3.C.3 [Red Black Trees]
(a) De�ne the �ve properties of red-black trees.

(b) De�ne the mapping between 2-3-4 trees and RBTs.
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https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q6.pdf
https://people.ksp.sk/~kuko/gnarley-trees/234tree.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


(c) Argue that this mapping is one-to-one (bijective).

(d) Why did the lecturer chose to present 2-3-4 trees before RBTs?

(e) Show that a RBT with n internal nodes has height at most 2 log2(n+ 1).

(f) What are the smallest and largest possible number of nodes of a red-black tree of height h, where
the height is the length in edges of the longest path from root to leaf?

(g) Let us de�ne a relaxed red-black tree as a binary search tree that satis�es all red-black properties
except that the root may be either red or black. Consider a relaxed red-black tree T whose root
is red. If we color the root of T black but make no other changes to T , is the resulting tree a
red-black tree? [CLRS 13.1.3]

(h) Describe a red-black tree on n keys that realizes the largest possible ratio of red internal nodes to
black internal nodes. What is this ratio? What tree has the smallest possible ratio, and what is
the ratio? [CLRS 13.1.7]

(i) (optional) Attempt [2015P1Q7].

1 B-trees

Exercise 3.C.4 [B-trees]
(a) De�ne B trees and B+ trees.

(b) Describe how insertion and deletion work.

(c) Using a soft pencil, a large piece of paper and an eraser, draw a B-tree with t = 2, initially empty,
and insert into it the following values in order: 63; 16; 51; 77; 61; 43; 57; 12; 44; 72; 45; 34; 20; 7; 93; 29.

i. How many times did you insert into a node that still had room?

ii. How many node splits did you perform? What is the depth of the �nal tree?

iii. What is the ratio of free space to total space in the �nal tree?

Hash tables

Exercise 3.C.5 [Collisions]
(a) What is the collision problem?

(b) Describe two methods of solving the collision problem.

(c) Make a hash table with 8 slots and insert into it the following values: 15; 23; 12; 20; 19; 8; 7; 17; 10; 11.
Use the hash function h(k) = (k mod 10)mod 8 and, of course, resolve collisions by chaining.

(d) Non-trivial Imagine redoing the exercise above but resolving collisions by open addressing. When
you go back to the table to retrieve a certain element, if you land on a non-empty location, how can
you tell whether you arrived at the location for the desired key or on one occupied by the overspill
from another one? (Hint: describe precisely the low level structure of each entry in the table.)

(e) How can you handle deletions from an open addressing table? What are the problems of the obvious
naïve approach?

Exercise 3.C.6 [Multipicative hash functions] Given a table with m entries, what is the desired
property of a and b, for the hash function h(x) = ax+ b (mod m)?

Exercise 3.C.7 [Length of longest chain] (optional) Consider an array of length m (for m =
10, 102, 103, 104, 106) and choose m values chosen uniformly at random in 0, . . . ,m − 1. Count the
number of items for the index that receives most entries.
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https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q7.pdf


Exercise 3.C.8 [Linear Probing]
(a) Describe linear probing.

(b) What is primary clustering?

Exercise 3.C.9 [Quadratic Probing]
(a) Describe quadratic probing.

(b) Why is the choice of the constants important?

(c) What is secondary clustering?

Exercise 3.C.10 [Double hashing] Describe double hashing.

Exercise 3.C.11 [Deletions] How can you handle deletions in the aforementioned hashing approaches?
How do these compare?

Priority queues

Exercise 3.C.12 [Priority queues]
(a) What are the operations of a binary heap?

(b) State with justi�cation the time complexity for the operations of a priority queue implemented
using an array.

(c) State with justi�cation the time complexity for the operations of a priority queue implemented
using the min-heap.

(d) Your friend claims that they have implemented a priority queue with `extractMin()` taking
O(log log n). Is this possible?

Binary Heaps

Recommended reading/useful links:

� This visualisation website

� CLRS 2nd edition Chapter 19 (see here)

� These slides

� The paper that introduced this data structure.

Exercise 3.C.13 [Binomial heaps]
(a) De�ne the binomial tree of degree k.

(b) Draw the binomial trees of order 2, 3 and 4.

(c) How many children does the binomial tree of degree k contain? Prove it.

(d) How many subtrees does the root binomial tree of degree k have? Prove it.

(e) What is the height of binomial tree of degree k? Prove it.

(f) How many nodes are there in the i-th depth of a binomial tree of degree k? Prove it.

(g) Prove that the following de�nition is equivalent: the binomial tree of degree 0 is a single node.
The binomial tree of degree k is a tree with k children t0, t1, . . . , tk−1, where ti is a binomial tree
of degree i.

(h) De�ne the binomial heap.
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https://www.cs.usfca.edu/~galles/visualization/BinomialQueue.html
http://www.cs.toronto.edu/~anikolov/CSC265F19/binomial-heaps.pdf
http://web.stanford.edu/class/archive/cs/cs166/cs166.1146/lectures/06/Slides06.pdf


(i) Prove that if a binomial heap has n nodes, then it contains O(log n) binomial trees and the largest
of these has degree O(log n). Determine exactly the orders of the binomial trees.

Exercise 3.C.14 [Binomial heaps] Describe the implementation of a priority queue using a binomial
heap, stating the time complexity for each operation. What is the connection between merging binomial
heaps and adding two integers?

4


	B-trees

