
Algorithms Example Sheet 1: Core

Questions

Exercise 1.C.1 [Check if array is sorted]
(a) Design an algorithm to check if a given array of n elements is sorted.

(b) What is the time complexity of your algorithm? Can you do it more e�ciently?

(c) (I)Implement your algorithm.

(d) (I)Generate some random arrays and use these (together with your sorting check method) to test
the sorting algorithms that you will implement (in the coming exercises).

Exercise 1.C.2 [Insertion Sort (B)]
(a) Explain how insertion sort works, intuitively.

(b) Illustrate the operation of insertion sort on the array [31; 41; 59; 26; 41; 58].

(c) Write pseudocode for insertion sort.

(d) Argue informally why insertion sort works.

(e) What is the worst-case running time for insertion sort? Can you give an example for this? Why
do we prefer examples to be general? (See [2010P1Q5 (b)])

(f) What is the best-case running time for insertion sort?

(g) How can you reduce the number of swaps performed by the algorithm?

[Exercise 1 in Lecturer's handout]

Exercise 1.C.3 [Insertion Sort (I)] Implement the insertion sort algorithm. You can test your
implementation on [LeetCode 912] (or on [GeeksForGeeks Insertion Sort], or using the sorting
benchmark that you created in Exercise 1).

Exercise 1.C.4 [Comparison-based sorting]
(a) What do we mean by a comparison-based sorting algorithm?

(b) Explain how you can use any comparison-based sorting algorithm to sort an array in decreasing
order (instead of increasing).

Exercise 1.C.5 [Reasoning about correctness of algorithms]
(a) What is a precondition?

(b) What is a postcondition?

(c) What is an invariant? How is it used to prove the correctness of an algorithm?

(d) In which areas of software engineering are preconditions and postconditions useful?

Chapter 2.3

Recommended reading:

� Chapter 3, CLRS

� Handout from Je� Erickson's book (includes various techniques for solving recurrence relations, most of
which are outside the scope of the course)

1

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p1q5.pdf
https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/insertion-sort/1
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf

Exercise 1.C.6 [Asymptotic running times (Introduction - OCaml)]
(a) (Open-ended) Why is the big-O notation used? Can we not just do empirical computations of the

running time?

(b) Use the following method to measure the execution of some code.

let measure () =

let t = Sys.time() in

(* The code you want to measure *); Printf.printf "%f\n" (Sys.time()

-. t);;

Measure the time it takes to execute sillySum (FoCS section 2.5) for values n = 20 to n = 30.
Plot the graph vs input size and compare with the theoretical running time.

(c) What assumptions do we usually make when computing the runtime e�ciency of an algorithm?

(d) What is the time complexity of the naive and e�cient power function (in FoCS)?

Exercise 1.C.7 [Asymptotic running times (B)]
(a) Why is the Θ, O and Ω notation useful?

(b) How are each of these formally de�ned?

(c) In the de�nition of big-O notation, what would happen if:
i. we replaced ∀n > N with ∀n?
ii. we replaced ∀n > N with ∀n ≥ N?

iii. we replaced k · g(n) with g(n)?

iv. we replaced k · g(n) with k2 · g(n)?

v. we replaced the condition 0 ≤ f(n) ≤ k · g(n) with f(n) ≤ k · g(n).

(d) What do we mean by O (f(n)) providing an upper bound on the running time of the algorithm?
Is every upper bound useful?

(e) What do we mean by Ω providing a lower bound on the running time of the algorithm? Is any
lower bound useful?

(f) How are o(·) and ω(·) de�ned?
(g) Prove or disprove f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) i� f(n) = Θ(g(n)).

(h) Write down an incorrect de�nition for o(n) by taking the de�nition of O(n) and replacing ≤ by <.
Then �nd values for k and N that, by this de�nition, would allow us to claim that f(3n2) ∈ o(n2).

[Exercise 3 in Lecturer's handout]

(i) Let TA(n) is the running time of Algorithm A and TB(n) is the running time of algorithm B. If
TA(n) ∈ O(TB(n)), would we always prefer A over B in practice? Can you construct a speci�c
example where this is not the case (at least in 2021)?

Exercise 1.C.8 [In-place sorting (B)] What does it mean for a sorting algorithm to be in-place?
Which of the sorting algorithms that you have covered are in-place? Why is this a desirable feature?

Chapter 2.4 & 2.5

Exercise 1.C.9 [Asymptotic Stirling's formula]
(a) Show that n! > (n/2)n/2.

(b) Show that n! < nn.

(c) Deduce that log n! = Θ(n log n).

2

(d) (optional +) Actually, something stronger holds. Read about Stirling's approximation.

Exercise 1.C.10 [Comparison-based sorting lower bound (B)] Derive the Ω(n log n) lower bound
for any comparison-based sorting algorithm (use the result from Exercise 9).

Exercise 1.C.11 [Linear Search]
(a) Describe a comparison-based algorithm for �nding a given element in an unsorted array.

(b) What is the time complexity of your algorithm? Prove a corresponding lower bound.

Chapter 2.6

Exercise 1.C.12 [Selection Sort (B)]
(a) Intuitively explain how selection sort works.

(b) Illustrate the operation of selection sort on the array [31; 41; 59; 26; 41; 58].

(c) Write pseudocode for selection sort. (See [2010P1Q2 (b)])

(d) Argue informally why selection sort works.

(e) What is the worst-case running time for selection sort?

(f) What is the best-case running time for selection sort? Would you choose insertion sort over selection
sort?

(g) When looking for the minimum of m items, every time one of the m−1 comparisons fails the best-
so-far minimum must be updated. Give a permutation of the numbers from 1 to 7 that, if fed to
the selectsort algorithm, maximizes the number of times that the above-mentioned comparison
fails?

[Exercise 7 in Lecturer's handout]

Exercise 1.C.13 [Selection Sort (I)] Implement the insertion sort algorithm. You can test your
implementation in problem [LeetCode 912] (or [GeeksForGeeks Selection Sort]).

Binary search

Recommended reading:

� Read this article on problem solving using binary search.

Exercise 1.C.14 [Binary Search (B)]
(a) Describe the binary search algorithm.

(b) Derive the worst-case time complexity for binary search, assuming the array size is a power of 2.

(c) Show that this is the best possible worst-case time complexity for a comparison-based algorithm.
(See [2006P1Q11 (b)])

Exercise 1.C.15 [Binary Search (I)]
(a) Implement the binary search algorithm to solve [LeetCode 704].

(b) Given an array consisting of 0s and 1s (in sorted order),
i. Write a binary search program to �nd the last 0 (or fail if no 0 exists).

ii. Write a binary search program to �nd the �rst 1.
You can test your code on [LeetCode 34].

3

https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p1q2.pdf
https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/selection-sort/1
https://usaco.guide/silver/binary-search-ans
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q11.pdf
https://leetcode.com/problems/binary-search/
https://leetcode.com/problems/find-first-and-last-position-of-element-in-sorted-array/

Chapter 2.7

Exercise 1.C.16 [Binary Insertion Sort (B)]
(a) Explain the modi�cation to insertion sort, to e�ciently �nd the correct placement for the current

element.

(b) Does this modi�cation improve the time complexity of the algorithm?

(c) Provide pseudocode for the missing part of the code.

Chapter 2.8

Exercise 1.C.17 [Bubble Sort (B)]
(a) Intuitively explain how bubble sort works.

(b) Illustrate the operation of bubble sort on the array [31; 41; 59; 26; 41; 58].

(c) Write pseudocode for bubble sort.

(d) Argue informally why bubble sort works.

(e) What is the worst-case running time for bubble sort? Give a general example for when this occurs.

(f) What is the best-case running time for bubble sort? Would you choose insertion sort over bubble
sort?

(g) Consider the smallest (�lightest�) and largest (�heaviest�) key in the input. If they both start
halfway through the array, will they take the same time to reach their �nal position or will one be
faster? In the latter case, which one, and why?

Exercise 1.C.18 [Bubble Sort (I)] Implement the bubble sort algorithm. You can test your imple-
mentation in problem [LeetCode 912] (or [GeeksForGeeks Bubble sort]).

Chapter 2.9

4

https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/bubble-sort/1

Exercise 1.C.19 [Merge Sort (B)]
(a) Intuitively explain how merge sort works.

(b) Illustrate the operation of merge sort on the array [9; 3; 6; 2; 4; 1; 5]. (See [2010P1Q5 (a)])

(c) Write pseudocode for merge sort.

(d) Argue informally why merge sort works.

(e) What is the worst-case running time for merge sort? Derive this by solving the recurrence relation.
You may assume that the array length is a power of 2.

(f) What is the best-case running time for merge sort? Would you choose merge sort over bubble sort?

(g) Can you spot any problems with the suggestion of replacing the somewhat mysterious line a3[i3]
= smallest(a1, i1, a2, i2) with the more explicit and obvious a3[i3] = min(a1[i1],

a2[i2])? What would be your preferred way of solving such problems? If you prefer to leave
that line as it is, how would you implement the procedure smallest it calls? What are the trade-o�s
between your chosen method and any alternatives?

[Exercise 11 in Lecturer's handout]

(h) In one line we return the same array we received from the caller, while in another we return a new
array created within the mergesort subroutine. This asymmetry is suspicious. Discuss potential
problems.

[Exercise 12 in Lecturer's handout]

Exercise 1.C.20 [Merge Sort (I)] Implement the merge sort algorithm. You can test your implemen-
tation in problem [LeetCode 912] (or [GeeksForGeeks MergeSort]).

Chapter 2.10

Recommended reading:

� Chapter 3, CLRS

Exercise 1.C.21 [Almost full binary trees (B)]
(a) What is a binary tree? What is the root of a binary tree?

(b) What is a full binary tree? What is an almost-full binary tree?

(c) What are the minimum and maximum number of elements in an almost-full binary tree of height
h? Provide an example for minimum and maximum.

(d) Explain how you would store an almost full binary tree in an array. Provide an example.

(e) In this array representation, explain how to access the parent of node with array index i.

Exercise 1.C.22 [Binary heaps (B/P)]
(a) What is a binary heap? Give examples of binary trees that are not binary heaps. Can a binary

search tree be a binary heap?

(b) Explain how the heapify operation is used to maintain the properties of a binary heap once its root
is removed. How many operations does it perform?

(c) Explain why heapifying an entire array takes O(n log n) time, where n is the number of elements
in the array.

(d) (+) In this sub-question, we will tighten the bound to O (n).
i. Explain (or prove) why for |x| < 1, we have F (x) :=

∑∞
i=0 x

i = 1
1−x .

ii. Let G(x) :=
∑∞

i=0 i·xi. Show that d
dxF (x) =

∑∞
i=0 i·xi−1 (what assumption are you making?)

and that G(x) = x · d
dxF (x).

5

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2010p1q5.pdf
https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/merge-sort/1

iii. Deduce that G(x) = x
(1−x)2 .

iv. By analysing the recurrence relation for heapifying an array, show that it takes O(n) time.

Exercise 1.C.23 [Heap Sort (B)]
(a) Intuitively explain how heap sort works.

(b) (optional) Illustrate the operation of heap sort on the array [31; 41; 59; 26; 41; 58].

(c) Write pseudocode for heap sort.

(d) Argue informally why heap sort works.

(e) What is the worst-case running time for heap sort? Use the previous exercises.

(f) What is the best-case running time for heap sort? How does heap sort compare to merge sort?

(g) Explain how heap sort relates to selection sort (See [2006P1Q12 (b)])

(h) (optional) Attempt [2006P6Q1].

Exercise 1.C.24 [Heap Sort (I)] Implement the heap sort algorithm. You can test your implementa-
tion in problem [LeetCode 912] (or [GeeksForGeeks Heap Sort]).

Chapter 2.11/2.12

Exercise 1.C.25 [Quicksort (B)]
(a) Describe how Quicksort works, using the following array of numbers as an example:

16, 42, 22, 7, 15, 3. (See [2007P1Q11 (a)])

(b) Write pseudocode for Quicksort.

(c) Argue informally why Quicksort works.

(d) What is the worst-case running time for Quicksort? Give an example for this. (See [2006P1Q4
(b)], [2012P1Q5 (c)])

(e) What is the best-case running time for Quicksort? (See [2012P1Q5 (b)])

(f) How does Quicksort compare to merge sort and heap sort?

(g) Is it an in-place algorithm?

(h) How does pivot picking after the complexity of the algorithm? Why is picking the pivot randomly
better than choosing the �rst element as pivot? (See [2012P1Q5 (d)], [2016P1Q8 (d)])

(i) Why does it matter how you treat elements that are equal to the pivot?

(j) Discuss ways to avoid the worst-case execution of Quicksort. (See [2008P11Q7 (c)])

Exercise 1.C.26 [Quicksort (I)] Implement the Quicksort algorithm. You can test your implementa-
tion in problem [LeetCode 912] (or [GeeksForGeeks Quicksort]).

Exercise 1.C.27 [Quick Select (B)]
(a) Intuitively explain how quick select works.

(b) Write pseudocode for quick select.

(c) Argue informally why quick select works.

(d) Assuming that Quicksort chooses the median as a pivot in each step, by solving the linear recurence
relation show that quick select takes linear time.

6

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q12.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p6q1.pdf
https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/heap-sort/1
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2007p1q11.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2006p1q4.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2012p1q5.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2016p1q8.pdf
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2008p11q7.pdf
https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/quick-sort/1

Chapter 2.13

Exercise 1.C.28 [Sorting pairs (I)] You are given an array of (name, ID). In your programming
language of choice, show how you can sort this array, �rst by name and in case of equality by ID.

Exercise 1.C.29 [Stable sorting (B)]
(a) What does it mean for a sorting algorithm to be stable? Why would we want this?

(b) Which of the algorithms that you have seen so far are stable?

[Exercise 21 in Lecturer's handout]

(c) How can you convert a non-stable sorting algorithm into a stable? What is the disadvantage of
this conversion?

Chapter 2.14

Exercise 1.C.30 [Counting Sort (B)]
(a) Intuitively explain how counting sort works.

(b) Write pseudocode for counting sort.

(c) Argue informally why counting sort works.

(d) What is the worst-case running time for counting sort? How does this di�er from the complexity
of other sorting algorithms?

(e) When would you use counting sort over the other sorting methods?

(f) Is counting sort stable?

Exercise 1.C.31 [Counting Sort (I)] Implement the counting sort algorithm. You can test your
implementation in problem [LeetCode 912] (or [GeeksForGeeks Counting Sort]).

Exercise 1.C.32 [Bucket Sort (B)] Brie�y describe how bucket sort works.

Exercise 1.C.33 [Radix Sort (B)] Brie�y describe how radix sort works. (See [2014P1Q7 (a)])

7

https://leetcode.com/problems/sort-an-array/
https://practice.geeksforgeeks.org/problems/counting-sort/0
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2014p1q7.pdf

