Algorithms

 Past Papers by topic
Analysis of algorithms:

- $2016 \mathrm{P} 1 \mathrm{Q8}$ (a)] sqrt-recurrence relation,
- 2014P1Q9 amortised analysis, aggregate analysis, potential method, multi-pop stack analysis, vector (i.e. array with append)
- 1994P10Q7 (a),(b) prove that $f(n)=A n^{k}=\mathcal{O}\left(2^{n}\right)$, do all sorting methods take $\mathcal{O}\left(n^{5}\right)$ time,
- 1993P3Q8 Determine which algorithm is which based on the running times (informal)

Searching and Sorting:

- 2016P1Q8 (d) Quicksort last entry vs random pivot (how to trigger quadratic time complexity)
- 2014P1Q7 radix sort (description and correctness), given k, find x and y such that $k=x+y$.
- $2014 \mathrm{P1Q8}(\mathbf{a})-(\mathbf{c})$ Quickselect k-th element vs sorting to find k-th element, find the k smallest elements, draw 4 distinct BSTs for $\{1,2,3,4\}$.
- 2012P1Q5 describe Quicksort, assuming all partitions are balanced derive recurrence relation, time complexity for when all items are sorted, random pivot
- 2011P1Q6 (a)] Quickselect vs Priority queue for finding k-th element
- 2010P1Q5 mergesort example, insertion sort recurrence relation, linked-list mergesort show \mathcal{O} (1) space, should convert to linked lists?
- [2008P11Q7] Quicksort implementation, prove termination, worst-case behaviour and how to avoid it, problems of choosing random pivot, find median
- 2007P10Q10 Quickselect, find k-th largest elements, minimum-comparisons max, minimum-comparisons second-max
- 2007P1Q4 (a)-(d) heapsort running time, insertion sort worst-case, shellsort, sorting algorithms lower bound
- 2007P1Q11 Quicksort example, space and time complexity, how to avoid the worst-case behaviour.
- 2006P1Q4 Quicksort, time and space complexity, Quicksort with quadratic search in the end.
- 2006P1Q11 binary search time complexity, comparison-based sorting lower bound, analysis of ternary search, practical comparison between binary and ternary search.
- 2002P4Q4 Shellsort (out of syllabus), radix sort
- 2001P3Q5 Quicksort, counting sort, find median when range of elements is small.
- 2000P3Q5 Quickselect, (worst-case linear-time) select, practical estimate for number of operations.
- 1997P4Q5 Quickselect, risk of randomisation
- 1996P4Q5 Prove sorting lower bound, sorting can take less time, radix sort
- 1995P3Q5 (b)] Sorting an almost sorted sequence
- 1994 P 4 Q 7 Three-way quicksort, solve recurrence relation, practical estimation of running time.
- 1994 P 10 Q 7 (c)-(e)] true/false questions for sorting algorithms
- 1994P11Q6 (a)] describe an algorithm for finding the median
- 1993P10Q7 lower bound for sorting, comparison between quadratic and $n \log n$ sort for small values of n, (not clear what is meant by binary insertion).

Priority queues:

- [2016P1Q9] which of the given representations is a valid Fibonacci heap, worst-case (and worst-case amortised) costs for insert, extract-min and decrease-key, analysis of Fibonacci heap variant
- 2008P1Q4 update to the priority queue, heap array implementation, find parent, find children, insert, extract-min
- $2006 \mathrm{P} 1 \mathrm{Q12}$ (b)] define the heap property, heapsort relation to quadratic time sorting
- 2011P1Q5 describe decreaseKey (), describe modify, d-ary heap representation in an array, d-heapify analyse its complexity
- 2009P1Q6 state properties of min-heap, describe pointer to array-based representation conversion, "sorted array \Rightarrow represents min-heap", heapify example, extract-min examples, running time of heapsort,
- 2006P6Q1 describe heaps, heapify, example, extract min, describe insert
- 2003P3Q3 heapify, heapsort worst-case performance, how many comparisons if sorted and if reverse sorted.
- 1999P4Q5 describe heapsort, prove worst-case time complexity, ternary heaps stored at $3 i-1,3 i$ and $3 i+1$.
- 1998P3Q6 (same as 1995P4Q5)
- 1997 P 3 Q 5 Find the M largest values of $X_{i}-Y_{j}$.
- 1995P4Q5 Define priority queues, define heaps, explain how to store a heap in an array, access parent, access offspring, describe insert, delete, heapify, argue that (plain) heapsort is not stable.
- $1994 \mathrm{P10Q8}$ compare three implementations of priority queues: (a) unsorted array, (b) sorted array, (c) binary heap

Divide and Conquer:

- 2000P6Q1 Closest pair of points in Euclidean and Manhattan distance.
- 1994 P 3 Q 7 (a) Describe the divide and conquer technique and give examples of problems that can be solved using this.

Binary trees and BSTs:

- 2015P1Q7 which of the following trees is a RBT, largest number of nodes in a RBT, smallest number of nodes in a RBT
- 2014P1Q8 (d)] height-balanced BSTs.
- 2012P1Q6 algorithm to check if a sequence is a valid search comparison sequence, check if binary tree is BST, check if binary tree is min-heap, output BST values in sorted order in linear time, why not possible for binary min-heap?
- 2009P1Q5 five variants of RBTs, 2-3-4 trees to RBTs, min/max nodes in RBT, define BST rotation, convert any BST to any other BST using rotations
- 2008P1Q11 define BST rotation, move i-th largest node to the root (select), recursive delete using select, delete without rotations
- 2007P1Q12 insertions and deletions in 2-3-4 tree, isomorphism between RBT and 2-3-4 trees, diagrams for left/right rotations, use BST rotations to move a node to the root.
- 2006P3Q2 define BST, find predecessor, delete, property of node in a BST
- 1995P3Q5 (c)
- 1994 P 3 Q 7 (c)] Give examples of balanced data structures and usage in problems.
- 1994 P 4 Q 6 describe the operation of RBTs. What is the maximum imbalance in the tree height?
- 1993P3Q7 prove upper and lower bound for number of nodes in strictly binary tree, generalise to trees with n children.

B-Trees:

- 2007P11Q9 def B-trees, insertion example, successor property of B-tree, deletion, deletion example
- 2002P5Q1] insert, update, inorder traversal, estimate number of transfers required.
- $1995 \mathrm{P} 3 \mathrm{Q} 5(\mathrm{e})]$

Greedy / Dynamic Programming (DP):

- 2016P1Q8 (c) memoisation for Fibonacci numbers, variants reducing the number of recursive calls,
- 2015P1Q8] define greedy, if there exists a greedy and a DP algorithm which one would you choose?, coin-change problem.
- 2013P1Q6 Describe how to apply dynamic programming to solve the longest palindromic subsequence, bottom up algorithm, worst-case running time, recover all LPS sequences.
- 1994P3Q7 (e),(f)] describe the principle of greedy and dynamic programming, give examples of problems solvable using these techniques.

Shortest paths:

- 2017P1Q10 (b),(c) describe Dijkstra's algorithm, Dijkstra's with Fibonacci heap, shortest path on DAG, $\Omega(V \log V)$ for Dijkstra's implementation.
- 2014P1Q10] All-pairs shortest paths using BF, Dijkstra's, matrix multiplication and Johnson's, modelling currency-exchange using shortest paths, interpretation of negative cycles
- 2006P5Q1 Describe Dijkstra's algorithm, prove correctness, why non-negative weights, negative edge weights leaving the source, making edges positive by adding a constant
- 2005P5Q1 Matrix representation of a graph, Floyd-Warshall algorithm, reconstructing the optimal path
- 2001P5Q1 All-pair shortest paths, should check connectedness?, alternative for sparse graph
- 1998P4Q5 Describe and justify Dijkstra's algorithm for non-negative length paths, Dijkstra with heuristic approximation.
- 1996P3Q5 Describe Dijkstra's algorithm, extend Dijkstra's to few negative edges, when is the shortest path well-defined for graphs with negative edges?
- 1995P3Q5 (d)
- 1994P10Q7 (g),(h)
- $1993 \mathrm{P} 4 \mathrm{Q8}$ recursive formula for paths of length k, transitive closure for adjacency matrix
- 1993P10Q8 all-pairs shortest paths, also retrieving the paths

Minimum spanning trees:

- [2015P1Q9 (c)] Find new MST when: (i) increase weight of edge not in MST, decrease weight of edge in MST, add new edge.
- 2006P4Q3 def MST, safe edge, cut, describe an MST algorithm and prove correctness, properties of unique MSTs
- [2003P5Q1 (b),(c)] Describe Kruskal's algorithm, unique weights \Rightarrow unique MST
- [2000P4Q6] Describe Kruskal's and Prim's algorithm and give running times.
- 1997P3Q6 Describe and justify Kruskal's algorithm, what would happen if all edges above L were removed, how to find spanning tree for points on Euclidean plane.
- 1994P10Q7 (i) MST consists of $N-1$ smallest edges?

Disjoint set union:

- 2003P5Q1 Describe the DSU data structure

Flows and Matchings:

- 2015P1Q10 max flow min-cut theorem, example where Ford-Fulkerson takes at least k steps, one augmentation on a given graph, edge-connectivity.
- 2000P5Q1 (b)-(d) def matching, prove that no augmenting path means no matching, max flow reduction

Graphs (representations, BFS/DFS):

- $2017 \mathrm{P} 1 \mathrm{Q10}(\mathbf{a})$ define total order, describe how to compute in $\mathcal{O}(V+E)$.
- [2015P1Q9 (a),(b)] adj list vs adj matrix, discovery and finishing time
- 2001P6Q1 Define directed graph and SCC, give example, DFS discovery and finish time, linear-time algorithm to find SCC (out of syllabus)
- 2000P5Q1 (a)] Define directed graph, undirected graph, bipartite graph.
- 1995P3Q5 (a) representation of a sparse graph
- 1994P3Q7 (b) describe BFS and give examples of tasks solvable using BFS.

Hashing:

- 2017P1Q8 define hash tables, hash functions, collisions, define open addressing, probing sequence, advantages and disadvantages of quadratic probing, expression for quadratic probing, find values for quadratic probing.
- 2011P1Q6 (b) Fast way to randomly sample an element from a hash table.
- 2008P10Q9 Additive hash function example with chaining, with linear probing, implementation of chaining
- 2005P4Q3 closed hash-table insert and lookup, evaluate different hash functions, deletion in closed hash-tables
- 2005P6Q1 Hash-table implementation
- 2003P4Q3 open/closed hashing
- 1995P3Q6

Splay trees (out of syllabus):

- $2007 \mathrm{P} 1 \mathrm{Q4}$ (e) splay tree faster than linked list?
- 2006 P 1 Q 12 (a) describe the splay tree operations, when would you use a splay tree instead of a RBT?
- 2004 P 4 Q 3 (a)-(c)] structure, insert, delete, state properties,
- 1999P6Q1 describe insert, lookup and delete, compare with hash tables

Skiplists (out of syllabus):

- 2008P1Q12 Skiplist node, search, when is skiplist preferred to a hash table?

Huffman coding:

- [2005P3Q2 (a)-(c)] describe Huffman coding, estimate bits needed

Matrix operations (out of syllabus):

- $2010 \mathrm{P1Q6}$ matrix multiplication, solve Strassen's algorithm recurrence relation

String algorithms (out of syllabus):

- 2013P1Q5 FSA string matching
- $2005 \mathrm{P} 3 \mathrm{Q} 2(\mathrm{~d}),(\mathrm{e})$ arithmetic coding
- 2004P3Q3] Lempel-Ziv algorithm
- 2004P4Q3 (d) Trie?
- 2003P6Q1 Burrows-Wheeler transform
- 2002P6Q1 Arithmetic encoding
- 2001P4Q5 (b),(c) string matching, estimate time complexity.

Computational geometry (out of syllabus):

- 2004P6Q1 determine if two line segments intersect, Graham scan, heuristic elimination.
- 2001P4Q5 (a) Graham scan
- 1998P3Q5 (same as 1993P11Q8])
- 1996P3Q6 describe Graham scan algorithm, state complexity, heuristic to eliminate points
- 1994P3Q6 (j) Running time of convex hull algorithms
- 1994P10Q7 (j) Extremal points are on the convex hull.
- $1994 \mathrm{P10Q7}$ (f) "All straight lines from the inside of a polygon to the outside intersect the points on the edges forming its boundary an odd number of times"
- 1994 P 11 Q 6 (b) determine if two line segments intersect, determine if a half-line intersects a polygon other than at a vertex.
- 1993P11Q8 determine if point in simple polygon, randomised algorithm for convex hull

Randomness:

- 1994P3Q7 (d) Give examples where randomness helps in algorithms.

Other:

- 2002P3Q3 Memory organisation (malloc, etc).

