
Algorithms Example Sheet 5: Further

Reading

(optional) Faster algorithms for the MST

Exercise 5.F.1 [Boruvka's algorithm] One of the earliest known algorithms for computing the MST
is Boruvka's algorithm. This works by starting with all single vertices and no edges and then for each
vertex pairing it up with the smallest incident edge. Then it contracts the connected components and
repeats the same thing.
(a) Prove that Boruvka's algorithm �nds the MST.

(b) Explain why the number of connected components in each iteration are at most half as many as in
the previous iteration. Deduce that Boruvka's algorithm needs O (log V ) iterations.

(c) Explain how you would implement each step in O (E) time.

(d) Deduce that the running time of Boruvka's algorithm is O (E log V ).

Exercise 5.F.2 [Yao's MST algorithm] (++) In this problem we will illustrate some of the ideas
behind Yao's O (E log log V ) time algorithm. The essential idea behind this algorithm is to note that if
we implement Boruvka's algorithm we scan all the edges in the graph in each pass, and avoiding this
repetition should get us an improvement. Assume that the graph G is connected and hence E ≥ V − 1.
(a) Suppose for each vertex, the edges adjacent to that vertex are stored in non-decreasing order of

weights. Show a slight variant of Boruvka's algorithm that runs in time O (E + V log V ) time.

(b) (k-partial sorting) Given a parameter k and a list of N numbers, give an O (N log k) time algorithm
that partitions this list into k groups g1, g2, . . . , gk of size at most ⌈N/k⌉ each such that all elements
in gi are smaller than those in gi+1 for each i.

(c) Adapt your algorithm from the �rst part above to handle the case where the edges adjacent to
each vertex are not completely sorted but only k-partially-sorted. Ideally, your run-time should be
O
(
m
k log V + V log V

)
.

(d) Use the two parts above (setting k = log V ), preceded by some additional rounds of Boruvka, to
give an O (m log log V ) time MST algorithm.

[Source: CMU Adv. Algo Ex 2]

Project 1 [Fredman-Tarjan O (E log∗ V ) algorithm] (+) Read section 1.3 from these notes and
answer the following questions:
(a) De�ne the iterated logarithm log∗ n for n ∈ N. (see wikipedia)
(b) (optional) Plot this function to con�rm that this stays small even for large values of n.

(c) Describe a single iteration of the Fredman-Tarjan algorithm.

(d) What is the time complexity of each round?

(e) Prove that the number of trees in each iteration is at most 2m/K.

(f) Describe the choice of Ki in each iteration. How does this lead to the overall O (E log∗ V ) time
complexity?

Project 2 [Fast second-best MST] Read about lowest common ancestors in a tree and how these
can be computed in log(V )-time using the technique known as binary lifting.
(a) Argue that two vertices u and v have a unique lowest-common ancestor.

(b) Explain the binary lifting technique.

(c) Argue about the time complexity of the binary lifting technique.

1

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/homework/h1.pdf
http://www.cs.cmu.edu/~15850/notes/lec1.pdf
https://en.wikipedia.org/wiki/Iterated_logarithm


(d) Extend the binary lifting technique to �nd the minimum in the path between two vertices u and v.

(e) Use the extended binary lifting technique to �nd the second-best MST in time O (E log V ).

Maximum �ow

Exercise 5.F.3 [Edmonds-Karp algorithm] (++) The Edmonds-Karp algorithm modi�es Ford-
Fulkerson algorithm by �nding the augmenting path using a BFS instead of any other search method
(such as DFS) and this turns out to drastically improve the time complexity for �nding the maximum
�ow. Read p.728-730 in CLRS to �nd out how it achieves this.

Project 3 [Push-relabel] (++) Read section 26.4 in CLRS for how the push-relabel algorithm, �nds
the maximum �ow in O

(
V E2

)
time.

Project 4 [Relabel-to-front] (+++) Read section 26.5 in CLRS for how the relabel-to-front algorithm
�nds the maximum �ow in O

(
V 3

)
time.

2


