
Algorithms Example Sheet 2: Further

Reading

1 The longest common subsequence problem

Further reading: There are some an asymptotically more e�cient algorithm which do not seem to be
commonly implemented in practice. One such algorithm is the �Four Russian� algorithm which runs in
O (nm/ logm) time and you can read about it here. It is an open problem to �nd an algorithm that com-
putes the LCS between two strings of length n in O

(
n2−ε

)
time for constant ε > 0 (i.e. an asymptotically

polynomial change instead of logarithmic). More recently, it has been shown that solving this problem in
O
(
n2−ε

)
time, would imply faster algorithms for a collection of problems (see for example here).

Project 1 [Hirschberg's algorithm] In this project, you will investigate a space e�cient algorithm
for recovering the LCS of two strings in O (min(n,m)) space using Hirschberg's algorithm. Read through
these slides and answer the following questions:
(a) How can the LCS problem be interpreted as a longest path problem in a matrix?

(b) With the aid of the following diagram explain how you can compute the optimal in the column at
n/2 by solving two instances of LCS for a string of length n/2 and a string of length m using linear
memory.

(c) If you know the optimal path passes through (n/2, x), how can you �nd the remaining path, by
processing a matrix of total mn/2 size (and still using linear memory).

(d) Argue that the time complexity of the algorithm is O (mn) and the space complexity is
O (min(n,m)). Hint: Consider the sum mn+mn/2 +mn/4 + . . ..

Some other directions/variants for the LCS problem:

� Approximation algorithms for the LCS problem (e.g. here).

� LCS in the streaming setting (e.g. here).

� Beyond worst-case analysis for LCS problems (e.g. here).

� Analysis of the LCS problem in randomised setting (e.g. here).

� Multi-variate �ne grained analysis (e.g. here).

� Counting the number of di�erent LCS (e.g. here).

2 Longest Common Substring

Longest common substring can be e�ciently solved using a su�x array in O (n log n) time or using a su�x tree
in O (n) time. You will learn more about these approaches in Part II Bioinformatics.
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3 Longest palindromic substring

There is a more e�cient algorithm for �nding the longest palindromic substring in a given string (and actually
any palindromic subtring). This algorithm is known as Manacher's algorithm [? ] and you can read more
about it here.

4 Speeding up dynamic programming

Project 2 [Faster DP algorithms for special cases] There are several techniques for speeding up
Dynamic Programming algorithms. We have already seen some of these (e.g. matrix exponentiation
to compute the Fibonacci numbers). Some more are described in this chapter (and also in these blog
posts: here and here. In this project, you can pick one of these techniques and one example problem
and describe: (a) the problem to be solved, (b) the normal DP algorithm and its complexity, (c) the
technique to be applied, (d) the resulting algorithm and its complexity.

Project 3 [Faster subset sum] Recently, there has been a series of works that improve the running
time for solving the subset sum problem. You can read more about these in this paper.

More divide and conquer

Project 4 [Karatsuba's multiplication algorithm] In this project, you will investigate an algorithm
for integer multiplication that is asymptotically faster than the algorithm commonly taught at school.
To simplify the analysis, we will assume that we want to multiply to n-bit positive integers with n = 2k

(if it is not we can pad 0s in the beginning.
(a) (Warm-up) Show that classical method takes O

(
n2

)
time.

(b) Argue that multiplication of an n-bit number by 2` takes Θ(`+ n) time.

(c) Let x = x1 · 2n/2 + x0 where x1 and x0 are two n/2-bit numbers. Then show that for n > 1,

x · y = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0) = x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0.

(d) Show that a divide and conquer algorithm that performs 4 multiplications of n/2-bit numbers,
takes O

(
n2

)
time (i.e. no improvement over the classical method). Hint: It may be helpful to

write out the recurrence relation)

(e) Show how (x1 · 2n/2 + x0)(y1 · 2n/2 + y0) can be computed using only 3 multiplications of roughly
n/2-bit sized integers. Hint: Consider adding (or subtracting) two numbers before multiplying.

(f) (+) Solve the recurrence relation to show that the new divide and conquer algorithm performs
Θ(nlog2(3)). (Hint: If you get stuck, feel free to use the Master Theorem)

If you get stuck, you can consult Vazirani et al (section 2.1) or wikipedia.
Note: A similar technique can be applied for faster matrix multiplication, which is known as Strassen's
algorithm.

Project 5 [Toom-Cook's multiplication algorithm] (++) (Only if you have completed Project 4)
Read about Toom-Cook's multiplication method for getting O

(
n1+ε

)
time algorithm.

Project 6 [Fast Fourier Transform] One of the major applications of divide and conquer is in
computing the Fast Fourier Transform. This algorithm is used in many applications, including fast
integer multiplication, fast polynomial multiplication, string matching, in signal processing, in Computer
Vision and more. Read about divide and conquer algorithm for computing the FFT from the Information
Theory notes, Chapter 30 in CLRS3, or Section 2.6 in this book.
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Furher reading on the
√
n approach

The approach of splitting an array in
√
n groups can be generalised to support several operations (such as range

updates, range queries for di�erent operations) as well as operations on trees and graphs. You can read about
some of them here or here or here.

Further reading on the segment tree

Segment trees can be used to solve a lot of interesting problems:

� Can be generalised for other point updates/range queries, such as �nding the min, gcd and more. What
kind of condition should the function satisfy?

� Can be generalised for range updates/range queries for sum. Look at the lazy propagation technique.

� Can be made persistent, i.e. remember all previous states of the array (you get this for free if you
implement segment trees in OCaml).

� Can be generalised to higher dimensions (see here).

You can read more about segment trees in following articles: [segment tree algorithm](https://www.topcoder.com/community/competitive-
programming/tutorials/range-minimum-query-and-lowest-common-ancestor/#Segment_Trees) for e�ciently re-
trieving the sum of a subarray (and also updating an entry in the array).

Partial sums

If you are interested in the theoretical optimal times for answering the partial sum problem look at Chapter
4.3 from Patrascu's thesis or this more recent work.
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