
Algorithms Example Sheet 6: Problems

Solution Notes

Amortised analysis

Recommended reading:

� Je� Errickson's notes

� CLRS Chapter 17

� Okasaki's Chapter 5 on amortised analysis

Exercise 6.P.1 [k-bit counter] Consider a k-bit binary counter. This supports a single operation,
inc(), which adds 1. When it over�ows i.e. when the bits are all 1 and inc() is called, the bits all reset
to 0. The bits are stored in an array, A[0] for the least signi�cant bit, A[k − 1] for the most signi�cant.
(a) Give pseudocode for inc().

(b) Explain why the worst-case cost of inc() is O (k).

(c) Starting with the counter at 0, what is the aggregate cost of m calls to inc()? [Hint: How many
times can each bit get �ipped? ]

(d) Let Φ(A) be the number of 1s in A. Use this potential function to calculate the amortized cost of
inc().

(e) In a binomial heap with N items, show that the amortized cost of push() is O (1).
Note: We have seen this before, but it might be good practice to attempt this again, now that you have
seen amortised analysis in more detail.

[Exercise 2 in Lecturer's handout]

(a) #include <iostream >

#include <vector >

std::vector <int > a({ 0 });

void increment () {

bool found = false;

for (int i = 0; i < a.size(); ++i) {

if (a[i] == 0) {

a[i] = 1;

found = true;

break;

}

a[i] = 0;

}

if (!found) a.push_back (1);

}

void print() {

for (auto v : a) {

std::cout << v;

}

std::cout << std::endl;

}

int main() {

for (int i = 0; i < 16; ++i) {

print();

increment ();
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}

return 0;

}

(b) Because of the break we have, the loop goes over the pre�x of 1's and turns them in 0's. The �rst 0 it
�nds, it terminates. Hence, it takes O (k) time.

(c) The 0-th bit gets �ipped m times.
The 1-st bit gets �ipped every two rounds, so at most m/2.
The 2-nd bit gets �ipped every four rounds, so at most m/4.
...
The k-th bit gets �ipped every 2k rounds, so at most m/2k.

Hence, on aggregate the total number of �ips is at most:
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+
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4
+ . . . = m ·

(
1 +

1
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1

4
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)
= m · 1

1− 1/2
= 2m,

since it is a geometric series with ratio 1/2.

Note: A nice animation can be found here.

(d) Each increment requires k + 1 bit �ips, where k is the number of initial 1's. So the potential Φ changes
by 1− k. Hence, the amortised cost is

c′ = c+∆Φ = k + 1 + 1− k = 2.

(e) There is this isomorphism between binary addition and binomial heaps, by considering whether the
binomial heap has a binomial tree of order k (or size 2k). Each time we are adding one element to a
binomial heap, the binomial trees of order k correspond to the bits that change in the binary representation
of the counter. Since the amortised cost for increment is O (m) after m operations, the amortised cost
for adding N items to the binomial heap is O (N).

Exercise 6.P.2 Consider a stack that, in addition to push() and pop(), supports flush() which
repeatedly pops items until the stack is empty.
(a) Using the potential function

Φ = number of items in the stack,

show that the amortized cost of each of these operations is O (1).

[Exercise 3 in Lecturer's handout]

(b) What is the worst-case time complexity for an operation? Could this matter in practice?

(c) How would you implement the operations so that the worst-case time complexity for each operation
is O (1)?

(a) Let ka be the time required to add an element and kr the time required to remove an element. We de�ne
the scaled potential Φ′ := kr · Φ, then

� push: We are adding one element, so c′push = ka +∆Φ′ = ka + kr.

� pop: We are removing one element, so c′pop = kr +∆Φ′ = kr − kr = 0.

� flush: We are removing all, say k, elements, so c′flush = cflush +∆Φ′ = k · kr − k · kr = 0.

Hence, any sequence of operations with Na additions and Nr removals takes Na · (ka+kr) = O (Na +Nr)
time on aggregate.

(b) The worst-case time complexity is Ω(N) whereN is the total items to be insered. In real-time applications,
this could be a problem as we might care about react time at each step.
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(c) We represent the stack using a linked list. Whenever you do a flush, you can start a new linked list and
not immediately discard the old one. But for each subsequent operation discard two elements from the
list to be deleted. The rate of deletion is greater than the rate of insertion, so the �to-delete� list will be
emptied at some point, but each step takes O (1) time.

Note: you can read more about real-time data structures in the handout �Further problems in lists, queues
and stacks�.

Exercise 6.P.3 [Functional Deque] Attempt [2018P1Q2 (b)].

Exercise 6.P.4 In the game of solitaire chequers, the goal is to move one piece to the top row, via moves
of the type shown. A move consists of a diagonal jump by one piece over another; the latter piece is then
removed.

De�ne a potential function

Φ(board state) =
∑

pieces p

ϕ(y-coordinate of p),

where you should de�ne ϕ in such a way that any valid move leaves Φ unchanged. Use this potential
function to prove that it is impossible to win the game, starting from the board con�guration on the left.

[Source: Dr Thomas Sauerwald]

Let y be the initial y coordinate of the piece to be moved, then its �nal position is y + 1 and the position of
the piece to be removed is y, hence the change in the potential is

∆Φ = ϕ(y + 2)− ϕ(y + 1)− ϕ(y).

We are instructed to choose ϕ such that ∆Φ = 0, hence ϕ(y + 2) = ϕ(y + 1) + ϕ(y) (which is the reccurence
relation for the Fibonacci numbers if we set ϕ(0) = 0 and ϕ(1) = 1.
The potential at the starting state is 3 · ϕ(1) + 3 · ϕ(2) + 3 · ϕ(3) = 3 · (1 + 2) = 9. The top row is at height 7,
but ϕ(7) = 13 > 6, so we cannot have any piece there.

Dynamic Array

Exercise 6.P.5 [Dynamic array with removals] Consider a stack, implemented using a dynamically-
sized array. The rightmost item in the array represents the top of the stack, where we pop from and
where we push new items. Suppose that the array's capacity is doubled when it becomes full, and halved
when it becomes less than 25% full; and that the cost of these resizing operations is O (n) where n is the
number of items to copy across into the new array. Using the potential method, show that the push and
pop operations both have O (1) amortized cost. What would go wrong if we halved capacity as soon as
the array became less than 50% full, rather than 25% full?

[Exercise 8 in Lecturer's handout]

Consider the potential function

Φ :=

{
2 · (n− ℓ/2) if n ≥ ℓ/2,

2 · (ℓ/2− n) if n < ℓ/2.

For ℓ = 1, de�ne Φ =. Then for the append operation, we have the following cases:
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� Without resize: When adding one element, the potential changes by at most 2, and the insertion cost
is O (1), so c′ = O (1).

� With resize:

c′a = O (n) + 2 · (n+ 1− n)− 2 · (n− n/2) = O (n) + 2− n = O (1) .

For the delete, we have the following cases:

� Without resize: Again, the amortised cost is O (1).

� With resize: The capacity changes from 4n to 2n and n decreases by 1. So,

c′d = O (n) + 2 · (2n/2− n+ 1)− 2 · (4n/2− n) = O (n) + 2− 2n = O (1) .

The problem with deleting when it is 50% full is that we could be adding and deleting an element and trigerring
entire copies, in just one operation. So, the amortised time complexity would be Ω(n).

Amortised analysis in search trees

Exercise 6.P.6 I have an algorithm that uses a 2-3-4 tree. I've noticed that in a typical run there are
several intervals in the key space into which items get inserted, but in which the algorithm doesn't end
up searching. I don't want to waste time balancing a tree with these items, but I don't want to discard
them because I don't know in advance what the searches will be. I'd like to adapt the 2-3-4 tree so that
insertions are lazy, O (1), and so that the relevant parts of the tree are tidied up on search. Suggest an
appropriate design. Using the potential method, explain why your design is no worse than the original
2-3-4 tree, in the big-O sense.

[Exercise 9 in Lecturer's handout]

Exercise 6.P.7 [Restructuring RBTs] (optional) Attempt Problem 7.2 from this problem sheet.

Disjoint sets

Exercise 6.P.8 [Extensions to Disjoint Sets] Sketch out how you might implement the lazy forest
disjoint set, so as to e�ciently support:
(a) �Given an item, print out all the other items in the same set�.

[Exercise 12 in Lecturer's handout]

(b) �Given an item, print the smallest index in the same set�.
Explain carefully how get_set_with and merge are implemented.

(a) For each vertex, maintain a list to all its direct children. This requires updating merge such that when
we make u a parent of v, we also append v to u's list. We also keep a pointer of v in its parent list, so
that if we update its parent via get_set_with, we have an e�cient (namely O (1) way of removing the
node). To �nd all vertices in the same set as v, go to p = get_set_with(v) and perform a DFS search
through its children.

(b) For each root vertex v of a set, we keep the value of the smallest index in the set. Whenever we merge

two vertices, we update the parent's min to be the minimum of the two. To �nd the minimum of the
group containing v, we do get_set_with(v).min. The implementation of get_set_with does not change.

Exercise 6.P.9 Consider an undirected graph with n vertices, where the edges can be coloured blue or
white, and which starts with no edges.
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(a) The graph can be modi�ed using these operations:

� insert_white_edge(u,v) inserts a white edge between vertices u and v

� colour_edges_of(v) colours blue all the white edges that touch v

� colour_edge(u,v) colours the edge u ↔ v blue

� is_blue(u,v) returns True if and only if the edge u ↔ v is blue

Give an e�cient algorithm that supports these operations, and analyse its amortized cost.

(b) Extend your algorithm to also support the following operation, and analyse its amortized cost:

� are_blue_connected(u,v) returns True if and only if u and v are connected by a blue path.

(c) Extend your algorithm to also support the following operation, and analyse its amortized cost:

� remove_blue_from_component(v) deletes all blue edges between pairs of nodes in the blue-
connected component containing v.

[Note: It's easy to gloss over di�culties, so be sure to be explicit about all operations. If you change
your data structure to answer a later part, make sure your earlier answers are still complete. This is the
sort of question you might be asked in a Google interview; the interviewer will be looking for you to take
ideas that you have been taught and to apply them to novel situations.]

[Source: This question is from Alstrup and Rauhe, via Inge Li Gortz]

(a) (Solution 1): For each node u keep the two lists, ℓb one containing edges that are blue and ℓw containing
edges that are white. Then, support the operations as follows:

� insert_white_edge(u, v): Set t(u,v) = T and c(u,v) = w.

� colour_edges_of(v): Set tv = T and cv = b.

� colour_edge(u, v): Set t(u,v) = T and c(u,v) = b.

� is_blue(u, v):

(Solution 2): It is possible to support these four operations using an O (1) worst-case time complexity
for each operation. For each edge e, we keep track the last time te that we coloured the edge and the colour
ce that we used. Also, for each vertex v ∈ V we keep track of the last time tv we updated the colouring
of its incident edges and the colour cv that we used. So, keep a timer T and support the operations, in
the following way:

� insert_white_edge(u, v): Set t(u,v) = T and c(u,v) = w.

� colour_edges_of(v): Set tv = T and cv = b.

� colour_edge(u, v): Set t(u,v) = T and c(u,v) = b.

� is_blue(u, v): We consider three cases:

� If t(u,v) ≥ max(tu, tv), then answer is c(u,v)==b.

� If tu ≥ max(tu, t(u,v)), then answer is cu==b.

� Same as in ??, by with v instead of u.

Note: Actually this approach allows us to support colouring edges either blue or white.

Exercise 6.P.10 [Disjoint set problems] (optional) Think how you would solve some of the following
problems:
(a) [CSES Road Construction]

(b) [Usaco Closing the farm]

(c) [Usaco MooTube]
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