
Algorithms Example Sheet 5: Problems

Solution Notes

Further DAG problems

Exercise 5.P.1 If we take a DAG and reverse all the edges, do we get a DAG? Justify your answer.

[Exercise 11 in Lecturer's handout]

Let G be the DAG and GR the graph with reversed edges. Assume GR was not a DAG. So, there is some cycle
v1 → v2 → . . . → vk → v1. But then the cycle v1 → vk → vk−1 → . . . → v2 → v1 would be a cycle in G
(contradiction). So GR is acyclic (and of course directed).

Exercise 5.P.2 Here are two buggy ways to code topological sort. For each, give an example to show
why it's buggy.
(a) Pick some vertex s with no incoming edges. Simply run dfs_recurse, starting at this node, and

add an extra line totalorder.prepend(v) as we did in toposort.

(b) Run dfs_recurse_all, but order nodes in order of when they are visited, i.e. insert
totalorder.append(v) immediately after the line that sets v.visited=True.

[Exercise 12 in Lecturer's handout]

(a) The problem is that there could be multiple vertices with no incoming edges. For example, consider the
following graph:

𝑠2

𝑢

𝑠1

Running a single DFS cannot explore (and so cannot add to the output) both s1 and s2, so the returned
ordering will be wrong.

(b) Again, consider the graph above starting the DFS at s1 and then from s2. Then the returned order will
be [s1, u, s2] which is not a total order.

Exercise 5.P.3 Given a DAG G, design an algorithm to determine if there is a path that includes each
vertex exactly once.

The following algorithm can be applied:

1. Find a topological ordering of the vertices.

2. Check if there is an edge between adjacent vertices.

We are searching for an ordering (i.e. a permutation) r of the vertices such that the edges vr(i) → vr(i+1)

exist for every i ∈ [n]. Consider the topological ordering t(·), then t(vr(i)) < t(vr(i+1)) (because the edge
vr(i) → vr(i+1) exists), so t(vr(1)) < . . . < t(vr(n)). Hence, there will be such a path i� there is a edge between
adjacent vertices in the topological ordering.

Exercise 5.P.4 Show that every DAG G has at least one vertex with no incoming edges and at least
one vertex with no outgoing edges.

(Solution): We know that every DAG has a topological ordering. In this ordering the �rst vertex v should
have no incoming edges. If it did, say (u, v), then it would mean that u is before it in the topological ordering,
which would be a contradiction. Similarly, for the �nal vertex.
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Exercise 5.P.5 Give pseudocode for an algorithm that takes as input an arbitrary directed graph g,
and returns a boolean indicating whether or not g is a DAG.

[Exercise 13 in Lecturer's handout]

(Solution 1): Run toposort(G) to get an ordering t of the vertices in the graph (the algorithm will terminate
in O (V + E) time even in the presence of cycles because it is just a modi�cation of DFS). Then we can check
if t is indeed a topological ordering by iterating over the edges (u, v) and verifying that t(u) < t(v).
(Failed approach): Running DFS and checking if a visited vertex was encountered is wrong because the
vertex may have been visited from a previous iteration (or may not form a cycle). Consider the execution in
the following graph where a visited vertex is found but not cycle is formed:

(Solution 2): However, we can modify DFS in the following way:

� Create three starts for vertices: visited, unvisited, in-stack.

� Each time we examine an edge (u, v), if v is in-stack, then it means that there is a cycle, namely the
path consisting of all vertices from u's position on the stack to the top of stack and the �nal edge closes
the cycle. (We are using the fact that in a DFS there is always a path from the bottom element of the
stack to the top one)

� Return that the graph has a cycle i� such a back-edge is found.

Consider the execution in the following graph:

Now to argue that it always �nds a cycle, consider a cycle in a graph G. Consider the �rst time that the DFS
visits a vertex v of the cycle (and let u be the vertex before it). The existence of the path v ⇝ u implies that
u will be visited before terminating the DFS from v. Hence, at that point everything of the stack will consist
of a path and hence the back-edge (v, u) will form a cycle (which might not be the original one).
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Exercise 5.P.6 Give an example DAG with 9 vertices and 9 edges. Pick some vertex that has one or
more edges coming in, and run through toposort starting on line 6 with this vertex. Mark each vertex
with two numbers as you proceed: the discovery time (when the vertex is coloured grey) and the exit
time (when the vertex is coloured black). Then draw a linearized DAG by arranging the vertices on a
line in order of their �nishing time, and reproducing the appropriate arrows between them. Do all the
arrows go in the same direction?

[Exercise 17 in Lecturer's handout]

Yes, by de�nition the �nishing times are sorted in reverse topological order, so the arrows should be going left.

Exercise 5.P.7 The code for toposort is based on dfs_recurse. If we base it instead on the stack-based
dfs from Section 5.2, and insert the line totalorder.prepend(v) on line 13 (after the iteration over v's
neighbours), would we obtain a total order? If so, justify your answer. If not, give a counterexample,
and pseudocode for a proper stack-based toposort.

[Exercise 20 in Lecturer's handout]

This version of DFS will not compute the correct order even for simple DAGs (e.g. one with two vertices and
one edge 1 → 2).
To correct this, we need to insert v only once we have processed all of its neighbours. This can be done by having
a vertex in two states. When pushed the �rst time it will be visit. When popped and it is in visit state it
will be pushed back with state done and then all of its neighbours will be pushed back. When popped and it
is in done state (which will happen after all of its neighbours are visited), it will be added to the topological
ordering.
The lecturer gives the following code:

from algorithms.graph import *

def toposort_stack(g):

totalorder = []

def visit(s):

toexplore = [(s, "visit")]

s.seen = True

while len(toexplore) > 0:

v, todo = toexplore.pop()

if todo == "visit":

toexplore.append ((v, "done"))

for w in v.neighbours:

if not w.seen:

toexplore.append ((w, "visit"))

w.seen = True

else: # todo ==" done"

totalorder.append(v)

for v in g.vertices:

v.seen = False

for v in g.vertices:

if not v.seen:

visit(v)
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totalorder.reverse ()

return totalorder

order = toposort_stack(simple_graph_4)

for v in order:

print(v)

Exercise 5.P.8 [Approximate DAGs] (optional) Sometimes we want to impose a total order on a
collection of objects, given a set of pairwise comparisons that can be thought of as a �DAG with noise'.
For example, let vertices represent movies, and write v1 → v2 to mean �The user has said she prefers
v1 to v2.� A user is likely to give answers that are by and large consistent, but with some exceptions.
Discuss what properties you would like in an �approximate total order�, and how you might go about
�nding it. [This is an open-ended question, and a prelude to data science and machine learning courses.]

[Exercise 18 in Lecturer's handout]

Exercise 5.P.9 Write out a formal proof of the correctness of the toposort algorithm, �lling out all the
details that are skipped over in the handout. Pay particular attention to the third case, �v2 is coloured
grey�, where it is claimed �The call stack corresponds to a path in the graph from v2 to v1.�

[Exercise 19 in Lecturer's handout]

We proved as part of Exercise ?? the property that if a vertex is �grey� (i.e. it is on the stack) and there is a
back-edge to it, then there is a loop. So when terminating the DFS from a vertex u, all vertices reachable from
u have been added to the reverse topological order and for any vertex v that was visited during the DFS, there
exists a path from u (because u was on the stack at the same time as v).

Minimum Spanning Trees

Exercise 5.P.10 An engineer friend tells you �Prim's algorithm is based on Dijkstra's algorithm, which
requires edge weights to be ≥ 0. If some edge weights are < 0, we should �rst add some constant weight
c to each edge so that all weights are ≥ 0, then run Prim's algorithm.�
(a) Your friend's algorithm will produce a MST for the modi�ed graph. Is this an MST for the original

graph?

(b) What would happen if you run Prim's algorithm on a graph where some weights are negative?
Justify your answer.

[Exercise 9 in Lecturer's handout]

(a) Yes, it is. Consider a tree T in the original graph G and the tree consisting of the same edges in the
modi�ed graph G′, Then w′(T ) = w(T ) + (|V | − 1) · c. Hence, the relative ordering between the trees
remains the same (adding a constant to all elements of a sorted array keeps the tree sorted).

(b) No part in the proof of Prim's algorithm requires that the edge weights are ≥ 0. Hence, it works on
negative weights as well.

Exercise 5.P.11 [MST with updates]
(a) Attempt [2015P1Q9 (c)].

(b) Design an algorithm to �nd the second-best MST (if it exists), i.e. the tree T with the smallest
weight w(T ) such that w(T ) > MST.
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Maximum �ow

Exercise 5.P.12 We are given a directed graph, and a source vertex and a sink vertex. Each edge
has a capacity cE(u → v) ≥ 0, and each vertex (excluding the source and the sink) also has a capacity
cV (v) ≥ 0. In addition to the usual �ow constraints, we require that the total �ow through a vertex
be ≤ its capacity. We wish to �nd a maximum �ow from source to sink. Explain how to translate this
problem into a max-�ow problem of the sort we studied in section 6.2.

We can transform all vertices v in the input graph as follows:

𝑣𝑖

𝑢1𝑜

⋮
𝑐𝑉 𝑣

𝑣𝑜

𝑢𝑑𝑜

𝑢1𝑜
′

⋮

𝑢𝑘𝑜
′

𝑣

𝑢1

⋮

𝑢𝑑

𝑢1
′

⋮

𝑢𝑘
′

⇒

where ui are the vertices incoming to v and u′
i are the vertices outgoing from v. Therefore the �ow through the

edge vi → vo corresponds to the �ow through the vertex v in the original graph. Since we set cE(vi → vo) =
cV (v), any valid �ow will respect the vertex capacities.

Exercise 5.P.13 The Russian mathematician A.N. Tolstoy introduced the following problem in 1930.
Consider a directed graph with edge capacities, representing the rail network. There are three types
of vertex: supplies, demands, and ordinary interconnection points. There is a single type of cargo we
wish to carry. Each demand vertex v has a requirement dv > 0. Each supply vertex v has a maximum
amount it can produce sv > 0. Tolstoy asked: can the demands be met, given the supplies and graph
and capacities, and if so then what �ow will achieve this?
Explain how to translate Tolstoy's problem into a max-�ow problem of the sort we studied in section
6.2.

[Exercise 5 in Lecturer's handout]

We can model this by inserting a source s and connecting to all vertices si with a positive supply ssi through
an edge with capacity ssi . We also insert a sink t and connect all vertices di with a positive demand ddi

to it,
through an edge with capacity ddi

.

𝑠

𝑠1

𝑠𝑘

⋮ ⋮

𝑑1

𝑑ℓ

⋮ 𝑠

Then we run the maximum �ow algorithm from s to t. If the total capacity is equal to
∑

u du then it means
that all demands where reached, because the only possible way for �ow to reach t is through its incident edges.

Exercise 5.P.14 In the context of Exercise ??, a dispute has arisen in the central planning committee.
Comrade A who oversees the factories insists that each demand vertex must receive precisely dv, no more
and no less. Comrade B who oversees the trains insists that each demand vertex v must be prepared to
receive a surplus �ow, more than dv, so as not to constrain the �ows on the train system any more than
necessary. Does your solution satisfy Comrade A or Comrade B? How would you satisfy the other?

[Exercise 7 in Lecturer's handout]

This exercise is a bit ambiguous. The way we formulated the problem satis�es A. We could allow for the
demand vertices to have an surplus �ow by adding some edges with ∞ capacity back to the source vertex. This
would satisfy B, as any surplus �ow would be routed back to the source. However, by Exercise ??, it is always
possible to remove any �ow through this extra edge.

Exercise 5.P.15 Devise an algorithm that takes as input a �ow f on a network, and produces as output
a decomposition [(λ1, p1), . . . , (λn, pn)] where each pi is a path from the source to the sink, and each λi
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is a positive number. The decomposition must satisfy f =
∑

i λipi, by which we mean �put �ow λi along
path pi, and add together all these �ows-along-paths, and the answer must be equal to f �. Explain why
your algorithm works.

Consider the following algorithm:

1. Repeat while |f | > 0:

2. Consider the auxiliary graph H consisting of all edges with f(u → v) > 0.

3. Since the �ow is positive, there is a path from s to t in H.

4. Find such a path pi using e.g. BFS.

5. Let λi be the minimum edge on the path.

6. f := f − λi.

7. For each edge e in pi, set f(e) := f(e)− λi.

The algorithm will terminate after O (E) iterations since each iteration sets at least one new edge to 0. There
will exist such a path in H, because the invariant is that if we can reach a vertex v from s with positive �ow,
then this �ow should also go out of v (by �ow conservation) and at some point reach t (otherwise the balance
condition does not hold).

Exercise 5.P.16 [Edge-disjoint paths] Two paths are edge disjoint if they do not share an edge.
Given a directed graph G �nd the maximum number of edge disjoint paths from s to t.

Run the maximum �ow algorithm on the graph assuming that each edge has unit capacity. The proof of
correctness (and a way to retrieve the disjoint paths) is by using Exercise ??, since the �ow decomposition
returns a collection of unit length s-t �ows, so there are f edge-disjoint paths. The existence of a cut of size f
(by the min-cut theorem), tells you that there is no way that there could be more than k distinct edges from
component of s to the component of t, so if there were > k paths connecting s and t, they would have to share
one of this edges (hence not disjoint).
See also the 6 paths in the London underground/overground (Exercise ??).

Exercise 5.P.17 [Baseball elimination problem] You are given the points wx that each team x has
in the league. There are gxy = gyx remaining games between teams x and y. You would like to determine
if there is a possible outcome so that team z �nishes �rst (or tied �rst).
For example, if there are 4 teams and the league table is as follows:

Team Points
x 12
y 12
z 10
w 7

and the remaining games are gxy = 3, gzw = 3 and gwx = gwy = 1. Team z can reach at most 13 points
by winning all games, but either team x or team y will win at least two games (from those that they
play against each other), so they will reach 14 points. Hence, it is not possible for z to �nish �rst.

We are looking for the best possible scenario for z, so we should assume that z wins all of their games. Hence,
we know that in the end z will have w′

z = wz +
∑

u guz. Hence, we are looking for an assignments of the
rest of the games so that no team will have more than w′

z points. This means that team x can win at most
rx := w′

z − wx games (if negative then we know that z �nish �rst). We encode this constraint by having a
common sink t, and connect every team x to t with capacity rx.
Now we also need to encode the constraint that each of the gxy games has to be won by either x or y. This
can be done by connecting the source s to vertex Gxy with capacity gxy and this vertex connect it to x and y,
with capacity Gxy. So each team can win at most gxy of the games and each game is won by a single team.
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In this graph we compute the maximum �ow. The maximum �ow will tell us the maximum number of games
that can be played with all teams having at most w′

z points. Why? Because given a valid �ow we can convert
it into a sequence of outcomes to some of the games. Also, given a valid sequence of games, we can convert it
to a �ow.
Consider the example above, the graph looks as follows. The maximum �ow is 4, which means that not all 5
games can be played.
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1

Exercise 5.P.18 In the London tube system (including DLR and Overground), there are occasional
signal failures that prevent travel in either direction between a pair of adjacent stations. We would
like to know the minimum number of such failures that will prevent travel between Kings Cross and
Embankment.
(a) Explain how the tube map g can be translated into a suitable �ow network g′, with Kings Cross

the source and Embankment the sink, such that a set of signal failures preventing travel in g is
translated into a cut in g′. [Hint: Remember that a cut is a partition of the vertices, not an
arbitrary selection of edges.]

(b) Explain how a cut in g′ can be translated into a set of travel-preventing signal failures in g, such
that the number of signal failures is ≤ the capacity of the cut.

(c) Suppose we take the minimum cut in g′ and translate it into a set of travel-preventing signal failures
in g. Show that this is the minimum number of travel-preventing signal failures.

(d) Find a maximum �ow on your directed graph. Hence state the minimum number of signal failures
that will prevent travel. [Hint: You should run Ford-Fulkerson by hand, with sensibly-chosen
augmenting paths.]

[Exercise 6 in Lecturer's handout]

(a) Note that the graph is undirected. We convert it into a directed graph where each bi-directional edge
(u, v) is converted into two directional edges (u, v) and (v, u) with unit capacities. We compute the
maximum �ow f in the directed graph and this also gives a cut of size f . Now, we need to argue that
the corresponding cut will not have both (u, v) and (v, u) edges, because this would mean that we have
double-counted an edge.

To see this, consider the two components S and T of the cut. Then for (u, v) to be in the cut it means
that u ∈ S and v ∈ T . If we had (v, u) in the cut it would mean that v ∈ S (and u ∈ T ) which cannot
be the case since by de�nition S and T are disjoint. (An alternative way to see it, is that we can always
eliminate a cycle from a �ow and it will still remain a �ow. In this case the cycle would be u → v → u.).

(b) Removing all edges from the cut will leave no s-t path (otherwise t ∈ S).

(c) Given a set K of travel-preventing signal failures, for each edge in K, remove both of its directed coun-
terparts. Then �nd all vertices reachable from s and create the set S and the rest let them be T . For
each edge (u, v) in K with u ∈ S, we can re-insert the directed edge (v, u) since it will not be counted in
the directed cut. Hence, the undirected cut is a valid directed cut.

(d) To �nd the minimum cut, we use Ford-Fulkerson's algorithm and the minimum-cut theorem.

7



The intuition for the London underground map is that the more we allow the passenger to travel away
from Embankment station the more stations she/he will be possible to reach. Hence, we should cut the
edges around either King's cross station or around Embankment. To support this claim, we need to �nd
six paths that do not share an edge between these two stations.

Exercise 5.P.19 [Hall's Theorem] Consider a bipartite graph, in which edges go between the left
vertex set L and the right vertex set R. A matching is called complete if every vertex in L is matched
to a vertex in R, and vice versa. For a complete matching to exist, we obviously need |L| = |R|. The
following result is known as Hall's Theorem:
A complete matching exists if and only if, for every subset X ⊆ L, the set of vertices in R connected to
a vertex in X is at least as big as X.
Prove Hall's Theorem, using a max-�ow formulation. [Hint: Use the same construction as we used in
lectures, except with capacity ∞ on the edges between L and R. In this graph, some cuts have in�nite
capacity, and some cuts have �nite capacity. If a cut has �nite capacity, what can you deduce about its
capacity?]

(⇒) Assume that a complete matching m exists. Then for any set X ⊆ L, let Y = {m(x) : x ∈ X}, then
|Y | = |X| since m is injective (there are not two x1 and x2 such that m(x1) = m(x2)). Hence the neighbours
Γ(X) of X are at least as many as |Y | = |X|.
(⇐) Assume that for every X ⊆ L we have Γ(X) ≥ |X|. We will show that any cut C has capacity at least |L|.
Note that cutting the edges from the source, creates a cut of capacity |L|. Because we set the middle edges to
have ∞ capacity, no cut will contain any of these. So, all cuts will consist of some edges s → x (for x in some
X ⊆ L) and some edges y → t (for y in some Y ⊆ R). The cuts in Y should stop all possible paths through
L \X, which lead to at least Γ(L \X) vertices in R. Hence,

capacity = |X|+ |Y | ≥ |X|+ |Γ(L \X)| ≥ |X|+ |L \X| = |L|.
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