
Algorithms Example Sheet 4: Problems

Solution Notes
In this handout, you will �nd some algorithmic graph theory problems with some solution notes. Some of these
exercises would normally appear as part of the theory. Some of the solutions elaborate on the solution notes by
the lecturer for Example Sheet 4.
These notes have not be fully proofread. So if you �nd any typos/mistakes or have any suggestions (even if very
small), please do let me know.

Core graph theory

Exercise 4.P.1 [Trees]
(a) De�ne a tree.

(b) Prove that a tree with V ≥ 2 has at least two leaves (i.e. a node with degree 1).

(c) Show that every tree with V ≥ 2 vertices can be formed by a tree T ′ of V −1 vertices plus a vertex
and an edge.

(d) Show that an undirected graph is a tree i� it is connected and |E| = V − 1.

(e) (Maybe only a few of these) Show that the following de�nitions are equivalent to the de�nition of
a tree:

i. A tree is one component of a forest. (A forest is an acyclic graph.)

ii. A tree is a connected graph with at most V − 1 edges.

iii. A tree is a minimally connected graph; removing any edge disconnects the graph.

iv. A tree is an acyclic graph with at least V − 1 edges.

v. A tree is a maximally acyclic graph; adding an edge between any two vertices creates a cycle.

vi. A tree is a graph that contains a unique path between each pair of vertices.

(f) Is it true that any subgraph of a tree is a tree?

(a) A tree is an undirected acyclic graph that is connected.

(b) There are several ways of doing this.

We will �rst show that there is at least one leaf. Assume not. Then all vertices have degree ≥ 2 (otherwise
the graph is not connected). Then starting from a certain node, follow an edge that we have not followed
before. This is possible because every node has degree at least 2. Since the graph is �nite after V steps
we will have visited V + 1 vertices. So some vertex has been visited at least twice and so there must be
a cycle (contradiction).

So, there must be some vertex ℓ with degree < 2. The vertex cannot have degree 0 as otherwise there
would not be a path from ℓ to another vertex (there exists one since V ≥ 2) and so the graph would not
be connected. So, ℓ has degree 1.

But then we can repeat the same procedure starting from ℓ. For the same reason at some point we should
reach a vertex with only one connection. Hence, there is another leaf

(c) Consider a tree of degree V , then it must have a leaf as proven in part (b). By removing a leaf (and
its adjacent edge), the graph remains connected because no path can go through a vertex with degree
1 (so all original connections (apart from the removed vertex) remain una�ected). Removing a vertex
maintains the acyclic property. Hence, the graph is a undirected acyclic and has V − 1 vertices.

Question: Is this tree unique?

(d) We prove this by induction over the vertices of the tree. For V = 1, it is true. Assume it is true for V = k.
Consider a tree T of V = k + 1 vertices. By part (c), we can form T from a tree T ′ with k vertices plus
a leaf and an edge. Hence, E′ = E + 1 = (k − 1) + 1 = k. So, it follows by induction.

It is also possible to remove any edge and split the tree into two trees of < V vertices (and use strong
induction). However, you would need to prove that removing an edge from the tree results into two trees.

1

(e) i. A component of forest is a connected subgraph of a forest. Being a subgraph of an acyclic graph it
will also be acyclic. Hence, it is a connected acyclic graph, hence a tree. The other direction follows
since a tree is also a forest (and hence a component of one).

ii. We will show that a connected component of at most V − 1 edges has exactly V − 1 edges (so the
equivalence follows from part (d)). Assume not. Then, there are at most V −2 edges and V vertices.
Start a DFS from one of the vertices, then in each step we visit one new vertex and traverse one new
edge. Hence, after V − 2 traversals we will visit V − 2 vertices plus the initial one. Hence, at most
V − 1 (not V). Contradiction.

iii. Removing an edge from a tree results in a graph with V − 2 edges, so by the previous part, it must
be disconnected.

Now, We will prove by strong induction that a minimally connected graph of V vertices is a tree.
(the reverse direction has been proven above). For this, we will use the following observation:

Observation: Removing any edge from a minimally connected component produces two minimally
connected components.

(proof) Let's remove the edge (u, v) and let G′ be the resulting graph. Let Au be the set of vertices
connected to u and Av the set of vertices connected to v. By the de�nition of minimally connected,
Au∩Av = ∅ (otherwise u and v would be connected through the common vertices). Also Au∪Av = V ,
as if there is an edge that is not reachable from u nor from v, then it would not be connected to
either vertices in the original graph. Contradiction. Now removing any edge e from the subgraph of
Au should make it disjoint as otherwise the original graph would not be minimally connected.

Base case: V = 1, a single vertex is a tree.
Inductive step: Assume that it is true that any minimally connected graph of ℓ ≤ k vertices is a
tree. Consider a minimally connected graph G of k + 1 vertices. Then removing any edge e creates
two minimally connected components of size smaller than k. By the inductive hypothesis, these are
both trees. Connecting two trees via an edge creates a tree (can you explain why?). So G is a tree.

iv. We will show that an acyclic graph of at least V −1 edges has exactly V −1 edges (so the equivalence
follows from part (d)). Assume not. So it has at least V edges, then consider a DFS from any vertex.
This will create the DFS tree that includes all vertices, so it has V −1 edges. When adding the V -th
edge it connects two vertices that are already connected, and hence it forms a cycle.

(f) No it is not true. Consider the subgraph consisting of {b, c} in the following tree which gives two discon-
nected vertices.

𝑏

𝑎

𝑐

𝑏 𝑐→

Question: What can you say about the subgraph?

Exercise 4.P.2 Read the de�nitions of directed acyclic graph and tree from lecture notes. Draw an
example and give its representation in adj. list format, of each of the following, or explain why no
example exists:
(a) A directed acyclic graph with 8 vertices and 10 edges

(b) An undirected tree with 8 vertices and 10 edges

(c) A graph without cycles that is not a tree

(a) There are many examples. Here is one,

(b) A tree must have E = V − 1, but this is not the case.

2

(c) Any forest with more than one trees is valid here. The simplest being two nodes without edges (the graph
on the right).

Exercise 4.P.3 In an undirected graph, the degree d(u) of a vertex u is the number of neighbours u. In
a directed graph, we distinguish between the indegree din(u), which is the number of edges incoming to
u, and the outdegree dout(u), the number of edges outgoing from u.
(a) Show that in an undirected graph,

∑
u∈V d(u) = 2|E|.

(b) Use part (a) to show that in an undirected graph, there must be an even number of vertices whose
degree is odd.

(c) Does a similar statement hold for the number of vertices with odd indegree in a directed graph?

(a) Consider the contribution of each edge (u, v) to the sum. It will be counted twice: once in d(u) and once
in d(v). Since there are |E| edges, and each one contributes 2, this gives a total of 2|E|.
An alternative way to express this is using indicator functions,

∑
u∈V d(u) =

∑
u∈V

∑
v∈V 1((u, v) ∈ E) =∑

e∈E 2 = 2|E|.
(b) Assume there was an odd number of vertices with odd degree, then their contribution to the sum would

be an odd term (since sum of odd number of odds is odd). The contribution of the vertices with even
degrees would be even, so the total would be odd. But this contradicts part (a).

(c) No. Consider the following graph, where there is only one vertex (namely u2) with odd in-degree:

𝑢1

𝑠

𝑢2

Exercise 4.P.4 [Bipartite Graphs] An undirected graph G = (V,E) is bipartite if the vertices V can
be partitioned into two subsets L and R, such that every edge has one vertex in L and the other in R.
(a) Prove that every tree is a bipartite graph.

(b) Give an example of a graph that is non-bipartite.

(c) Design an e�cient algorithm that determines whether a given undirected graph is bipartite. Argue
that your algorithm works. What is the time complexity of your algorithm?

(d) Prove that a graph G is bipartite if and only if every cycle in G has an even number of edges.

(a) Find the depth of each node. All nodes at an even depth assign to L. All nodes at an odd depth assign
to R. There cannot be a edge between two nodes with depth of the same parity (because all edges are
from depth i to depth i+ 1).

3

(b) The cycle of length 3 is an example of non-bipartite graph. Using two colors to color three vertices means
that two of the colors will be the same and hence they must be adjacent in the graph. There is also the
brute force approach, where we show that any colouring :

(c) If the graph is not connected, then we can perform the check on all of its subcomponents. If any of
these is non-bipartite, then the entire graph will not be. Otherwise, we take L := L1 ∪ . . . ∪ Lk and
R := R1 ∪ . . . ∪Rk, where (Li, Ri) are the partitions for the i-th component.

So we assume that the graph is connected. We start a DFS from any node s and add it to L (color it blue).
Then this implies that all of its neighbours must be in R (color it red). Then proceed recursively for each
of the neighbours. If at some point we attempt to colour a node that is already coloured with a di�erent
colour, then we have reached a contradiction (so the graph is non-bipartite). If the DFS terminates and
there was no contradiction, then the graph is bipartite.

Each colouring that we made (except for that of node s) was obligatory, so this algorithm will determine
if the graph is bipartite.

The time complexity is that of standard DFS, so O (V + E).

(d) There are two directions to this claim:

� (Bipartite ⇒ every cycle is even) We will prove the contrapositive. Assume that there is a cycle with
odd length. Then starting with a node s in the cycle, colouring it red and colouring its neighbours
blue, and so on. Since the cycle has odd length, (and since we are colouring two nodes in every step
except for the �rst one) in the last step there will be two vertices left and these would need to be
coloured with the same colour. But since these are adjacent this will not lead to a valid colouring.
Hence, the graph is not bipartite.

� (Every cycle is even ⇒ bipartite) Again, we will prove the contrapositive. A graph is non-bipartite
i� the above algorithm cannot �nd a colouring. This happens when we attempt to colour some node
v with two di�erent colours. This happens i� there was one path p = s ⇝ v of odd length and one
path p′ = s⇝ v of even length. Merging these two paths (since they have the same endpoints), we
get a cycle of odd length.

4

Exercise 4.P.5 [Longest path in a tree]
(a) Consider a graph without edge weights, and write d(u, v) for the length of the shortest path from

u to v. The diameter of the graph is de�ned to be maxu,v∈V d(u, v). Give an e�cient algorithm to
compute the diameter of an undirected tree, and analyse its running time. Hint: One way to solve
this is by using breadth-�rst search, twice.

(b) Design a linear time algorithm for �nding the diameter in a weighted tree. Argue that your
algorithm is correct. Hint: Root the tree at some vertex r. For each vertex v, �nd the longest path
in its subtree that ends at v. Why is it su�cient to consider only paths in its children?

(a) Pick an arbitrary vertex u, and run BFS starting at u. Pick some vertex v at maximum distance from u,
and run BFS starting at v. The maximum distance from v is the diameter.

In order to prove this claim, consider the tree rooted at u and two arbitrary vertices x and y, and show
that d(v, x) ≥ d(x, y). There are two possible cases with regards to the position of x and y relative to the
path between u⇝ v:

𝑘1

𝑥 𝑦

𝑘2

𝑣

𝑢Case 1: Case 2:

𝑘2

𝑥

𝑦

𝑘1

𝑣

𝑢

1. Either x and y meet (say at k1) before joining to the u⇝ v path at k2 (potentially k2 = u).

By construction, d(u, v) ≥ d(u, x) ⇒ d(u, k2) + d(k2, v) ≥ d(u, k2) + d(k2, x) ⇒ d(k2, v) ≥ d(k2, x).
Hence, d(x, y) = d(x, k1) + d(k1, y) ≤ d(x, k2) + d(k2, y) ≤ d(v, k2) + d(k2, y) ≤ d(v, y).

So taking d(v, y) is at least as good as taking d(x, y).

2. Or x and y join separately on the u⇝ v path, say at k1 and k2 respectively (without loss of generality
we can assume that k1 is closer to u).

Proceeding in a similar way as before, d(u, v) ≥ d(u, y) ⇒ d(u, k2) + d(k2, y) ≥ d(u, k2) + d(k2, v) ⇒
d(k2, y) ≥ d(k2, v).

Now considering d(x, y) = d(x, k1) + d(k1, k2) + d(k2, y) ≤ d(x, k1) + d(k1, k2) + d(k2, v) = d(x, v).

So taking d(x, v) is at least as good as taking d(x, y).

Hence, in either case, d(v, ∗) is better than d(x, y), so �nding the maximum distance from v will give the
diameter. The algorithm requires O (V) time.

(b) Root the tree at some arbitrary vertex r. De�ne for each vertex v, d[v] the length of the longest path in
the subtree of v ending at v. Then this can be recursively computed using the relation:

d[v] = max(0, max
u∈children(v)

d[u])

In order to �nd the maximum path in the tree, we make the following observation:

Observation: For every two nodes x and y, there is a unique k (call it the peak) in the path x↭ y
with minimum depth. Here are some example paths between x and y with the peak displayed in yellow:

5

𝑥

𝑦

𝑟

𝑥

𝑦

𝑟

𝑥 𝑦

𝑟

𝑥

𝑦

𝑟

For each vertex v, we will �nd the longest path that has v as its peak. The maximum over all vertices,
will be the longest path in the tree. The longest path will be the sum of the two longest paths ending in
one of its children,

max_peak[v] = max(d[v], max
u∈children(v)

(d[u]+weight(u → v))+second_maxw∈children(v)(d[w]+weight(w → v))).

𝑐1

𝑣

𝑐𝑖 𝑐𝑘… 𝑐𝑗… …

𝑑[𝑐𝑖] 𝑑[𝑐𝑗]

The reasoning for why it works is greedy. If it did not use one of the two maximum paths, then by
swapping one of these with one of the maximal we would get a path that is at least as long.

Question 1: Is the max(0, . . .) needed in the de�nition of d[v]?
Question 2: How would you prove formally the existence of peak for every path in the tree?

BFS/DFS

Exercise 4.P.6 [Jar Problem] You are given 3 jars with capacities c1, c2 and c3. Initially all jars are
empty. In each step, you have the following options:

� Fill in the i-th jar.

� Empty the i-th jar.

� Move the contents of the i-th jar to that of the j-th jar.

Construct an algorithm that given the jar capacities and a target value t, �nds the fewest number of
moves to make the target capacity t. For example, if the capacities are 10, 7, 4 and the target is 2,
then the following moves reach the target: (0, 0, 0) -> (10, 0, 0) -> (6, 0, 4) -> (6, 0, 0)

-> (2, 0, 4).

The following code solves the problem for general n jars using BFS. It should be noted that in this case the
graph is not given, but it is implicit (read the comments for di�erences with classic BFS).

from queue import Queue

visited = set()

come_from = {}

6

capacities = [10, 7, 4]

def get_neighbours(v):

neighbours = []

for i in range(len(v)):

Try to empty the jar.

new_state = list(v)

new_state[i] = 0

neighbours.append(tuple(new_state))

Try to fill the jar.

new_state = list(v)

new_state[i] = capacities[i]

neighbours.append(tuple(new_state))

Try to move from jar i to jar j.

for j in range(len(v)):

if i == j: continue

new_state = list(v)

new_state[j] = min(capacities[j], v[j] + v[i])

new_state[i] = v[i] + v[j] - new_state[j]

neighbours.append(tuple(new_state))

return neighbours

def bfs_path(s, target):

visited.add(tuple(s))

toexplore = Queue ()

toexplore.put(tuple(s))

Traverse the graph , visiting everything reachable from s

target_config = None

while not toexplore.empty():

v = toexplore.get()

The terminating condition is a bit different because we are searching for

any state that has the target jar load.

if target in v:

target_config = v

break

Generating the neighbours is different , because we do not want to

construct the entire graph.

neighbours = get_neighbours(v)

for w in neighbours:

if w not in visited:

toexplore.put(w)

visited.add(w)

come_from[w] = v

Reconstruct the full path from s to t, working backwards

if target_config is None:

return None

path = [target_config]

while path[-1] in come_from:

path.append(come_from[path [-1]])

path.reverse ()

return path

path = bfs_path ([0, 0, 0], 2)

for p in path:

print(f"{p} -> ", end='')

print("DONE")

7

Exercise 4.P.7 Consider a directed graph in which every vertex v is labelled with a real number xv.
For each vertex v, de�ne mv to be the minimum value of xu among all vertices u such that either u = v
or u is reachable via some path from v. Give an O (E + V log V)-time algorithm that computes mv for
all vertices v.
Extra credit: After you have read the section on further topics in DFS, try to �nd an O (E + V) solution.

Failed approach 1: one approach is to start a DFS and keep the minimum label m of the nodes visited. Then
update all the nodes visited in the current DFS to that value m. This algorithm is not correct, since it might
be that you are setting m to a node that cannot visit m. For example, in the following diagram starting a DFS
from A would set the minimum value of 1 to both F and G, but they cannot reach it.

𝐴

𝐵

𝐶
𝐷

𝐸

𝐹

5

4

5
5

1

4

Failed approach 2: another approach is to run a DFS and each time we encounter a node of minimum value,
then consider this as candidate for all nodes currently in the stack. While it is true, that all elements in the
stack can reach the currently examined value, it is not true that these are the only ones. For example, when
�nishing the DFS for F we do not �nd the minimum reachable node which is G.

𝐴

𝐵

𝐶 𝐷

𝐸

𝐹

𝐺

5

4

1

5
4

3

4

(𝐴, 5)

(𝐵, 4)

(𝐶, 5)

(𝐷, 4)

(𝐸, 3)

(𝐹, 4)

cur_min: 3

Lecturer's solution:

Algorithm 1: Finding the minimum value reachable for each node.

Function FindMn(n):
V = SortVerticesByX(x); ▷ Takes O (V log V).
G = ReverseEdges(G); ▷ Takes O (V + E) with adj. list.

m = InitialiseToNone(|V |); ▷ Takes O (V) time.

for u in V do
if mu is None then

visit(v, G); ▷ Also sets mk = xu on every vertex k visited along the way

return m

The check for whether mu is none ensures that each vertex is visited exactly once. So, DFS takes O (V + E)
time and the overall algorithm has time complexity O (E + V log V).
(optional) E�cient solution: There exists an e�cient solution based on SCCs components. The SCC graph
forms a DAG.
Observation 1: If the input graph is a DAG, then the problem can be solved as follows:

� Find the topological ordering of the nodes.

� Denote by mn[v] the minimum value reachable by v.

� Go through the elements in the topological order and set:

mn[v] = min(xv, min
u∈out(v)

mn[u]).

8

Observation 2: Any node in a SCC S can reach any node S, so it can reach the minimum of the SCC.
Observation 3: Using Observations 1 and 2, we can:

� Construct the SCC DAG and set xS := minv∈S xv for each SCC S.

� Solve this problem for the DAG using topological ordering (Observation 1).

� Set mu = mSu
, where Su is the SCC corresponding to u (Observation 2).

Each step takes O (V + E) time, hence the entire algorithm takes O (V + E) time.

Exercise 4.P.8 [Connection to DFAs/NFAs]
(a) Given a DFA D and a string s explain how you would check if the string is accepted by the DFA

(i.e. s ∈ L(D)). What is the time complexity of your algorithm?

(b) Given a DFA D, how can you check if it accepts any string (or equivalently if L(D) = ∅)? How
can you check if L(D) = Σ∗?

(c) Given an NFA N and a string s explain how you would check if the string is accepted by the NFA.
What is the time complexity of your algorithm?

(d) Given a DFA D, how can you e�ciently construct a DFA D′ that accepts the pre�xes of the strings
in L(D)? For example, if L(D) = {abc, yx}, then L(D′) = {a, ab, abc, y, yx}.

(a) Start from the starting node s of D and then follow the edge that corresponds to s[0], then the edge
corresponding to s[1], and so on until the entire string has been consumed. The string is in the language
i� the �nal state is accepting.

In order to traverse the edges e�ciently, we assume that the alphabet symbols are in the range 0, . . . , |Σ|−1.
Then for each node n we maintain an array a[n], such that a[n][i] = δ(n, i). Hence, each traversal takes
constant time and determining if a string is in the dictionary takes O (|s|) time.

(b) A DFA accepts a string i� there is a path from the starting to an accepting state. Hence, we only need to
check if there is an accepting state reachable from the starting node. This can be done using either DFS
or BFS in time O (V + E) = O (|Q| · Σ).

(c) We start by �nding the set A[0] of nodes reachable from the starting node using ϵ-transitions. Then, we
�nd the set A[1] of nodes reachable from A[0] by following s[0] (and potentially some ϵ-transitions, and
so on. Hence, A[i] contains all possible nodes that we could have reached when reading s[0 . . . i]. In the
end, the string s will be in L(N) i� there is a state in A[|s| − 1] that is accepting.

Each A[i] could have O (|Q|) entries, so we can implement it in O (|s| ·Q) time.

Note that this mimics the powerset construction of the DFAs.

(d) The key observation is that we want to accept a string u i� we can append v such that uv is accepted.
Let k be the state we reach once we consume u. This condition is equivalent to checking if there is a path
from s to some accepting accepting state. This can be done naively using Q DFSs (in total O

(
|Q|2 · Σ

)
time) or in O (|Q| · Σ) time using one DFS from the starting node (and returns whether an accepting
node was encountered when checking its connections).

Dijkstra's algorithm

Exercise 4.P.9 [Bounded edge capacities]
(a) Design an algorithm for �nding the shortest path in a graph where the edges have weight 0 or 1.

(Your algorithm should be more e�cient than Dijkstra's)

(b) Design an algorithm for �nding the shortest path in a graph where the edges have weight 1 or 2.
(Your algorithm should be more e�cient than Dijkstra's)

(c) Design an algorithm for �nding the shortest path in a graph where all edges have integer weight in
[1, L]. What is the time complexity of your algorithm?

(d) (optional) Read about Dial's algorithm (or see problems 24.3.8 and 24.3.9 in CLRS).

9

(a) If we used Dijkstra's algorithm, then it would requite O (E + V log V) time. We can do it more e�ciently.
Let's run a BFS starting at s. Then when we visit a vertex v, there will some outgoing edges with weight
0 and some with weight 1. If w(v → u) = 0 and u has not be seen, then d(s, u) = d(s, v). So we add it
to the front of the queue to be processed as soon as possible. Vertices with w(v → u) = 1 are placed as
usual to the back of the queue.

(b) If we used Dijkstra's algorithm, then it would requite O (E + V log V) time. However, there is a more
e�cient way. We can split each edge of weight 2 into two edges of cost 1 with a �dummy� vertex in
between. Then �nding the shortest path can be done using BFS. See the transformed graph below,

𝑠

𝑢1

𝑢2
𝑢5

𝑢4

𝑢3

𝑢6

𝑢8

𝑡

𝑢7

1

𝑠

𝑢1

𝑢2
𝑢5

𝑢4

𝑢3

𝑢6

𝑢8

𝑡

𝑢7
2

11

1

1

1

2

2
2

22

2

→

(c) The same technique generalises to edges of length L. Each edge will be transformed to L− 1 edges in the
worst case, so the running time of BFS will be Θ(V + EL).

(d) Dial's algorithm can improve this to O (E + V L) by using a table like counting sort of size V L. The key
property needed is that at any point in the priority queue, the di�erence between the maximum and the
minimum is at most V L (because the candidate paths can di�er by at most V edges, so at most V L cost).
You can also improve it to O ((V + E) logL). See the referenced problems for more details.

Exercise 4.P.10 Suppose we have implemented Dijkstra's algorithm using a priority queue for which
push and decreaskey have running time Θ(1), and popmin has running time Θ(log n) where n is the
number of items in the queue. Construct a sequence of graphs indexed by k, where the kth graph has
|V | = k and |E| = Θ(kα), such that Dijkstra's algorithm has running time Ω(kα + k log k). Here α is a
constant, 1 ≤ α ≤ 2.

We construct the following graph for |V | = k + 1, with the following properties:

� Choose one of the vertices to be s.

� Connect s with vi with weight i.

� For the remaining |V |α edges, add connections between any two ver-
tices (it does not matter which) with weight k + 1.

𝑣1

𝑠

𝑣2

1 2

𝑣3

3

𝑣𝑘

𝑘

…

𝑘 + 1 𝑘 + 1

Then Dijkstra started from vertex s will perform the following steps:

� For each i, insert vi with weight i. So, there are k values in the priority queue.

� Process vertex v1. All of its outgoing edges have weight k+1, so it will not decrease the shortest path to
any vertex. (So there will be k − 1 items in the priority queue).

� Process vertex v2. All of its outgoing edges have weight k+1, so it will not decrease the shortest path to
any vertex. (So there will be k − 2 items in the priority queue).

�

...

Hence, processing s requires k insertions to the queue (where each one takes Θ1 time). Popping the i-th vertex
requires Θ(log(k− i+ 1)) time. Aggregating these, we get Θ(log(k) + log(k− 1) + . . .+ log(1)) = Θ(k log k) as
we showed in the �rst supervision. The subsequent steps simply iterate through the edges, without performing
any operation on the priority queue. Hence, this gives a running time of Ω(kα + k log k).
Note: The way the question is currently phrased (i.e. with α constant), for α > 1 this is trivial because kα is
the dominating term).

10

Exercise 4.P.11 [Negative edges] In the following exercises, run dijkstra as described in lectures,
which loops until toexplore is empty. Some textbooks use di�erent versions of Dijkstra's algorithm,
that terminate once a destination vertex has been popped, or that don't allow popped vertices to re-enter
toexplore.
(a) By hand, run both Dijkstra's algorithm and the Bellman-Ford algorithm on each of the graphs

below, starting from the vertex s. The labels indicate edge costs, and one is negative. Does
Dijkstra's algorithm correctly compute minimum weights?

𝑠

𝑎

𝑏

𝑡

3

2

−4

3

1

𝑠

𝑎

𝑏

𝑡

3

2

−4

2

1

(b) Prove that Dijkstra's algorithm will produce the correct distance if it terminates.

(c) Prove that Dijkstra's algorithm will always terminate if the input graph has no negative-weight
cycles.

(d) (+) Give a DAG, where Dijkstra's algorithm takes an exponential number of steps to compute the
answer.

(e) If re-insertions are not allowed, provide an instance where the algorithm gives the wrong output.
In this case could the algorithm loop forever?

(f) Given a directed graph with a single negative edge, give an e�cient algorithm to �nd the shortest
path from s to v assuming no negative cycles.

(a) Running Dijkstra's algorithm on the �rst example, we get the following:

Priority Queue (before) Vertex Priority Queue (after) d(s, v)
(s, 0) s (a, 3), (b, 2) (s, 0), (a, 3), (b, 2), (t,∞)

(a, 3), (b, 2) b (a, 3), (t, 5) (s, 0), (a, 3), (b, 2), (t, 5)
(a, 3), (t, 5) a (b,−1), (t, 5) (s, 0), (a, 3), (b,−1), (t, 5)
(b,−1), (t, 5) b (t, 2) (s, 0), (a, 3), (b,−1), (t, 2)

(t, 2) t ∅ (s, 0), (a, 3), (b,−1), (t, 2)

Running on the second example, the negative cycle will lead the algorithm into an in�nite loop:

Priority Queue (before) Vertex Priority Queue (after) d(s, v)
(s, 0) s (a, 3), (b, 2) (s, 0), (a, 3), (b, 2), (t,∞)

(a, 3), (b, 2) b (a, 3), (t, 4) (s, 0), (a, 3), (b, 2), (t, 4)
(a, 3), (t, 4) a (b,−1), (t, 4) (s, 0), (a, 3), (b,−1), (t, 4)
(b,−1), (t, 4) b (t, 1) (s, 0), (a, 3), (b,−1), (t, 1)

(t, 1) t (a, 2) (s, 0), (a, 2), (b,−1), (t, 1)
(a, 2) a (b,−2) (s, 0), (a, 2), (b,−2), (t, 1)
(b,−2) b (t, 0) (s, 0), (a, 2), (b,−2), (t, 0)

...
...

...
...

The execution of the Bellman-Ford algorithm depends on the way we order the edges. For any ordering,
the algorithm terminates after |V | iterations.

(b) Assume that the output is wrong. Consider an optimal path p from s to t. Since, it did not give the
correct answer, it means that at least one of the edges (let (u, v)) is not relaxed. But since v.minweight
never increases, it means that (u, v) was not relaxed after u was popped the last time (contradicting the
operation of Dijkstra). Hence, there cannot be an unrelaxed edge and Dijkstra having terminated.

(c) We will use the following two observations:

Observation 1: During Dijkstra's execution u.minweight always corresponds to the weight of a valid
path.

11

Observation 2: The path corresponding to u.minweight will never have a non-negative weight loop.

Assume that it did. Then, let (v, w) be the last edge before the cycle forms. For the cycle to form it
means that w.minweight + cycle weight < w.minweight, but this cannot be the case if cycle weight ≥ 0.
Hence, there cannot be a cycle.

Hence, u.minweight corresponds to a simple path. But the number of simple paths in the graph is upper
bounded by 2|V | (a node will or will not be present). Each time we re-insert a node n to the priority queue
it means that u.minweight changed. Since there are 2|V | possible weights for a path, the vertex n cannot
be inserted more than this number of times. So, the algorithm should terminate after O

(
2|V | · |V |

)
steps.

(d) In the following construction, every time vi.minweight is reduced, the change cascades along to every
vertex to the right of vi; and wi is only touched after the cascade from vi has completed. The total
running time for computing minweights from v0 is Θ(2n).

𝑣0

𝑤1

𝑣1

𝑤2

𝑣2
1 1

𝑣𝑛−2

𝑤𝑛−1

𝑣𝑛−1

𝑤𝑛

𝑣𝑛
1 1

…

The following �gure shows the �rst few steps of the execution for n = 3:

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

2

5

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

2

5 4

3

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

2

5 4

3

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

2

5 4

2

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

1

5 3

2

𝑣0

𝑤1

𝑣1
1

𝑤2

𝑣2

𝑤3

𝑣3
1 1

0 1

6

1

5 3

1

(e) It is guaranteed to terminate since each vertex can be popped at most once from the priority queue.
However, it is not guaranteed to �nd the shortest path. One such example is the graph in the previous
question, where Dijkstra would stop after identifying the path of length n− 1.

(f) Since there are no negative cycles each edge can be used at most once. So, the negative edge (n,m) can
also be used at most once. We construct a new graph where each vertex u of the original graph appears
twice, as au and as bu. We connect all vertices between a using the edges of the original graph (except
for the negative edge) and similarly for b. Then we add an → bm with weight 0. this means that the
negative edge can be traversed at most once. Then run Dijkstra's algorithm on the modi�ed graph, so
the shortest path from s to u is min(d(as, au), d(as, bu + w(n → m)).

Can you argue formally that this �nd the shortest path?

Question 1: How can you detect a negative weight cycle?
Question 2: How could you solve this problem if the graph was undirected?

Exercise 4.P.12 [Shortest-paths modelling problems] Solve the following problem by converting
the input to a suitable graph and �nding the shortest path there:

12

(a) Given an unweighted directed graph, �nd the minimum number of edges that need to be reversed
in order to �nd a path from s to t. [CodeChef REVERSE]

(b) Given a graph where each edge has a colour, �nd the path that minimises the number of colour
changes. [CodeChef YASPP]

(c) Given a weighted graph G, �nd the shortest path from s to t given the option to zero out one of
the edges.

(d) (Not quite modelling) Find the shortest path whose edge weights form a bitonic (increasing and
then decreasing) sequence.

(e) Given a weighted graph G, an agent is placed at vertex s and their target is to reach t. Some of the
vertices have a reward of yv and the agent can get at most one of these. If the agent takes d time
steps to reach the t and yx is the reward they fetch (if any), their total reward is d − yx. Design
an algorithm to �nd the path that minimises this. [Usaco DINING]

(a) Model this problem as a shortest path problem: for each edge add the reversed edge with a weight of 1
and assign a weight of 0 to the normal edge. Since the weights are 0 or 1 we can �nd the shortest path
in O (V + E) time (see Exercise 9).

(b) For each vertex u, we create vertex uc1 , . . . , uck , one node for each colour of an edge outgoing u. These
nodes represent having colour ci in the edge entering u. We link u to all uci with cost 1, to represent
changing color (i.e. being able to use any coloured edge with 0 cost). Also, for each edge (u, v, c), we insert
edge uc to vc with cost 0 and edge (u, v) with cost 1. Then, we can use the modi�ed BFS of Exercise 9 to
�nd the shortest path from s to t, which corresponds to the path of fewest colour changes, in O(V + E)
time.

𝑢

𝑢𝑐1

𝑢𝑐𝑘

⋮
1

1

𝑣

𝑣𝑐1

𝑣𝑐𝑘

⋮
1

1

0

0

0

0

(c) Keep states (n, 0) and (n, 1). For each (u, v) connect (u, 0) to (v, 1) with weight 0, (u, 0) to (v, 0) with
weight w(u, v) and (u, 1) to (v, 1) with weight w(u, v).

(d) Sort the edges by their weight. Relax the edges once in increasing order and once in decreasing order. This
means that a shortest path can only consist of (possibly) some increasing edges followed by (possibly)
some decreasing edges. Hence, it will be bitonic. Note that also any bitonic path should have been
relaxed.

Exercise 4.P.13 A contractor has written a program that she claims solves the shortest path problem,
on directed graphs with edge weights ≥ 0. The program produces v.distance and v.come_from for every
vertex v in a graph, reporting distances and paths from a given start vertex s. Give a O (V + E)-time
algorithm to test whether or not the output of the contractor's program is correct.
As a test of your algorithm, what will its output be for the graph above, when the contractor's pro-
gram produces s.come_from=None, a.come_from=b, b.come_from=a, s.distance=0, a.distance=1,
b.distance=1?

[Exercise 24.3-4 in CLRS]

We have to ensure that both the distance and the come_from array is valid. For the distance values, it
su�ces to check that all edges are relaxed, i.e.

v.distance = min
w:w→v

w.distance+ cost(w → s)for s ̸= v,

13

https://www.codechef.com/problems/REVERSE
https://www.codechef.com/problems/YASPP
http://www.usaco.org/index.php?page=viewproblem2&cpid=861

and that the optimal value is attained by the claimed edge (v.come_from, v). For the starting vertex s, we
should have s.distance. These checks can be done in O (V + E) time.
For the come_from array, there is the special case where there might be cycle of zeros. So, we must verify that
the come_from array represents a tree rooted at s. We can do this using a DFS.
The proof of correctness is a bit tedious.

Bellman-Ford algorithm

Exercise 4.P.14
(a) Explain how the Bellman-Ford algorithm can detect if there is a negative-weight cycle in the graph.

(b) Modify the code given in the lectures to �nd a negative-weight cycle in the graph.

(c) (+) Let N be the number of currencies in the world. Let eij ∈ R be the exchange rate between
currency i and currency j. If the exchange rate from US dollars and UK pounds is 1.05 and the
exchange rate between UK pounds and US dollars is 0.98, then if you convert 100$ you get 105£
and then if you convert back to US dollars you get 102.9$ (so a pro�t of 2.9$). You can generalise
this to more than 2 currencies. Design an algorithm that given the table e determines if there is
such an opportunity.

(d) (+) Design an algorithm that given a set of inequalities of the form xi ≤ xj + aij , determines if
there exists an assignment to xis, such that all of these are satis�ed.

(a) Run the Bellman-Ford algorithm for |V | steps. If there were any changes in the last step, then it means
that there is an optimal path that has length at least |V |. In this path, there must be some vertex
appearing twice. The path from the �rst occurrence of the vertex to the next must have negative weight
(otherwise it wouldn't have been included).

(b) Find the repeating vertex in the optimal path and �nd the path between the two occurrences of the graph.

(c) We are searching for a path p with ep1p2
· ep2p3

· . . . · epk−1pk
> 1 (where k is the length of the path). The

products are a bit hard to handle, so we can take the logarithm of the costs to transform the problem
into a problem involving sums,

∃p.ep1p2
· ep2p3

· . . . · epk−1pk
> 1 i� (since log is increasing)

∃p. log(ep1p2
· ep2p3

· . . . · epk−1pk
) > log(1) i�

∃p. log(ep1p2
) + log(ep2p3

) + . . .+ log(epk−1pk
) > 0 i�

∃p.0 > − log(ep1p2
)− log(ep2p3

)− . . .− log(epk−1pk
) i�

which means that we can run the negative-weight cycle detection algorithm on the graph where the
weights have been transformed by w′(u → v) = − log(w(u → v)).

(d) Read section 24.4 in CLRS for a detailed explanation.

14

