
Algorithms Example Sheet 1: Problems

Solution Notes
Exercise 1.P.1 [Asymptotics] For each of the following �=� lines, identify the constants k, k1, k2, N
as appropriate. For each of the � 6=� lines, show they can't possibly exist.
(a) |sin(n)| = O (1),

(b) 200 + sin(n) = Θ(1),

(c) 123456n + 654321 = Θ(n),

(d) 2n− 7 = O
(
17n2

)
,

(e) log(n) = O (n),

(f) log(n) 6= Θ(n),

(g) n100 = O (2n),

(h) 1 + 100/n = Θ(1),

(i) (+++) |sin(n)| 6= Θ(1).

(a) We know that |sin(n)| ≤ 1 < 2 for all n, so By choosing N = 0 and k = 1, we get |sin(n)| = O (1).

(b) Again using the fact that |sin(n)| < 2⇔ −2 < sin(n) < 2 for all n, we have that 198 < 200+sin(n) < 202
for all n so sin(n) ∈ O (1).

(c) Let f(n) = 123456n + 654321. We will start by showing that f(n) = Ω(n). This holds for k = 1 and
N = 0, since for every n > N , 123456n + 654321 > n ⇔ 123455n + 654321 > 0 which is true. To show
that f(n) = O (n), we have to �nd kn such that it dominates f(n) By choosing k = 123457, we have
123457n > 123456n + 654321 ⇔ n > 654321 which is true for all n > 654321. So f(n) = O (n). Hence,
f(n) = Θ(n).

Note: Here, any k > 123456 would work.

(d) Let's see when 2n − 7 ≤ 17n2 holds. By re-arranging, we get 0 ≤ 17n2 − 2n + 7, where the RHS is a
quadratic with discriminant ∆ = 4− 4 · 17 · 7 < 0. Hence, it has no roots and this means that it is always
positive. So, the desired inequality holds for all n and for k = 1.

(e) Consider the function d(n) = n− log(n), then d′(n) = 1− 1
n and d′′(n) = 1

n2 > 0. So it attains a minimum
at n = 1, which means that d(n) ≥ d(1) = 1⇔ n ≥ log(n) + 1. So, by choosing k = 1 and N = 1, we get
that n > log n for n > N .

(f) To show that log(n) 6= Θ(n), we need to show that log(n) 6= O (n) or log(n) 6= Ω(n). In the previous step,
we showed that log(n) 6= O (n), so we will prove that log(n) 6= Ω(n).

Recall the de�nition for big-Ω,

f(n) ∈ Ω(g(n))⇔ ∃k,N > 0.∀n > N.0 ≤ k · g(n) ≤ f(n).

To show that log(n) 6= Ω(n), we need to show the negation of this, so

f(n) /∈ Ω(g(n))⇔ ∀k,N > 0.∃n > N.¬(0 ≤ k · g(n) ≤ f(n)).

Let k > 0 and N > 0 be arbitrary. We de�ne d(n) = kn − log n, so d′(n) = k − 1
n and d′′(n) = 1

n2 > 0.
Hence, it has a minimum at n = 1

k , i.e.

d(n) ≥ d(1/k)⇔ kn− log n ≥ 1− log(n/k)⇔ kn ≥ 1− log(n/k) + log(n) = kn ≥ 1− log(k).

Since the LHS depends on n and the RHS does not, for any n ≥ (1− log(k))/k, the inequality holds. So,
k · g(n) ≤ f(n) cannot hold. Hence, log(n) 6= Ω(n) and in particular log(n) = o(n).

(g) Note that n100 = 2100 log2 n, but we have shown that 100 log2 n = on, hence for any k > 0 (choose
k = 1 here), and for some N > 0, for all n > N , 100 log2 n < n. Since exponentiation is increasing,
2100 log2 n < 2n.
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(h) f(n) = 1 + 100/n ≥ 1 for any n, so f(n) ∈ Ω(1) (for k = 1, N = 1). For the upper bound, for n > 100,
100/n < 1, so f(n) = 1 + 100/n < 1 + 1 = 2. Hence, for k = 1 and N = 100, we get f(n) = O (1).

(i) This is a harder question that the lecturer probability intended to be. The reason why the equality does
not hold is the lower bound. For no k can it hold that k ≤ sin(n) for all n > N . The reason is that as
n → ∞, sin(n) goes arbitrarily close to 0, so it will get at | sin(n)| < k. This can be proven rigorously
using the properties of rational approximations (see for example this discussion).

Exercise 1.P.2 [More Asymptotics]
(a) Show that for a > b > 0, nb ∈ O(na).

(b) Show that for a > b > 0, bn ∈ O(an).

(c) Compare n · 2n and 3n.

(d) Compare n and (log n)10.

(e) Compare n and exp((log n)1/2).

(f) Compare n3 and exp((log n)9/2).

(g) Compare f(n) =
∑n

i=1 i
5 and 2n. (Hint: Use the Discrete Maths exercise for the sum of k-th

powers)

(h) Sort the functions in increasing order of asymptotic complexity: f1(n) = n0.999 log n, f2(n) = 109 ·n,
f3(n) = 1.00001n and f4(n) = n1.01.

(i) Sort the functions in increasing order of asymptotic complexity: f1(n) = 22
5000

, f2(n) = 21000n,
f3(n) =

(
n
2

)
and f4(n) = n

√
n.

(j) Sort the functions in increasing order of asymptotic complexity: f1(n) = n
√
n, f2(n) = 2n, f3(n) =

n10 · 2n/2 and f4(n) =
∑n

i=1 i.

(k) (+) Attempt [2016P1Q8 (a)].

(l) (optional ++) Problems 3.2, 3.3, 3.4, 3.6 from CLRS.

(a) We need to �nd N such that for every N , such that na > nb ⇔ nb−a > 1. This holds for every n > 1
(since b > a). So, k = 1, gives the answer.

(b) Similarly, an > bn ⇔
(
a
b

)n
> 1. Since a > b, this holds for n > 0 (we can prove it by induction since(

a
b

)n+1
=
(
a
b

)n · ab > 1, because a
b > 1 and

(
a
b

)n
).

(c) One way of approach this to express both in the base base n · 2n = 2log2 n+n and 3n = 2(log2 3)n. From
this we have that (log2 3)n = (1.58..)n > 1.1n > log2 n + n. Hence, 3n = 21.58..n > 21.1n > n · 2n, so by
the previous question it is that n · 2n ∈ o(3n).

(d) n = elogn and (log n)10 = e10 log logn. By comparing exponents elogn ∈ o(e10 log logn).

(e) n = elogn and e(logn)1/2 . By comparing exponents e(logn)1/2 ∈ o(elogn).

(f) n3 = e3 logn and exp((log n)9/2). By comparing exponents exp((log n)9/2) ∈ o(n3).

(g) (Solution 1) In Discrete mathematics you showed that
∑n

i=1 i
k can be computed by a polynomial of

order k + 1 for k ∈ N. Hence,
∑n

i=1 i
5 = Θ(n6).

(Solution 2) A di�erent approach is to lower bound the sum by breaking it in half,
∑n

i=1 i
5 ≥

∑n
i=n/2 i

5 ≥∑n
i=n/2 (n/2)

5
= n/2 · (n/2)5 = n6/26 = Ω(n6).

An upper bound can be obtained by
∑n

i=1 i
5 ≤

∑n
i=1 n

5 = n ·n5 = n6 = O
(
n6
)
. Hence,

∑n
i=1 i

5 = Θ(n6).

(h) f1(n) = n0.999 log n, f2(n) = 109 · n, f4(n) = n1.01, f3(n) = 1.00001n.

(i) f1(n) = 22
5000

, f4(n) = n
√
n = Θ(n1/5), f3(n) =

(
n
2

)
(= n(n− 1)/2 = Θ(n2)), f2(n) = 21000n.

(j) f4(n) =
∑n

i=1 i, f1(n) = n
√
n (= e(logn)1/5), f3(n) = n10 · 2n/2, f2(n) = 2n.

Exercise 1.P.3 [Matrix exponentiation (++)] (Only attempt this if you know about matrices).
Consider two 2× 2 matrices A and B.
(a) Implement an OCaml function that takes the elements of A and B and returns the matrix product
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of these two.

A ·B =

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
(b) Modify the power function (you learnt in FoCS) to compute the power of a matrix.

(c) What is the time complexity of your algorithm?

(d) Implement an OCaml function that takes a 2× 2 matrix A and a 2-element vector v and computes
A · v.

(e) The Fibonacci sequence is de�ned as Fn = Fn−1 +Fn−2 (for n > 1) with F0 = 0 and F1 = 1. Show
that for n > 0 [

Fn+1

Fn

]
=

[
1 1
1 0

] [
Fn

Fn−1

]
(f) Using the functions you developed above, show how to compute the n-th Fibonacci number in
O (log n) time.

(a) let mat_mult [[a11;a12 ];[ a21;a22]] [[b11;b12 ];[ b21;b22]] =

[[a11 * b11 + a12 * b21; a11 * b12 + a12 * b22];

[a21 * b11 + a22 * b21; a21 * b12 + a22 * b22 ]];;

(b) The following code works because matrix multiplication is associative:

let rec fast_mat_pow m n =

if n = 1 then m

else if n mod 2 = 1 then mat_mult m (fast_mat_pow (mat_mult m m) (n / 2))

else fast_mat_pow (mat_mult m m) (n / 2);;

(c) The time complexity of the algorithm is O (log n) since the 2 × 2 matrix multiplications take constant
time.

let mat_vec_mult ((a11 ,a12) ,(a21 ,a22)) (v1 , v2) =

(a11 * v1 + a12 * v2, a21 * v1 + a22 * v2);;

(d) [
1 1
1 0

]
·
[

Fn

Fn−1

]
=

[
Fn + Fn−1
Fn + 0

]
=

[
Fn+1

Fn

]
(e) let fib n =

let _, ans = mat_vec_mult (fast_mat_pow ((1,1), (1, 0)) n) (1, 0) in

ans;;

We will prove that this works by induction. For the base case n = 1, we have[
1 1
1 0

] [
1
0

]
=

[
1
1

]
=

[
F2

F1

]
For the induction step, assume that it is true for n = k, then for n = k + 1,[

1 1
1 0

]k+1 [
Fn

Fn−1

]
=

[
1 1
1 0

]
·

([
1 1
1 0

]k [
Fn

Fn−1

])
=

[
1 1
1 0

]
·
[

Fk

Fk−1

]
=

[
Fk+1

Fk

]

Exercise 1.P.4 [Max/Min]
(a) Design an algorithm for �nding the maximum in an array of n elements.

(b) What is the time complexity of your algorithm? Prove a corresponding lower bound.

(c) Repeat the �rst two parts for the minimum.
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(d) Given an array of n elements, �nd the pair of elements that has the largest di�erence. You can
submit your solution on [SPOJ EIUMADIS].

(e) (+) Think about how you would solve [SPOJ DIFERENC] inO
(
N2
)
time (no need to implement

it).

(a) The following code �nds the maximum in an array:

def find_max(a):

# Maybe throw an error if the array has no elements.

cur_max = a[0]

for i in range(1, len(a)):

if a[i] > cur_max:

cur_max = a[i]

return cur_max

print(find_max ([1, 10, 23, 8, 17]) == 23)

print(find_max ([1, 10, 3, 8, 17]) == 17)

print(find_max ([5]) == 5)

(b) This implementation requires n− 1 comparisons, where n is the number of items in the array.

(c) Consider the graph formed by the pairs of comparison. Then if there are fewer than n − 1 comparison
pairs, it means that the graph is not connected (since the graph is the minimal connected graph (see
Supervision 5)). So, there are at least two components. If the algorithm A outputs a maximum from one
component, then we can argue that the other component had the maximum (since they are in di�erent
components there will be no contradicting comparisons). So, the algorithm will output the wrong answer.

(d) The minimum is exactly the same for > instead of <.

(e) We can just the di�erence between the maximum and the minimum element, for any i, j, the di�erence
aj − ai ≤ (max ai)− ai ≤ (max ai)− (min aj).

Exercise 1.P.5 [Second max]
(a) Describe an algorithm for �nding the second largest element in an array of n elements.

(b) What is the time complexity of your algorithm? Prove an asymptotic lower bound (i.e. we do not
care about multiplicative constants).

(c) (optional) See [2007P10Q10 (d)].

(a) Here is an algorithm that requires at most n− 1 + n− 2 = 2n− 3 comparisons:

def find_second_max(a):

# Maybe throw an error if the array has no elements.

cur_max = max(a[0], a[1])

second_max = min(a[0], a[1])

for i in range(2, len(a)):

if a[i] > second_max:

second_max = a[i]

if second_max > cur_max:

tmp = cur_max

cur_max = second_max

second_max = tmp

return cur_max , second_max

print(find_second_max ([1, 10, 23, 8, 17]) == (23, 17))

print(find_second_max ([1, 10, 3, 8, 17]) == (17, 10))

print(find_second_max ([1, 17, 3, 8, 17]) == (17, 17))

print(find_second_max ([5, 7]) == (7, 5))

print(find_second_max ([5, 7]) == (7, 5))
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We can design a more involved algorithm to improve the worst-case number of comparisons. Note that the
worst-case is when the new value we are comparing against is always larger than our current maximum.
The problem is that we could compare the candidate maximum to all n− 1 elements, so we need to �nd
the maximum among these.

One idea is to reduce the number of items to which we compare the maximum. Consider an elimination
tournament (similar to the ones found in sports). In the each round, we pair up the remaining elements,
compare them and eliminate the ones that were smaller. By repeating this procedure we create the
tournament tree of height dlog2 ne. For example, if the input sequence was [7; 5; 8; 2; 3; 6; 12; 4;

17; 9] one possible tournament tree is the following:

7 5 8 2 3 6 12 4 17 9

5 3

8

5

12 17

17

17

17

Each comparison eliminates exactly one element, and exactly n − 1 elements are eliminated, so Notice
that all values that where compared to the maximum are candidates for being the second maximum. All
values that were not compared are not candidates since they are smaller than one value that is smaller
(or equal) than the maximum. So it su�ces to compare the remaining dlog2 ne of those that can be done
using dlog2 ne − 1 comparisons. In the example above, this corresponds to �nding the maximum among
the highlighted blog2 nc = 4 values:

7 5 8 2 3 6 12 4 17 9

5 3

8

5

12 17

17

17

17

The code below shows one possible implementation for this:

type 'a btree = Br of 'a * 'a btree * 'a btree | Lf;;

type 'a option = Some of 'a | None;;

(* Common auxiliary functions BEGIN *)

let rec take i = function

| [] -> []

| x::xs ->

if i > 0 then x :: take (i - 1) xs

else [];;

let rec drop i = function

| [] -> []

| x::xs ->

if i > 0 then drop (i-1) xs

else x::xs;;

let is_geq = function

(Br(a, _, _), Br(b, _, _)) -> a >= b

| (Lf , Br(b, _, _)) -> false

| (Br(a, _, _), Lf) -> true;;

let get_val (Br(a, _, _)) = a;;
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let max_option = function

(None , Some b) -> Some b

| (Some a, None) -> Some a

| (Some a, Some b) -> Some (if a >= b then a else b)

| _ -> None;;

(* Common auxiliary functions END *)

(* Constructs a tournament tree for a given list of integers.

It also places the smaller value on the right , so we can find

it efficiently when searching for the second max value. *)

let rec find_tournament_tree = function

[] -> Lf

| [x] -> Br(x, Lf , Lf)

| xs -> let left = find_tournament_tree(take((List.length xs) / 2) xs) in

let right = find_tournament_tree(drop((List.length xs) / 2) xs)

in

if is_geq(left , right) then Br(get_val(left), left , right)

else Br(get_val(right), right , left);;

(* Find the maximum values among the right branches in the path of the maximum.

*)

let rec find_second_best = function

(Br(_, _, Lf)) -> None

| (Br(_, ell , Br(x, _, _))) -> max_option (find_second_best ell , Some x);;

let tournament_tree = find_tournament_tree [7; 5; 8; 2; 3; 6; 12; 4; 17; 9];;

find_second_best tournament_tree ;;

Further reading: It turns out there is a matching lower bound for this (see here or here).

(b) Complexities were given above.

Binary search

Exercise 1.P.6 [Binary Search on the answer] Read the statement of [SPOJ AGGRCOW]
(a) Try to solve this problem �rst: Given that all stalls are separated by a distance of at least d,

determine if it is possible to place the cows.

(b) Let f(d) (with f : N → {0, 1}) be the answer to the above problem. Argue that this function is
monotonic.

(c) Use binary search to solve the original problem.

(d) (optional) Implement the solution.

(a) What is the problem asking? We are given N possible positions to place cows so as to maximise the
minimum distance. For example, if the following cow positions were allowed and there were 4 cows:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

then the best possible placement is shown below (red colour corresponds to a cow) and the minimum
distance between two cows is shown in gray:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Let's sort the candidate positions. When searching for a way to place the cows so that they are all at
distance at least d from one another, we can make the the following observation:

Observation 1: If there is a way of placing the cows, then there will be a way where we use the �rst
(and last) candidate position.
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It is simple to prove this observation. Consider a con�guration where every cow is placed at a distance
at least d from each other; and assume the �rst cow is not used:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

𝑑12

Then, consider the leftmost cow. By moving the cow to the �rst stall, we obtain a valid con�guration
since the distance of the �rst to the second cow (the only distance that is a�ected) increases:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

𝑑12
′

This observation leads to the following algorithm:

1. Sort the candidate stall positions.

2. Assign the �rst cow to the leftmost stall.

3. Find the leftmost stall that is at least d units away from the last placed cow. Place the next cow
there.

4. Repeat step ?? until all cows have been placed or no stalls available.

5. If there are no cows left, return TRUE. Otherwise, return FALSE.

Below is a visualisation of the steps for checking placement with d = 5, where it is possible to place the
4 cows:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Below is a visualisation of the steps for checking placement with d = 8, where it is not possible to place
the cows:

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι

(b) This function is monotonic because assuming that f(d) = 1, which means that it is possible to place N
cows with a maximum distance of d, then the same con�guration works for any distance d′ ≥ d. This
means that we can binary search to �nd the smallest possible d such that f(d) = 1.

(c) The following code passes the testcases on SPOJ:

#include <cstdio >

#include <cstdlib >

#include <algorithm >

using namespace std;

const size_t MAXN = 100000;
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int N, C;

int A[MAXN];

int F(int d){

// prev :: location of previously placed cow (initially -INF)

// rem ..:: how many cows we should still place.

int prev = -A[N-1], remaining = C;

for (int i = 0; i!=N; i++){

// If the next candidate stall is further than d units

// from the previously placed cow , then we assign a cow.

if (A[i] - prev >= d) {

prev = A[i];

remaining --;

}

// If there are no cows remaining , we are done.

if (remaining == 0) return true;

}

// If there are still cows , then it is not possible.

return false;

}

int main(){

int T;

scanf("%d", &T);

while(T--) {

scanf("%d%d", &N, &C);

for (int i = 0; i<N; i++) scanf("%d", &A[i]);

// Sort the stalls.

sort(A, A+N);

// Binary search.

int st = 0, en = A[N-1] - A[0], mn;

while(st < en){

mn = (st+en+1)/2;

if (F(mn) == true) st = mn;

else en = mn - 1;

}

printf ("%d\n", st);

}

return 0;

}

Note: We can either run the binary search on the interval [s0, s|s|−1] (i.e. the distance between the �rst
and the last stall) or only at the N − 1 distances between adjacent stalls (why? ). The time complexity of
the �rst implementation is O (S logD) while the second one has O (S logS). If D is very large the second
one is preferred.

Exercise 1.P.7 [Binary Search on the answer] Try to solve the problem [SPOJ BOOKS1] using
the same technique as in [SPOJ AGGRCOW].

Again, given the maximum sum we can check if it is possible to split the books into consecutive subarrays
where the maximum sum of a subarray is ≤ d. We do this by aggregating as many books as long as the sum is
≤ d.
Again, this binary function f is monotonic. So we can use binary search to �nd the minimum maximum sum.
Hence, we can solve this problem in O (N logU) time, where U is the total sum of the pages in the books.

Exercise 1.P.8 [Binary Search on rotated array] Try the following common interview question:
[LeetCode 81].

There are at least two ways to solve it. One is to �rst use binary search to �nd the turning point k of the array.
Then use normal binary search on the array A′[i] = A[(i + k) mod |A|].
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The second is to use the following modi�ed binary search:

class Solution {

public int search(int[] nums , int target) {

int st = 0, en = nums.length - 1;

while (st < en) {

int mn = (st + en)/2;

if (nums[st] <= nums[en]) {

// We are doing normal binary search.

if (nums[mn] == target) return mn;

else if (nums[mn] < target) st = mn + 1;

else en = mn - 1;

} else {

// We are still searching for the valid endpoint.

if (nums[mn] == target) return mn;

else if (nums[en] >= target) {

if (nums[mn] <= nums[en] && nums[mn] > target) en = mn - 1;

else st = mn + 1;

} else {

if (nums[mn] >= nums[st] && nums[mn] < target) st = mn + 1;

else en = mn - 1;

}

}

}

return nums[st] == target ? st : -1;

}

}

It handles the following 6 cases:

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑠𝑡

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑒𝑛

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑒𝑛

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑠𝑡

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑒𝑛

𝐴[𝑠𝑡]

𝐴[𝑒𝑛]

𝑡

𝐴[𝑚𝑛]
𝑠𝑡

𝐶𝑎𝑠𝑒 1: 𝐶𝑎𝑠𝑒 2: 𝐶𝑎𝑠𝑒 3:

𝐶𝑎𝑠𝑒 4: 𝐶𝑎𝑠𝑒 5: 𝐶𝑎𝑠𝑒 6:

Question: What happens if we allow for duplicates? The problem is harder and binary search cannot be
applied. Consider the case of [1; 1; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1]. This is a rotated sorted array, but �nding 0 will
take linear time. (Can you formally prove the lower bound here?)

Exercise 1.P.9 [Removing duplicates] Design an algorithm to remove all duplicate elements from
an array. For example, given [1; 2; 6; 2; 1; 3; 2], it should return [1; 6; 3; 2] (in any order). What is the
worst-case time complexity of your algorithm?

(Brute force) One way of doing this is for each element go through all other elements of the array and remove
the ones that are equal to it. For the i-th element we need to check n − i elements, so this gives a total of
Θ(n2).
(E�cient) A di�erent way of doing this is to �rst sort the array. Then equal elements appear in neighbouring
positions. We can keep only the �rst ones from each group. This can be done in O (n log n) time and O (1)
extra space.
The following code implements the algorithm for [LeetCode 26] which provides a sorted input array:

class Solution {
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public int removeDuplicates(int[] nums) {

if (nums.length == 0) return 0;

int prev = nums [0];

int j = 1;

for (int i = 1; i < nums.length; ++i) {

if (nums[i] == prev) continue;

prev = nums[i];

nums[j] = nums[i];

++j;

}

return j;

}

}

Question: How would you only retain the elements that appear at least twice? The code below implements
this for [LeetCode 80]

class Solution {

public int removeDuplicates(int[] nums) {

if (nums.length == 0) return 0;

int prev = nums [0];

int cnt = 1;

int j = 1;

for (int i = 1; i < nums.length; ++i) {

if (nums[i] == prev) {

if (cnt == 2) continue;

nums[j] = nums[i];

++j;

++cnt;

} else {

prev = nums[i];

nums[j] = nums[i];

++j;

cnt = 1;

}

}

return j;

}

}

Exercise 1.P.10 [Intersection of two arrays] Describe an algorithm to compute the intersection of
two arrays. For example, given [1; 2; 6; 2; 1; 3; 2] and [6; 1; 7; 2; 2; 4; ], it should return [1; 6; 2; 2; ] (in any
order). What is the worst-case time complexity of your algorithm?
You can test your implementation on [LeetCode 350].

Sort both of the arrays and then iterate using two pointers (in a way similar to the merge part of mergesort).
Whenever A[i1] = B[i2], we add A[i1] to the output and increment i1 and i2. If A[i1] > B[i2], then increment
i2, else increment i1.
The following code implements this:

class Solution {

public int[] intersect(int[] nums1 , int[] nums2) {

Arrays.sort(nums1);

Arrays.sort(nums2);

int i1 = 0, i2 = 0, j = 0;

int[] out = new int[nums1.length + nums2.length ];

while (i1 < nums1.length && i2 <nums2.length) {

if (nums1[i1] == nums2[i2]) {

out[j] = nums2[i2];

++j;

++i1;
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++i2;

} else if (nums1[i1] < nums2[i2]) {

++i1;

} else {

++i2;

}

}

return Arrays.copyOfRange(out , 0, j);

}

}

Exercise 1.P.11 [Union of two arrays] Design an algorithm to compute the union of two arrays. For
example, given [1; 2; 6; 2; 1; 3; 2] and [6; 1; 7; 2; 2; 4; ], it should return [1; 6; 7; 2; 4; 3] (in any order). What
is the worst-case time complexity of your algorithm?
You can test your implementation on [GeeksForGeeks Union of Arrays].

class Solution{

public static int doUnion(int a[], int n, int b[], int m)

{

Arrays.sort(a, 0, n);

Arrays.sort(b, 0, m);

int i1 = 0, i2 = 0;

ArrayList <Integer > union = new ArrayList <>();

while (i1 < n && i2 < m) {

if (a[i1] == b[i2]) {

int cur = a[i1];

union.add(cur);

// Remove all elements equal to the currently

// added element from each array.

while (i1 < n && cur == a[i1]) ++i1;

while (i2 < m && cur == b[i2]) ++i2;

} else if (a[i1] < b[i2]) {

int cur = a[i1];

union.add(cur);

while (i1 < n && cur == a[i1]) ++i1;

} else {

int cur = b[i2];

union.add(cur);

while (i2 < m && cur == b[i2]) ++i2;

}

}

while (i1 < n) {

int cur = a[i1];

union.add(cur);

while (i1 < n && cur == a[i1]) ++i1;

}

while (i2 < m) {

int cur = b[i2];

union.add(cur);

while (i2 < m && cur == b[i2]) ++i2;

}

return union.size();

}

}

Exercise 1.P.12 (optional) Attempt [2010P1Q5 (c)].

See of�cial solution notes
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Exercise 1.P.13 (optional) Attempt [2018P1Q7 (a)].

See of�cial solution notes

Exercise 1.P.14 [Most frequent elements] Describe an algorithm to �nd the most frequent elements
in an array. For example, given [1; 2; 1; 1; 3; 3; 2; 4; 3], it returns [1; 3] since they both occur 3 times.

(Brute force): For each element in the array, iterate over the array and count the number of equal elements,
keeping a list of those with maximum frequency.
(E�cient Solution): By sorting the elements, the equal elements appear next to each other, so it is easy to
count the number of times each element occurs. The sorting takes O (n log n) time.

import java.util.ArrayList;

import java.util.Arrays;

public class MostFrequentElement {

public static ArrayList <Integer > mostFrequentElements(int[] a) {

ArrayList <Integer > out = new ArrayList <>();

if (a.length == 0) return out;

Arrays.sort(a);

int prev = a[0];

int cnt = 1, max_cnt = 1;

out.add(prev);

for (int i = 1; i < a.length; ++i) {

if (a[i] == prev) {

++cnt;

} else {

prev = a[i];

cnt = 1;

}

// Update the maximum count and update the

// collection of items with maximum frequency.

if (cnt == max_cnt) {

out.add(a[i]);

} else if (cnt > max_cnt) {

out.clear ();

out.add(a[i]);

max_cnt = cnt;

}

}

return out;

}

public static void main(String [] args) {

int[] a = {1, 2, 1, 1, 3, 3, 2, 4, 3};

ArrayList <Integer > out = mostFrequentElements(a);

for (int x : out) {

System.out.println(x);

}

}

}

Exercise 1.P.15 (optional) Attempt [2011P1Q5].

See of�cial solution notes
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Chapter 2.11/2.12

Exercise 1.P.16 Attempt [2006P1Q4 (c)].

See of�cial solution notes

Exercise 1.P.17 [Finding top k elements]
(a) You are given an array containing pairs of (friendID, time spent last week). How you would

�nd the IDs of your friends with whom you spent most time together during the last week? What
is the time complexity of your algorithm?

(b) (optional) See [2007P10Q10 (b)].

(a) We can �nd the k-th entry xk in O (n) time using quickselect. Hence, using a single iteration over the
array we keep the k elements that are ≥ xk.

Note: In case of a tie as the k-th element we might need to drop a few extra elements.

(b) This is di�erent from the �rst part because we need the elements in sorted order.

We could sort the k elements returned from the �rst part using any comparison-based sorting method in
O (k log k) time (so O (n + k log k) total).

We can use a max heap and do k extractions, giving a total O (n + k log n) time, since heapify takes O (n)
time. However, this is slightly slower.

Chapter 2.14

Exercise 1.P.18 [All items] You are given n boxes each one coloured with one of the M available
colours. Describe an algorithm that checks if there is at least one box from each possible color.

Create an array C with M positions. Iterate over the n boxes and set C[A[i]] = 1. Then we can just check if
all M positions are set to 1. This takes Θ(n + U) time.

Exercise 1.P.19 [Union/Intersection using counting sort] Modify your solution for �nding the
union and intersection of two arrays to use counting sort. What is the time complexity of this approach?

Given two arrays A and B, we can create the counting arrays CA and CB .
The intersection of A and B has counting array CI [x] = min(CA[x], CB [x]) (e.g. if A has 3 occurrences of x
and B has 7 occurrences of x, then their intersection has 3).
The intersection of A and B has counting array CU [x] = 1CA[x]≥1∨CB [x]≥1 (a formal way of writing that CU [x]
is 1 if either is 1).
Given the counting array, in either case we can construct the output array by iterating through the values.
Hence, the total complexity is Θ(|A|+ |B|+ UA + UB) where UX denotes the maximum element in table X.

Exercise 1.P.20 [Does pair exist with given sum] Given an array A of integers and an integer K,
determine if there are two elements A[i] and A[j] such that A[i] +A[j] = k. What is the time complexity
of your algorithm?

Insert all the elements in A in a counting table C (sometimes also called a hash table). Then for each element
A[i] check if C[k−A[i]] > 0. If it is true, then it means that there is some A[j] = k−A[i]. So, A[i] +A[j] = k.
Note that if A[i] = k/2, then we need to check that C[k − A[i]] > 1, so that we don't pair it with itself. This
takes Θ(n + U) time.
Note: Instead of a hash table we could have used a balanced binary search tree and the time complexity would
have been Θ(n log n). An alternative solution is to sort the array and keep two pointers one left ` and one right
r. If A[`] + A[r] > k, then move r one place to the left, otherwise move ` one place to the right. So (requires
further justi�cation), at some point these pointers should either cross each other or �nd a pair with sum k.
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Exercise 1.P.21 [Median using counting sort] How can you use counting sort to �nd the median of
an array?

We insert the elements of A into the counting array and then go from 0 to U keeping track of the number z
elements we have seen so far. When z = n/2, we have found the median.
The same approach works for �nding the k-th element in time Θ(n + U).

Exercise 1.P.22 [Bucket Sort] (optional) Attempt [2018P1Q7 (b)].

See of�cial solution notes

Problems using sorting techniques

Exercise 1.P.23 [Union of intervals] You are given n intervals [ai, bi] (with ai 6= bi ∈ N). The area
covered by the intervals is that of covered by the union of intervals. For example, the intervals

[[1, 5]; [2, 6]; [4, 9]; [14, 16]]

cover a total area of 12.
(a) Describe an algorithm for �nding the area covered by the intervals. What is the time complexity

of your algorithm?

(b) (optional) How would you modify your solution if ai, bi ∈ Z?
(c) (optional) What if ai, bi ∈ R?

If you want you can submit an implementation to [LeetCode 56]

(Solution 1) Let U be the largest coordinate. We can create a boolean array of length U + 1, where C[i]
represents whether the interval [i, i + 1) is covered. We can �ll-in this table by iterating over the intervals and
for each interval iterating over the length of the interval and setting the entries to 1.

class Solution {

static class Interval {

int x, y;

public Interval(int x, int y) {

this.x = x;

this.y = y;

}

}

// Note: This code does not pass the tests because it does not

// handle the case of [x, x].

public int [][] merge(int [][] intervals) {

int[] is_covered = new int [10001];

for (int i = 0; i < intervals.length; ++i) {

for (int j = intervals[i][0]; j < intervals[i][1]; ++j) {

is_covered[j] = 1;

}

}

ArrayList <Interval > ans = new ArrayList <>();

int start = 0;

for (int i = 1; i < is_covered.length; ++i) {

if (is_covered[i] == 1 && is_covered[i-1] == 0) {

start = i;

} else if (is_covered[i] == 0 && is_covered[i-1] == 1) {

ans.add(new Interval(start , i));

}

}

// Fragment for transforming to requested format.

int [][] ansArr = new int[ans.size() ][2];

for (int i = 0; i < ans.size(); ++i) {
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ansArr[i][0] = ans.get(i).x;

ansArr[i][1] = ans.get(i).y;

}

return ansArr;

}

}

(Solution 2) For each interval [x, y] create a �begin at x event� and a �end at y event�. Sort these events by
their coordinate and in case of tie place the starting event before an ending event. Then, we iterate through
the sorted events and we keep a counter countCover, the number of itervals that cover the current coordinate.
When this becomes 0 it means that no interval is covering it. When it changes from 0 to 1, it means that a
new interval starts.

class Solution {

static class Event implements Comparable <Event > {

int x;

boolean is_start;

public Event(int x, boolean is_start) {

this.x = x;

this.is_start = is_start;

}

@Override

public int compareTo(Event other) {

if (x == other.x) return Boolean.compare(other.is_start , is_start);

return Integer.compare(x, other.x);

}

}

static class Interval {

int x, y;

public Interval(int x, int y) {

this.x = x;

this.y = y;

}

}

public int [][] merge(int [][] intervals) {

ArrayList <Event > arr = new ArrayList <>();

for (int i = 0; i < intervals.length; ++i) {

arr.add(new Event(intervals[i][0], true));

arr.add(new Event(intervals[i][1], false));

}

// It is important when we sort to place the starts before

// the ends.

Collections.sort(arr);

ArrayList <Interval > ans = new ArrayList <>();

int countCover = 0;

int start = 0;

for (Event ev : arr) {

if (ev.is_start) {

if (countCover == 0) {

start = ev.x;

}

++ countCover;

} else {

--countCover;

if (countCover == 0) {

ans.add(new Interval(start , ev.x));

// If we wanted to find the area , we would change this to

// area += ev.x - start

}

}

}

// Fragment for transforming to requested format.
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int [][] ansArr = new int[ans.size() ][2];

for (int i = 0; i < ans.size(); ++i) {

ansArr[i][0] = ans.get(i).x;

ansArr[i][1] = ans.get(i).y;

}

return ansArr;

}

}

Exercise 1.P.24 [Interval with all types of elements] There are n cows standing on a line at known
positions xi for the i-th cow. The type of i-th cow is ti. There are B breads of cows. You want to take
a photograph of the cows. The photograph covers M unit steps of the line. Describe an algorithm to
check if there is an interval of length M (where M is given) that contains all B types of cows.

(Solution 1) We could just go over the possible intervals of length M which have the form [i, i + M). Then
we can iterate through the cows of the interval and count the di�erent number of breads. If this is equal to the
total number of breads then we are done. To count the number of di�erent breads we can either use sorting
(which requires O (M logM) time) or use a counting array (which requires O (M + B)). In total this gives an
O (n log n + M · n) time.
(Solution 2) One observation is that cows should be at the boundary of the intervals. Hence, we just have to
�nd the interval of length M that terminates at each cow i. If we know this interval for cow i (say [`, i]), then
we can �nd the interval for i+ 1 by discarding the cows from `, `+ 1, . . . that are more than M units away from
cow i + 1). It is easy to remove a cow from the counting array and update the number of di�erent breads that
we have seen in the interval. The following code has the implementation details.

/* Determines if it is possible to find an interval of length

at least len which contains all cows. */

bool F(int len){

// lef: leftmost cow

int lef = 0, breads_seen = 0;

bool found = false;

int i;

for (i = 0; i<n; i++){

// We will find the number of different breads

// if the cow interval ends at i.

// So, remove all cows that further that len units

// from the i-th cow. The interval becomes: [left , i]

while(K[i].x - K[lef].x > len) {

A[K[lef].r]--; // Decrease bread count.

// If this was the last cow of the bread , decrease

// the number of different cows.

if (A[K[lef].r] == 0) breads_seen --;

// remove the cow.

lef ++;

}

// Add the i-th cow and update breads seen.

if (A[K[i].r] == 0) breads_seen ++;

A[K[i].r]++;

// If we have seen all breads , we are done.

if (breads_seen == num_breads) {

found = true; ++i;

break;

}

}

// Cleanup the counting array.

while(i > lef) {

--A[K[lef].r];

++lef;

}

return found;

}
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Exercise 1.P.25 [Smallest interval with all types of elements] Extending the setting of Exercise 24,
but this time we want to search for the smallest interval length M such that you can capture all B types.
[Usaco Cow Lineup]

Let f(len) be the binary function that checks if there is an interval of length len that contains all possible types
of cows. Then f should be false until some threshold point where it becomes true. Hence, it is monotonic and
the transition point will give the length of the smallest interval.

#include <cstdio >

#include <cstdlib >

#include <algorithm >

using namespace std;

const size_t MAXN = 1'000'000;

struct cow{

int x, r;

bool operator <( const cow &C)const{

return x < C.x;

}

} K[MAXN];

int n, num_breads;

int A[MAXN];

/* Determines if it is possible to find an interval of length

at least len which contains all cows. */

bool F(int len){

// lef: leftmost cow

int lef = 0, breads_seen = 0;

bool found = false;

int i;

for (i = 0; i<n; i++){

// We will find the number of different breads

// if the cow interval ends at i.

// So, remove all cows that further that len units

// from the i-th cow. The interval becomes: [left , i]

while(K[i].x - K[lef].x > len) {

A[K[lef].r]--; // Decrease bread count.

// If this was the last cow of the bread , decrease

// the number of different cows.

if (A[K[lef].r] == 0) breads_seen --;

// remove the cow.

lef ++;

}

// Add the i-th cow and update breads seen.

if (A[K[i].r] == 0) breads_seen ++;

A[K[i].r]++;

// If we have seen all breads , we are done.

if (breads_seen == num_breads) {

found = true; ++i;

break;

}

}

// Cleanup the counting array.

while(i > lef) {

--A[K[lef].r];

++lef;

}

return found;

}
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int main(){

freopen("I.","r",stdin);

freopen("O.","w",stdout);

scanf("%d", &n);

for (int i = 0; i<n; i++){

scanf("%d%d", &K[i].x, &K[i].r);

}

// Sort by bread and translate breads in [0, n).

sort(K, K+n, []( const cow& c1 , const cow& c2) { return c1.r < c2.r; });

int prev = -1, cur_id = -1;

for (int i = 0; i < n; ++i) {

int old = K[i].r;

if (K[i].r == prev) K[i].r = cur_id;

else {

prev = K[i].r;

K[i].r = ++ cur_id;

}

}

num_breads = cur_id + 1;

// Sort breads by position.

sort(K, K+n);

int st = 0, en = K[n-1].x - K[0].x, mn;

while (st < en) {

mn = (st+en)/2;

if (F(mn) == true) en = mn;

else st = mn + 1;

}

printf("%d\n", st);

return 0;

}
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