
Algorithms Example Sheet 5: Problems

Further DAG problems

Exercise 5.P.1 If we take a DAG and reverse all the edges, do we get a DAG? Justify your answer.

[Exercise 11 in Lecturer's handout]

Exercise 5.P.2 Here are two buggy ways to code topological sort. For each, give an example to show
why it's buggy.
(a) Pick some vertex s with no incoming edges. Simply run dfs_recurse, starting at this node, and

add an extra line totalorder.prepend(v) as we did in toposort.

(b) Run dfs_recurse_all, but order nodes in order of when they are visited, i.e. insert
totalorder.append(v) immediately after the line that sets v.visited=True.

[Exercise 12 in Lecturer's handout]

Exercise 5.P.3 Given a DAG G, design an algorithm to determine if there is a path that includes each
vertex exactly once.

Exercise 5.P.4 Show that every DAG G has at least one vertex with no incoming edges and at least
one vertex with no outgoing edges.

Exercise 5.P.5 Give pseudocode for an algorithm that takes as input an arbitrary directed graph g,
and returns a boolean indicating whether or not g is a DAG.

[Exercise 13 in Lecturer's handout]

Exercise 5.P.6 Give an example DAG with 9 vertices and 9 edges. Pick some vertex that has one or
more edges coming in, and run through toposort starting on line 6 with this vertex. Mark each vertex
with two numbers as you proceed: the discovery time (when the vertex is coloured grey) and the exit
time (when the vertex is coloured black). Then draw a linearized DAG by arranging the vertices on a
line in order of their �nishing time, and reproducing the appropriate arrows between them. Do all the
arrows go in the same direction?

[Exercise 17 in Lecturer's handout]

Exercise 5.P.7 The code for toposort is based on dfs_recurse. If we base it instead on the stack-based
dfs from Section 5.2, and insert the line totalorder.prepend(v) on line 13 (after the iteration over v's
neighbours), would we obtain a total order? If so, justify your answer. If not, give a counterexample,
and pseudocode for a proper stack-based toposort.

[Exercise 20 in Lecturer's handout]

Exercise 5.P.8 [Approximate DAGs] (optional) Sometimes we want to impose a total order on a
collection of objects, given a set of pairwise comparisons that can be thought of as a �DAG with noise'.
For example, let vertices represent movies, and write v1 → v2 to mean �The user has said she prefers
v1 to v2.� A user is likely to give answers that are by and large consistent, but with some exceptions.
Discuss what properties you would like in an �approximate total order�, and how you might go about
�nding it. [This is an open-ended question, and a prelude to data science and machine learning courses.]

[Exercise 18 in Lecturer's handout]

1

Exercise 5.P.9 Write out a formal proof of the correctness of the toposort algorithm, �lling out all the
details that are skipped over in the handout. Pay particular attention to the third case, �v2 is coloured
grey�, where it is claimed �The call stack corresponds to a path in the graph from v2 to v1.�

[Exercise 19 in Lecturer's handout]

Minimum Spanning Trees

Exercise 5.P.10 An engineer friend tells you �Prim's algorithm is based on Dijkstra's algorithm, which
requires edge weights to be ≥ 0. If some edge weights are < 0, we should �rst add some constant weight
c to each edge so that all weights are ≥ 0, then run Prim's algorithm.�
(a) Your friend's algorithm will produce a MST for the modi�ed graph. Is this an MST for the original

graph?

(b) What would happen if you run Prim's algorithm on a graph where some weights are negative?
Justify your answer.

[Exercise 9 in Lecturer's handout]

Exercise 5.P.11 [MST with updates]
(a) Attempt [2015P1Q9 (c)].

(b) Design an algorithm to �nd the second-best MST (if it exists), i.e. the tree T with the smallest
weight w(T) such that w(T) > MST.

Maximum �ow

Exercise 5.P.12 We are given a directed graph, and a source vertex and a sink vertex. Each edge
has a capacity cE(u → v) ≥ 0, and each vertex (excluding the source and the sink) also has a capacity
cV (v) ≥ 0. In addition to the usual �ow constraints, we require that the total �ow through a vertex
be ≤ its capacity. We wish to �nd a maximum �ow from source to sink. Explain how to translate this
problem into a max-�ow problem of the sort we studied in section 6.2.

Exercise 5.P.13 The Russian mathematician A.N. Tolstoy introduced the following problem in 1930.
Consider a directed graph with edge capacities, representing the rail network. There are three types
of vertex: supplies, demands, and ordinary interconnection points. There is a single type of cargo we
wish to carry. Each demand vertex v has a requirement dv > 0. Each supply vertex v has a maximum
amount it can produce sv > 0. Tolstoy asked: can the demands be met, given the supplies and graph
and capacities, and if so then what �ow will achieve this?
Explain how to translate Tolstoy's problem into a max-�ow problem of the sort we studied in section
6.2.

[Exercise 5 in Lecturer's handout]

Exercise 5.P.14 In the context of Exercise 13, a dispute has arisen in the central planning committee.
Comrade A who oversees the factories insists that each demand vertex must receive precisely dv, no more
and no less. Comrade B who oversees the trains insists that each demand vertex v must be prepared to
receive a surplus �ow, more than dv, so as not to constrain the �ows on the train system any more than
necessary. Does your solution satisfy Comrade A or Comrade B? How would you satisfy the other?

[Exercise 7 in Lecturer's handout]

2

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p1q9.pdf

Exercise 5.P.15 Devise an algorithm that takes as input a �ow f on a network, and produces as output
a decomposition [(λ1, p1), . . . , (λn, pn)] where each pi is a path from the source to the sink, and each λi

is a positive number. The decomposition must satisfy f =
∑

i λipi, by which we mean �put �ow λi along
path pi, and add together all these �ows-along-paths, and the answer must be equal to f �. Explain why
your algorithm works.

Exercise 5.P.16 [Edge-disjoint paths] Two paths are edge disjoint if they do not share an edge.
Given a directed graph G �nd the maximum number of edge disjoint paths from s to t.

Exercise 5.P.17 [Baseball elimination problem] You are given the points wx that each team x has
in the league. There are gxy = gyx remaining games between teams x and y. You would like to determine
if there is a possible outcome so that team z �nishes �rst (or tied �rst).
For example, if there are 4 teams and the league table is as follows:

Team Points
x 12
y 12
z 10
w 7

and the remaining games are gxy = 3, gzw = 3 and gwx = gwy = 1. Team z can reach at most 13 points
by winning all games, but either team x or team y will win at least two games (from those that they
play against each other), so they will reach 14 points. Hence, it is not possible for z to �nish �rst.

Exercise 5.P.18 In the London tube system (including DLR and Overground), there are occasional
signal failures that prevent travel in either direction between a pair of adjacent stations. We would
like to know the minimum number of such failures that will prevent travel between Kings Cross and
Embankment.
(a) Explain how the tube map g can be translated into a suitable �ow network g′, with Kings Cross

the source and Embankment the sink, such that a set of signal failures preventing travel in g is
translated into a cut in g′. [Hint: Remember that a cut is a partition of the vertices, not an
arbitrary selection of edges.]

(b) Explain how a cut in g′ can be translated into a set of travel-preventing signal failures in g, such
that the number of signal failures is ≤ the capacity of the cut.

(c) Suppose we take the minimum cut in g′ and translate it into a set of travel-preventing signal failures
in g. Show that this is the minimum number of travel-preventing signal failures.

(d) Find a maximum �ow on your directed graph. Hence state the minimum number of signal failures
that will prevent travel. [Hint: You should run Ford-Fulkerson by hand, with sensibly-chosen
augmenting paths.]

[Exercise 6 in Lecturer's handout]

Exercise 5.P.19 [Hall's Theorem] Consider a bipartite graph, in which edges go between the left
vertex set L and the right vertex set R. A matching is called complete if every vertex in L is matched
to a vertex in R, and vice versa. For a complete matching to exist, we obviously need |L| = |R|. The
following result is known as Hall's Theorem:
A complete matching exists if and only if, for every subset X ⊆ L, the set of vertices in R connected to
a vertex in X is at least as big as X.
Prove Hall's Theorem, using a max-�ow formulation. [Hint: Use the same construction as we used in
lectures, except with capacity ∞ on the edges between L and R. In this graph, some cuts have in�nite
capacity, and some cuts have �nite capacity. If a cut has �nite capacity, what can you deduce about its
capacity?]

3

