
Randomised Algorithms: Supplementary Questions (draft!)

January 2023

1 Basic techniques

Exercise 1 [In expectation vs whp]
(a) Why would one want to use randomness in an algorithm?

(b) Explain the difference between guarantees that come “in expectation” and guarantees that come
“with high probability”.

(c) Compare quantitatively the outputs of the following python programs:

import numpy as np

ans = []
for _ in range (20):

m = 1
while np.random.random () < 0.8:

m += 1
ans.append(m)

print(ans)

and

import numpy as np

ans = []
for _ in range (20):

n = 10000
m = n
loads = np.zeros(n)
for _ in range(m):

i1 = np.random.randint(0, n - 1)
i2 = np.random.randint(0, n - 1)
i_min = i1 if loads[i1] < loads[i2] else i2
loads[i_min] += 1

ans.append(np.max(loads) - m / n)
print(ans)

(Answer)
(a)

(b)

(c) The outputs from the first program are not very highly concentrated:

[3, 2, 6, 10, 16, 7, 1, 2, 10, 3, 21, 17, 1, 5, 18, 6, 6, 14, 4, 5]

The outputs from the second program are much more highly concentrated:

[2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0]

1

Exercise 2 [For sufficiently large n] In several settings, we only care about what happens for suffi-
ciently large n. Convince yourself that the following inequalities hold for sufficiently large n:

• 6n+ n2 ≤ 2n2,

• 3n2 − 6n ≥ 2n2,

• 5n log2 n+ 3n− 2n log n ≥ 4n log2 n.

Exercise 3 [High probability events combine well] In this exercise, you will see that high probability
events combine well. (This may make more sense after you have seen a few examples where we combine
high probability events)

(a) Let A and B be two events with Pr [A] ≥ 1− n−c and Pr [B] ≥ 1− n−c for some constant c > 0.
Then Pr [A ∩B] ≥ 1− 2n−c.

(b) How would you interpret in words the result in (a)?

(c) More generally for events E1, . . . , Em with Pr [Ei] ≥ 1− n−c, we have that

Pr

[
m⋂
i=1

Ei

]
≥ 1− nc ·m.

(d) Let A and B be two events such that Pr [A | B] ≥ 1−n−c and Pr [B] ≥ 1−n−c for some constant
c > 0. Then, Pr [A] ≥ 1− 2n−c.

(e) How would you interpret in words the result in (d)?

(f) Generalise the result in (d).

(Answer)
(a) We start by upper bounding the complement of this event using the union bound.

Pr [¬(A ∩B)] = Pr [¬A ∪ ¬B] ≤ Pr [¬A] +Pr [¬B] ≤ n−c + n−c = 2n−c.

Therefore, Pr [A ∪B] ≥ 1− n−c.

(b) “Two high probability events occur simultaneously with high probability probability.”

(c) As in (a), we upper bound the probability of the complement,

Pr

¬ m⋂
j=1

Ej

 = Pr

 m⋃
j=1

¬Ej

 ≤ m∑
j=1

Pr [¬Ej] ≤ m · n−c.

Therefore, Pr
[⋂m

j=1 Ej

]
≥ 1 − m · n−c. Note that for this to be high probability then m ≤ n−c′ for

constant c′ < c.

(d) “If A holds with high probability when high probability event B holds, then A holds with high probability.”

(e) By the definition of conditional probability,

Pr [A] = Pr [A | B] ·Pr [B] ≥ (1− n−c) · (1− n−c) = 1− 2n−c + n−2c ≥ 1− 2n−c.

(f) Consider the events E1, . . . , Em, and further Pr [Ei | Ei−1, . . . , E1] ≥ 1−n−c, for any i ≥ 1 and Pr [E1] ≥
1− n−c. Then,

Pr [En] = Pr [Em | Em−1, . . . , E1] ·Pr [Em−1 | Em−2, . . . , E1] · . . . ·Pr [E2 | E1] ·Pr [E1]

≥ (1− n−c)m ≥ 1−m · n−c,

where the last inequality follows by Bernoulli’s inequality (see Exercise 11).

2

Extended Note 1 [Indexed sets] Sometimes you will see (Ei)
n
i=1 instead of E1, . . . , En or (Ei)

∞
i=0

instead of E1, E2, This is just for notational convenience.

Exercise 4 [Probability amplification] Consider an algorithm A for a minimisation problem. Further,
assume that A succeeds in finding the minimum solution with probability at least p > 0, otherwise
produces a solution with larger value.
We define the algorithm A′ which repeats algorithm A, t := ⌈ cp · log n⌉ times for some constant c (and
n being a parameter of the given problem) and returns the minimum of these values. Then, A′ has a
success probability of at least 1− n−c.

(Answer) The failure probability of A′ is at most

(1− p)t ≤ e−pt ≤ e−p·⌈ c
p ·logn⌉ ≤ e−c logn = n−c.

Hence, the success probability is at least 1− n−c.

1.1 Common asymptotics
The following exercise demonstrates the general approach for bounding (discrete) sums using integrals. You
may find it simpler to first attempt the bound on the harmonic numbers and then come back to this.

Exercise 5 [General approach] Let f : [a−1, b+1]→ R be a monotonically decreasing and integrable
function for a, b ∈ Z. Using the two figures below argue that∫ b+1

a

f(x) dx ≤
b∑

i=a

f(i) ≤
∫ b

a−1

f(x) dx.

a a+ 1 a+ 2 · · · b− 1 b b+ 1

f(a)

f(a+ 1)
f(a+ 2)

f(b)

Lower bound

a− 1 a a+ 1 a+ 2 · · · b− 1 b

f(a)

f(a+ 1)
f(a+ 2)

f(b)

Upper bound

(Answer) We begin with the observation that in both figures the sum
∑b

i=a f(i) is the total sum of the areas
of the gray rectangles.
From the first figure, we see that the integral from a to b+ 1 is a lower bound for this area, since the function
f is always below the rectangles ∫ b+1

a

f(x) dx ≤
b∑

i=a

f(i).

Similarly, from the second figure, we see that f is always above the rectangles, so it is an upper bound for the
sum

b∑
i=a

f(i) ≤
∫ b

a−1

f(x) dx.

This concludes the proof.

3

Exercise 6 [Harmonic numbers] The n-th harmonic number Hn is defined as Hn =
∑n

i=1
1
i . Show

that for any n ≥ 1,
lnn ≤ Hn ≤ lnn+ 1.

(Answer) We are going to apply the inequality from Exercise 5, for f(x) = ln(x) which is a decreasing function.
The only problem is that for the upper bound we have that for a = 1, 1/(a − 1) is undefined. We fix this by
upper bounding the shifted sum as

n∑
i=1

1

i
= 1 +

n∑
i=2

1

i
≤ 1 +

∫ n

1

ln(x) dx = 1 + ln(n)− ln(1) = ln(n) + 1.

For the lower bound we get,

n∑
i=1

1

i
≥

∫ n+1

1

1

x
dx = ln(n+ 1)− ln(1) = ln(n+ 1) ≥ ln(n).

Further Reading 1 [Euler–Mascheroni constant] For most applications in algorithms a Θ(log n)
bound is sufficient for Hn (let alone a log n+Θ(1) bound). In case you want to look it up,

lim
n→∞

Hn = log n+ γ = log n+ 0.577..,

where γ is known as the Euler–Mascheroni constant.

Exercise 7 [Factorial inequalities]
(a) Using Exercise 5, show that

n log n− n+ 1 ≤ ln(n!) ≤ n log n− n+ 1 + log n,

and deduce that
e ·

(n
e

)n

≤ n! ≤ e · n ·
(n
e

)n

.

(b) (optional) By drawing a figure and using the concavity of the log(·) function, argue that∫ i

i−1

log x dx ≥ log(i− 1) + log i

2
.

By aggregating over all i = 1, . . . , n show that

n! ≤ e
√
n ·

(n
e

)n

.

(Answer)
(a) The log x function is increasing in x, so we will apply the inequality of Exercise 5 to the function f(x) =
− log x, which is decreasing. Also, recall that∫

log x dx = x log x− x.

For the upper bound,
n∑

i=2

− log i ≤
∫ n

1

log x dx = n log n− n+ 1.

For the lower bound,

n∑
i=1

− log i = − log n+

n−1∑
i=1

− log i ≥ − log n+

∫ n

1

log x dx = − log n+ n log n− n+ 1

4

Combining the two bounds, we get that

n log n− n+ 1 ≤
n∑

i=1

log i ≤ n log n− n+ 1− log n.

By exponentiating both sides, we get that

e ·
(n
e

)n

≤ n! ≤ e · n
(n
e

)n

.

(b) Let g(x) = log x, then g′(x) = 1/x and g′′(x) = −1/x2 < 0, so the function is concave. Therefore,
according to the following figure, the are of the trapezoid is contained in the area of the integral so we
can deduce that ∫ i

i−1

log x dx ≥ log(i− 1) + log(i)

2
.

By summing both sides for i = 2, . . . , n, we get that∫ n

1

log x dx ≥
n∑

i=1

log(i− 1) + log(i)

2
=

n∑
i=1

log(i)− ln(n)

2
.

By exponentiating both sides, we get that

n! ≥ e
√
n ·

(n
e

)n

.

i− 1 i

Further Reading 2 [Stirling’s approximation formula] Stirling’s approximation formula says that

n! ∼ nne−n
√
2πn,

and the following bounds hold for all n,

e1/(12n+1) ≤ n!

nne−n
√
2π
≤ e1/(12n).

1.2 Inequalities and Taylor estimates
In the course, you have often used the inequality 1 + x ≤ ex. In this section you wil prove that this inequality
holds using a general (and simple) methodology.

Extended Note 2 Assuming that we want to prove the inequality

g(x) ≤ f(x),

for all values x in some range [a, b].

5

• Step 1: Define the function
h(x) := f(x)− g(x).

• Step 2: Determine the minimum value of this function h(x∗).

• Step 3: Deduce that
h(x) ≥ h(x∗).

If h(x∗) ≥ 0, then the inequality holds. Otherwise, for x∗ the inequality fails.

Exercise 8 Prove the inequality 1 + x ≤ ex for any x ∈ R.

(Answer) We proceed with the above steps:

• Step 1: Define the function
h(x) := ex − (1 + x).

• Step 2: By differentiating we get
h′(x) = ex − 1.

Setting h′(x) = 0, we get x = 0, which is a minimum since h′(x) > 0 for x > 0 and h′(x) < 0 for x < 0.

• Step 3: We can deduce that
h(x) ≥ h(0) = 0,

or equivalently
ex − (1 + x) ≥ 0,

which gives us the claim
ex ≥ 1 + x.

Extended Note 3 [Inequalities via Taylor estimates] Another way to derive inequalities for suffi-
ciently small x is via Taylor estimates. For instance,

ex = 1 + x+
x2

2!
+

x3

3!
+

Then by truncating the series at a certain point, e.g.,

ex ≈ 1 + x+
x2

2!
,

we can obtain upper and lower bounds for sufficiently small x by changing the constant in the last term.
For instance, we can obtain the inequalities,

ex ≤ 1 + x+ x2,

and
ex ≥ 1 + x+

1

4
x2.

for any |x| ≤ 1/2.

Exercise 9 [Birthday paradox] In this exercise, you will prove that with (positive) constant probability
you need to take Θ(

√
n) samples until a collision occurs. Let Ei be the event that the first collision occurs

in the first i samples.
(a) Show that the probability that the first i samples are distinct is

Pr [Ei] =
(
1− 1

n

)
·
(
1− 2

n

)
· . . . ·

(
1− i− 1

n

)
.

6

(b) Using the inequality 1 + x ≤ ex and choosing a constant C > 0 appropriately show that

Pr
[
EC√

n

]
≤ 1/2.

(c) Using the inequality ex ≤ 1 + x+ x2 (for x ≤ 1) show that e−u−u2 ≤ 1− u for u ≤ 1/2.

(d) By choosing a constant c > 0 appropriately show that

Pr
[
Ec√n

]
≥ 1/e.

(e) State and deduce the birthday paradox. Why might it not (always) apply in the real-world?

(f) (Maybe) Looking at the crsids of the students that signed up for “Randomised algorithms”, what
can the birthday paradox say?

Exercise 10 [Lower bounding ratios] In this exercise, we will prove a simple inequality that is useful
for bounding ratios, for instance in approximation algorithms.
For any ϵ ∈ (−1, 1), it holds that

1

1 + ϵ
≥ 1− ϵ.

(a) Prove the inequality.

(b) Consider a maximisation problem P . Assume you have proven that the optimal solution is at
most n2 + 10n and your algorithm returns a solution at least n2 − 3n log n. Then prove that your
algorithm has an approximation ratio of at most 1 + o(1).

(c) Repeat the previous exercise when the lower bound is 1
2n

2 − 3n log n,

(Answer)
(a) Since ϵ ∈ (−1, 1), we have that 1 + ϵ > 0 and so the inequality is equivalent to

1 ≥ (1− ϵ) · (1 + ϵ),

which is equivalent to
1 ≥ 1− ϵ2,

which holds by the assumption that ϵ ∈ (−1, 1).
(b) The approximation ratio is at most

r =
n2 + 10n

n2 − 3n log n
.

By dividing by the dominant term on both numerator and denominator, we get that

r =
1 + 10n

n2

1− 3n logn
n2

=
1 + 10

n

1− 3 logn
n

.

Using the inequality from (a),

r ≥
(
1 +

10

n

)
·
(
1 +

3 log n

n

)
= 1 +

10

n
+

3 log n

n
+

30 log n

n2
≤ 1 +

4 log n

n
.

(c) Proceeding as in the previous question, we want to lower bound

r =
n2 + 10n

1
2n

2 − 3n log n
.

By dividing by the dominant term on the denominator, we get that

r =
2 + 20n

n2

1− 6n logn
n2

=
2 + 20

n

1− 6 logn
n

.

7

Using the inequality from (a),

r ≥
(
2 +

20

n

)
·
(
1 +

6 log n

n

)
= 2 +

20

n
+

12 log n

n
+

120 log n

n2
≤ 1 +

7 log n

n
.

Exercise 11 [Bernoulli’s inequality] Prove that for any n ∈ N and for any x ∈ [−1,+∞), we have
that

(1 + x)n ≥ 1 + nx.

(Answer) We proceed by induction on n:

• Base case: For n = 0, we have that 1 ≥ 1, which is trivially true.

• Inductive case: Assume true for n = k, i.e.,

(1 + x)k ≥ 1 + kx.

Then, for n = k + 1 we have that

(1 + x)k+1 = (1 + x)k · (1 + x)

≥ (1 + kx) · (1 + x)(By I.H.)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x(since x2 ≥ 0 and k ≥ 0).

Hence, it also holds for n = k + 1.

1.3 Indicator random variables

Exercise 12 [Basic properties] Let A,B be two events in a sample space Ω. Then, prove the following
properties for the indicators of these events:

(a) E [1A] = Pr [A],

(b) 1A∩B = 1A · 1B ,

(c) 1¬A = 1− 1A,

(d) 1A∪B = 1A + 1B − 1A∩B ,

(e) Var [1A] = Pr [A] · (1−Pr [A]),

(f) E
[
(1A)

k
]
= Pr [A] for any k > 0.

(Answer) Let p = Pr [A].
(a) By the definition of expectation,

E [1A] = p · 1 + (1− p) · 0 = p.

(b) The indicator 1A∩B = 1 iff events A and B hold iff 1A = 1 and 1 = B iff 1A · 1B = 1.

(c) The indicator 1¬A = 1 iff ¬A holds iff A does not hold iff 1A = 0 iff 1− 1A − 1

(d)

(e) Since E [1A] = p and since Var [X] = E [(X − µ)], we have that

Var [1A] = p · (1− p)2 + (1− p) · p2 = p · (1− p) · (1− p+ p) = p · (1− p).

(f) 1k
A = 1A and so the conclusion follows from (a).

Exercise 13 [Inequalities]
(a) Argue that for random variables X and Y such that X ≤ Y (and have finite expectations), we also

8

have that E [X] ≤ E [Y].

(b) (Markov’s inequality) Let X be a non-negative random variable, then show that for any a > 0,

Pr [X ≥ a] ≤ E [X]

a
.

Hint: Consider the indicator r.v. of the event {X ≥ a}.
(c) (Union bound) Consider n events E1, . . . , En in a sample space Ω. Then,

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

Hint: See Lecture 1 slide 12.

(Answer)
(a) Let us define Z := Y −X. Then by the assumption Z ≥ 0. Therefore,

E [Z] =

∫ ∞

x=0

z · pZ(z) dz ≥ 0,

since each term of the integrand is non-negative. Therefore,

E [Z] ≥ 0⇒ E [Y −X] ≥ 0⇒ E [Y]−E [X] ≥ 0⇒ E [Y] ≥ E [X] .

(b) As the hint suggests, let Z := {X ≥ a}. By a simple case distinction it follows that

X ≥ Z · a,

since

• Case 1 [Z = 0]: X ≥ 0 = Z · a which trivially holds.

• Case 2 [Z = 1]: X ≥ a = Z · a, by the definition of the event Z.

Hence, by (a)
E [X] ≥ E [Z · a] = E [Z] · a = Pr [X ≥ a] · a.

By rearranging, we get Markov’s inequality.

(c) Let Zi be the indicator for event Ei and let Z be the indicator for ∪ni=1Ei. Then we have that

Z ≤
n∑

i=1

Zi,

since Z = 1 iff any of the Zi’s is 1. Hence, by (a) we have that

E [Z] ≤
n∑

i=1

E [Zi]⇒ Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

Exercise 14 [Fixed points of random permutation] The n passengers of an airplane take a seat
uniformly at random.

(a) What is the number of passengers X that sit in their assigned seat in expectation?

(b) What is the variance of X?

(c) (optional +) Assume that n is divisible by 6, the passengers have arrived in n/2 pairs and there are
n/6 rows of seats each with 6 seats. What is the expected number of pairs that will seat next to
each other?

(Answer)

9

https://www.cl.cam.ac.uk/teaching/2223/RandAlgthm/lec1_intro.pdf#page=12

(a) Let Xi be the indicator of the event Ei that the i-th person sat in the correct seat. Then,

Pr [Ei] =
1

n
.

Therefore, for the total number of people that sat in their correct seat X =
∑n

i=1 Xi, by linearity of
expectation we have that

E [X] =

n∑
i=1

E [Xi] =

n∑
i=1

Pr [Ei] = n · 1
n
= 1.

Therefore in expectation one person will take the correct seat.

(b) Using the formula for the variance

Var [X] = E
[
X2

]
− (E [X])2

= E

[(∑
i = 1nXi

)2
]
− 1

=

n∑
i=1

n∑
j=1

E [XiXj] .

We distinguish two cases for E [XiXj]:

• Case [i = j]: By the properties of indicators

E
[
X2

i

]
= E [Xi] =

1

n
.

• Case [i ̸= j]: This one is a bit more involved:

E [XiXj] = Pr [XiXj = 1] = Pr [XiXj = 1 | Xi = 1] ·Pr [Xi = 1]

= Pr [Xj = 1 | Xi = 1] ·Pr [Xi = 1]

=
1

n− 1
· 1
n
,

since given that index i is a fixed point, there are n − 1 remaining items in n − 1 slots, so the
probability that j is a fixed point is 1/(n− 1).

By combining the two cases, we have that

Var [X] = n · 1
n
+ n · (n− 1) · 1

n · (n− 1)
− 1 = 1.

Exercise 15 [Inversions in a random permutation] Consider a permutation π of the set [n] :=
{1, . . . , n}. An inversion is a pair (i, j) such that i < j and πi > πj . Intuitively, it captures the pairs of
indices that are out of order.
Show that if π is chosen uniformly at random, then the expected number of inversions N , satisfies

E [N] =
n · (n− 1)

4
.

How does this quantity relate to insertion sort?

(Answer)
(a) We define the indicator random variable Xij = {πi > πj} (for i < j). By considering the n! possible

permutations of [n], in half of them πi > πj and in the other half πi < πj . So,

Pr [Xij] =
1

2
.

Then, the number of inversions X =
∑n

i=1

∑n
j=i+1 Xij satisfies

E [X] =

n∑
i=1

n∑
j=i+1

1

2
=

(
n

2

)
· 1
2
=

1

4
· n(n− 1).

10

(b) This is the expected number of swaps performed by the insertion sort algorithm on a randomly permuted
input.

Question: What should we do if the input is not random? We can randomly permute the input vector in
O(n) time.

Exercise 16 [Records of a random permutation] Given a random permutation π of the set [n] :=
{1, . . . , n}, how many times does line 5 in the following code execute?
1: function FindMin(x1, . . . , xn)
2: m←∞
3: for i = 1 to n do
4: if xi < m then
5: m← xi

6: end if
7: end for
8: return m
9: end function

(Answer) Let Xi be the indicator of the event Ei that the i-th element is larger than all previous elements
1, . . . , i − 1. There are i! possible permutations for elements x1, . . . , xi and in exactly 1/i of them (due to
symmetry) the smallest element will be xi. Hence,

Pr [Xi] =
1

i
.

Therefore, we can deduce that the total number of times X =
∑m

i=1 Xi that we execute line 5 is in expectation

E [X] =

n∑
i=1

E [Xi] =

n∑
i=1

1

i
= Hn,

where Hn is the n-th Harmonic number (and so we also know that E [X] = log n+Θ(1).

Exercise 17 [Local max in random permutation] In a sequence x1, . . . , xn a local maximum is an
index i such that xi is at least as large as its (at most two) neighbours xi−1 and xi+1.
Compute the expected number of local maxima in expectation for a random permutation of the elements
[n] := {1, . . . , n}.

(Answer) Let Zi be the indicator for whether the i-th index is a local maximum. Then for i not being a
boundary value (i.e., 1 < i < n) we have that

E [Zi] = Pr [Xi−1 ≤ Xi ≤ Xi+1] =
1

3
,

since out of the 3! random permutations there are exactly two which have i as a local maximum:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

For the two boundary values each has a probability 1/2 of being a local maximum, so in total we have

E [X] =
n− 2

3
+

1

2
+

1

2
=

n+ 1

3
.

Exercise 18 [Number of cycles in random permutation] In this exercise, you will bound the
number of cycles in a random permutation of the elements of the set [n] := {1, . . . , n}.

11

(a) Consider a set of distinct elements {i1, . . . , ik} of [n]. Prove that the probability they form a cycle
is

1

n
· 1

n− 1
· . . . · 1

n− k + 1
.

(b) Prove that the expected number of cycles of length k in a random permutation is 1/k.

(c) Deduce that the total number of cycles is lnn+Θ(1).

(Answer)
(a) Let Zi1,...,ik be the indicator of the event that i1, . . . , ik form a cycle. Then, each outgoing edge of ij

should point to ij+1 (or i1 if j = k) and so

Pr [Zi1,...,ik = 1] =
1

n
· 1

n− 1
· . . . · 1

n− k + 1
.

(b) Let Xk be the number of cycles of length k in a random permutation. There are n!
(n−k)! ways of ordering

k elements from [n] and therefore 1
k ·

n!
(n−k)! ways of obtaining cycles of k elements from [n]. Therefore,

E [Xk] =
1

k
· n!

(n− k)!
· 1
n
· 1

n− 1
· . . . · 1

n− k + 1
=

1

k
.

(c) By summing over all lengths from k = 1, . . . , n, we get that the expected number of cycles is

E [X] =

n∑
k=1

E [Xk] =

n∑
k=1

1

k
= Hn = log n+Θ(1).

Exercise 19 [Monte-Carlo Estimation] In Monte-Carlo estimation algorithms, the goal is to estimate
the volume of a body by sampling. For instance, to estimate the value of π, we can randomly sample
points in the [−1, 1]2 square and count which ones are within the circle of radius 1 centred at the origin.
Then we report the area to the be the count over four times the number of samples taken.

(a) Show that this algorithm produces the correct answer in expectation.

(b) What kind of guarantees can you get by applying Markov’s inequality?

(c) What kind of guarantees can you get by applying Chebyshev’s inequality?

(d) What kind of guarantees can you get by applying the Chernoff bound?

(e) How would you modify the algorithm so that you only sample from the square [0, 1]2?

(Answer) Let Xi be the indicator of the event Ei that the i-th sample is within the circle of radius 1. The
reported value is X := 4

n

∑n
i=1 Xi.

(a) The area of the square is 4 and the are of the circle is π/4. Hence,

Pr [Ei] =
π

4
.

Hence, by taking the average of n samples we have that

E [X] =
1

n

n∑
i=1

E [Xi] =
4

n
· n · π

4
= π.

(b) By Markov’s inequality, we get that

Pr [X ≥ 3π] ≤ 1

3
.

We can also obtain a lower bound by defining Y := 4−X. Then

Pr

[
Y ≥ 3

2
·E [Y]

]
≤ 2

3
,

12

and therefore,

Pr

[
Y <

3

2
· (4− π)

]
≥ 1

3
.

By replacing X we have that

Pr

[
3

2
π − 2 < X

]
≥ 1

3
.

So with probability at least 1/3, π̂ ∈ [2.712, 9.41].

(c) By Exercise 12 (e) and since the Xi’s are independent, we have that

Var [X] =
42

n2

n∑
i=1

Var [Xi] =
4

n
· π ·

(
1− π

4

)
=

π(4− π)

n
.

Therefore, by Chebyshev’s inequality, we have that

Pr

[
|X − π| ≥ k ·

√
π(4− π)

n

]
≥ 1

k
.

(d) Let X̃ =
∑n

i=1 Xi. Then, by the Chernoff bound, we have that

Pr
[
|X̃ − πn

4
| ≥ t

]
≤ 2 · e−2t2/n.

By scaling by 4/n we get

Pr

[
|X − π| ≥ 4t

n

]
≤ 2 · e−2t2/n.

Choosing t := k
√
n, we get that

Pr

[
|X − π| ≥ 4t

n

]
≤ 2 · e−2k2

,

which is much better than the dependence in Chebyshev’s inequality.

Exercise 20 [3-CNF] We are given a CNF formula consisting of m clauses, i.e., an expression of the
form C1 ∧C2 ∧ . . . ∧Cm with Ci = Xi1 ∨ . . . ∨Xici

. Consider a simple algorithm that randomly assigns
a value to each of the literals Xi.

(a) Show that when ci = 3 for all i ∈ [m], then the output contains 7m
8 satisfied clauses in expectation.

(b) Find a similar expression for the general case.

(Answer)
(a) Let Xi be the indicator variable for the event Ei that the i-th clause is satisfied. Then the clause will

be satisfied if either of the three literals is true. This happens with probability 1 − 1/8. Hence, for
X =

∑n
i=1 Xi being the total number of satisfied clauses, we have that

E [X] =

m∑
i=1

E [Xi] = m ·Pr [Ei] = m ·
(
1− 1

8

)
=

7m

8
.

(b) Let ki be the number of literals in the i-th clause. Again, let Xi be the indicator of the event Ei that the
i-th clause is satisfied. Then,

Pr [Ei] = 1− 2−ki .

Hence, the total number X of clauses satisfied is in expectation,

E [X] = m−
m∑
i=1

2−ki .

13

Exercise 21 [Pattern Matching] Consider a fixed pattern P = (p1, . . . , pk) with characters from an
alphabet Σ. We want to find the expected number of times that this pattern occurs in a string X of
length n whose characters are chosen uniformly at random from Σ. (For instance, the pattern “abba”
appears three times in “abaabbabbacabbacc”)

(Answer) If k > n, then the answer is 0. Otherwise, there are n− k + 1 possible starting points for pattern P
in X. For each of these positions we define Zi to be the indicator of the event Ei that P matches the string
Xi:i+|P |−1.
Then, each of the characters of X has a probability 1/|Σ| to match the corresponding of P . Hence,

Pr [Ei] =
1

|Σ|k
.

Hence, the expected number of occurrences of P in X is

E [Z] =

n−k+1∑
i=1

E [Zi] = (n− k + 1) · 1

|Σ|k
.

Question: What would change if the pattern P was not fixed?

Exercise 22 [LCS Expectation] Consider two strings X and Y of length n whose characters are
generated uniformly at random from the alphabet Σ. Show that the expected length of the LCS of these
two strings is Θ(n).

(Answer) An upper bound of n is trivial. For the lower bound, we can show that with high probability c1n of
the first characters of X appear as a subsequence in Y .
We do this by letting Wi be the time until we see character Xi in string Y given that we have seen a subsequence
of X1, . . . , Xi−1 in Y . Then, the Wi’s are independent Geometric random variables with success probability
p = 1

|Σ| .

Exercise 23 [LIS Expectation Lower bound] In this exercise, you will prove that the length of the
longest increasing subsequence in a random permutation of [n] := {1, . . . , n} is Ω(

√
n).

(a) Consider any sequence X of length n. Further, let ℓi be the length of the LIS ending at character
i and similarly ui be the length of the longest decreasing subsequence ending at i.

i. Show that for any i < j we must have that (ℓi, ui) ̸= (ℓj , uj).
ii. By considering the pairs with values (ℓi, ui) such that 0 ≤ ℓi, ui ≤

√
n/2, argue that there

must be an increasing or decreasing sequence with length at least
√
n/2.

(b) Deduce that in a random permutation, the length L of the longest common subsequence satisfies

E [L] ≥
√
n

4
.

(Answer)
(a) i. Consider i < j with ℓi = ℓj and ui = uj . Then we consider two cases:

• Case [Xi < Xj]: Then, we can extend the longest increasing subsequence at i by appending
Xj (since Xi < Xj) and so ℓj ≥ ℓi + 1. (Contradiction)

• Case [Xi > Xj]: Then, we can extend the longest decreasing subsequence at i by appending
Xj (since Xj < Xi) and so uj ≥ ui + 1. (Contradiction)

Hence, we cannot have both ℓi = ℓj and ui = uj .
ii. by i., there are in total n distinct pairs. Also, there are (

√
n/2)2 = n/4 pairs with 0 ≤ ℓi, ui ≤

√
n/2.

(b) By the analysis in (a), every sequence X has a LIS or LDS of length at least
√
n/2. Since LIS and LDS is

symmetric this implies that at least half of the permutations have a LIS of length at least
√
n/2. Hence,

E [L] ≥
√
n

4
.

1.4 Useful identities

14

Exercise 24 [Expectation as sum of probabilities]
(a) Consider a discrete random variable X ≥ 0. Prove that

E [X] =

n∑
i=1

Pr [X ≥ i] .

(b) Use the above formula to derive the expectation of the geometric random variable X ∼ Geom(p).

2 Probabilistic Method

Exercise 25 Show that every graph G = (V,E) contains a bipartite subgraph with at least |E|/2 edges.

3 Various Algorithms

Exercise 26 [Matrix Multiplication Verification] Given three n × n matrices A,B,C, we want to
check if A× B = C. The best known matrix multiplication algorithm takes time Ω(n2.37), so we would
like to do the verification faster than that. For simplicity assume that the matrices are binary (i.e.,
their entries are just 0, 1) and the operations are those modulo 2. Consider the algorithm that randomly
samples a vector v ∈ {0, 1}n and outputs 1 iff (A×B)v = Cv.

(a) Argue that the check (A×B)v = Cv can be performed more efficiently than matrix multiplication.

(b) Show that the algorithm succeeds with probability ≥ 1/2.

(c) How would you improve the success probability?

(d) How would you apply the algorithm for other inputs?

Exercise 27 [Randomised Min-Cut] In this exercise, you will analyse a simple randomised algorithm
for finding the minimum cut in an undirected graph. The algorithm proceeds by sampling a random edge
(u, v) in the graph and contracting its endpoints. The figures below give two examples of contractions:

The algorithm makes n − 2 contractions until there are two vertices remaining. The number of edges
between the two vertices will the answer for the minimum cut.

(a) Show that if the minimum cut in the graph has size M , then each vertex has degree at least M .

(b) Fix a minimum cut C. Let Ei be the event that in the i-th step the algorithm did not contract an
edge of C. Show that

Pr [E1] ≥ 1− 2

n
and Pr

Ei

∣∣∣∣∣∣
i−1⋂
j=1

Ej

 ≥ 1− 2

n− i+ 1
.

(c) Prove that

Pr

 n−2⋂
j=1

Ej

 ≥ 1− 2

n · (n− 1)
.

15

(d) Using amplification, design an algorithm with success probability at least 1 − n−1 of finding a
minimum cut. What is the running time of your algorithm?

(Answer)
(a) If there was a vertex v ∈ V with degree less than M , there there would be a cut S = {v} (which just

disconnects v) with a size smaller than the min-cut (which is a contradiction). Hence, all vertices have
degree at least M .

(b) Since each vertex has degree at least M , there must be a total of at least nM/2 edges. Hence, assuming
that we have not contracted any of the min-cut edges, i.e.,

⋂i−1
j=1 Ej holds, then there are n− i vertices in

the graph so

Pr

Ei

∣∣∣∣∣∣
i−1⋂
j=1

Ej

 ≥ 1− M

(n− i+ 1)M/2
= 1− 2

n− i+ 1
.

(c) Using the chain rule for probability events and the result from (b) we have that

Pr

Ei

∣∣∣∣∣∣
i−1⋂
j=1

Ej

 = Pr

 n−2⋂
j=1

Ej

∣∣∣∣∣∣
n−3⋂
j=1

Ej

 ·Pr

 n−3⋂
j=1

Ej

∣∣∣∣∣∣
n−4⋂
j=1

Ej

 · . . . ·Pr [E2 | E1] ·Pr [E1]

≥
n−2∏
j=1

n− j − 1

n− j + 1

=
1

3
· 2
4
· . . . · n− 4

n− 2
· n− 3

n− 1
· n− 2

n

=
1

n · (n− 1)
,

by cancelling out terms from the numerators and denominators.

(d) By repeating the algorithm t := n·(n−1)
2 · log n times, we get probability at least 1− n−1 (see Exercise 4).

Exercise 28 [All min-cuts]
(a) Using Exercise 27 (c), argue that any graph can have at most

(
n
2

)
min cuts.

(b) (optional) Show that there is a graph with this number of cuts.

(c) Modify the algorithm from Exercise 27 to return all minimum cuts for the given graph.

(Answer)
(a) In Exercise 27 (c), we proved that any cut C can be found using this randomised algorithm with success

probability at least 1
n·(n−1) .

Now assume there are k minimum cuts C1, . . . , Ck, then the events Ei (for 1 ≤ i ≤ k) that the algorithm
finds cut Ci are disjoint, as after each run the algorithm produces a single cut. Hence,

Pr [C1 ∪ . . . ∪ Ck] =

k∑
i=1

Pr [Ci] ≥
2k

n · (n− 1)
.

Since any probability is upper bounded by 1, we have that

k ≤ n · (n− 1)

2
=

(
n

2

)
,

which concludes the claim.

(b) The cycle Cn with n vertices is such a graph. To disconnect the cycle, we need to remove any two of the
n edges. There are

(
n
2

)
ways of selecting these two edges, which matches the upper bound.

(c) Consider the following algorithm A′, letting A be a single iteration of the algorithm in Exercise 27. Run
A for at least t = 6n · (n− 1) · log n steps and return all the cuts that achieved the minimum value.

16

By the analysis in 27 (c), it follows that the probability of finding a minimum cut Ci in any repetition is
at least 1/(n · (n− 1)). Hence, the probability of the event Ei of finding Ci in at least one repetition is

Pr [Ei] ≥ 1− n−3.

By (a), there are at most M ≤ n · (n − 1)/2 cuts. So, the probability that we don’t find any of them is
upper bounded by

Pr

[
M⋂
i=1

¬Ei

]
≤M · n−3 ≤ n−1.

Hence, the algorithm A′ succeeds with probability at least 1− n−1.

Exercise 29 [Karger-Stein algorithm] (++) Consider the following improvement to the algorithm in
Exercise 27. For convenience we define the function Contract(G, t) to perform t random edge contractions
on graph G.
1: function FasterMinCut(G = (V,E))
2: if |V | ≤ 6 then
3: return BruteForceMinCut(G)
4: else
5: t← ⌈1 + |V |/

√
2⌉

6: G1 ← Contract(G, t)
7: G2 ← Contract(G, t)
8: end if
9: return min(FasterMinCut(G1), FasterMinCut(G2))

10: end function
(a) Show that the running time of FasterMinCut(G) for a graph with n vertices satisfies:

T (n) = 2T
(
⌈1 + n/

√
2⌉
)
+O(n2).

(b) Show that T (n) = O(n2 log n).

(c) Show that a lower bound P (n) on the probability of success for a graph with n vertices, satisfies
the following recurrence

P (n) = 1−
(
1− 1

2
P
(
⌈1 + n/

√
2⌉
))

.

(d) (++) Show that P (n) = Ω(log n).

(e) Obtain an algorithm for min-cut with success probability at least 1 − n−1 and running time
O(n log3 n).

Exercise 30 [Random subsets] You are given a finite set S = {s1, . . . , sn}.
(a) Give an algorithm to generate a random subset of S.

(b) Let X and Y be two random subsets of S.
i. What is the probability that X ⊆ Y ?
ii. What is the probability that X ∪ Y = S?
iii. What is the expected size of X ∪ Y ?
iv. What is the expected size of X ∩ Y ?

(Answer)
(a) For each element si of S, independently toss an unbiased coin and if the outcome is heads, then add si to

the set, otherwise don’t add. The probability that any fixed subset X ⊂ S is sampled is 2−1·. . .·2−1 = 2−n,
i.e., uniform among the 2n possible subsets.

(b) i. Fix a set x ⊆ S with k elements. Then, Y will be a superset of x if for each of these k elements the
tosses were heads (the rest of the elements do not matter). Therefore,

Pr [{X = x} ∩ {X ⊂ Y }] = 1

2k
· 1

2n−k
· 1
2k

=
1

4k
· 1

2n−k
.

17

Hence, using the binomial theorem

Pr [X ⊆ Y] =

n∑
k=1

(
n

k

)
· 1
4k
· 1

2n−k
=

(
1

4
+

1

2

)n

= 0.75n.

ii. Similarly to the previous question, fix a set x ⊆ S with k elements. The set Y should have heads in
all remaining 2n−k values. Therefore,

Pr [{X = x} ∩ {X ∪ Y = S}] = 1

2k
· 1

2n−k
· 1

2n−k
=

1

2k
· 1

4n−k
.

Hence, using again the binomial theorem gives

Pr [X ⊆ Y] =

n∑
k=1

(
n

k

)
· 1
2k
· 1

4n−k
=

(
1

2
+

1

4

)n

= 0.75n.

iii. Let Zi be the indicator random variable for whether si ∈ X ∩ Y . Then,

E [|X ∩ Y |] =
n∑

i=1

E [Zi] = n · 1
4
=

n

4
,

since Pr [Zi] = 1/4, the probability that both coin tosses are in heads.
iv. Similarly, to the previous question, let Let Zi be the indicator random variable for whether si ∈ X∩Y .

Then,

E [|X ∪ Y |] =
n∑

i=1

E [Zi] = n · 1
4
=

3

4
n,

since Pr [Zi] = 3/4, the probability that at least one of the coin tosses are in heads.

Exercise 31 [Reservoir sampling] We are given a stream of N values, where N is large and unknown.
The values will be presented one by one and we can only store one value at each step (perhaps because
we have limited memory).
We want to sample from this stream one value uniformly at random.

(a) How would you sample the value if N was known?

(b) Consider an algorithm that stores the first value in memory and then for the k-th value ak with
probability 1/k it replaces the value in memory with ak and otherwise it keeps it unchanged.

Show that this algorithm produces a uniform sample from the stream.

(c) Generalise the previous algorithm so that it samples M values uniformly at random from the
stream. At each point in time your algorithm can keep at most M values in memory.

(Answer)
(a) We could uniformly sample an index i from 1 to N and keep a counter of the number of samples encoun-

tered so far. When the counter reaches i, then we return this as our sample.

(b) Let Ek be the event that we report value ak as the sample. For this to happen, (i) we must place ak in
memory (happens with probability 1/k) and (ii) none of the later values should replace it. This happens
with probability

Pr [Ek] =
1

k
·
(
1− 1

k + 1

)
·
(
1− 1

k + 2

)
· . . . ·

(
1− 1

N

)
=

1

k
· k

k + 1
· k + 1

k + 2
· . . . · N − 1

N
=

k

N
.

(c) We modify the algorithm so that value ak is added to the store with probability M/k and then a value
out of the M available is replaced uniformly. Therefore, for Ek being the event that we report ak in the
end, we have that

Pr [Ek] =
M

k
·
(
1− M

k + 1
· 1

M

)
·
(
1− M

k + 2
· 1

M

)
· . . . ·

(
1− M

N
· 1

M

)
=

M

N
,

which shows that the algorithms computes an unbiased estimate.

18

Exercise 32 [Algorithm L] Read about the Algorithm L for reservoir sampling and answer the following
questions:

(a) Explain how this algorithm works (without having knowledge of the number of elements in the
stream).

(b) In What sense is it better than the algorithm described in Exercise 31?

Exercise 33 [Algorithm A-Res] Read about Algorithm A-Res and answer the following questions:
(a) Describe the reservoir problem with weights.

(b) Explain how this algorithm works and prove its correctness.

Exercise 34 [Searching a Random Hash Table] In the Lecture 2 slide 12, it was shown that if we
throw n balls into n bins, then the maximum load of any bin is at most 4 · log n/ log log n with probability
at least 1− n−1.
In this exercise, we are interested in upper bounding the number of operations required for inserting n
(random) elements in a hash table. The additional work is that when we insert an element v to a bin
i with Xi elements, then we need to go over all of its elements to check if v is present. Therefore, this
requires O(Xi) time.

(a) Using the analysis in the lecture, argue that the total time to insert n random keys to a hash table
is O(n · (log n/ log log n)2) with high probability.

(b) Prove that for a binomial r.v. N ∼ Bin(n, p),

E
[
N2

]
= n · p+ n · (n− 1) · p2.

(c) Using (b), show that the amortised insert time is O(n) in expectation.

(Answer)
(a) By the analysis in the lecture notes we have that maxi∈[n] Xi ≤ 4 · (log n/ log log n)2 for some constant

c > 0 with probability at least 1− n−1. When Xi = x, then the total insert time for these elements is at
most:

1 + 2 + . . .+ x =
1

2
x · (x+ 1) ≤ x2.

Hence, on aggregate we get that with probability at least 1 − n−1, the total work for the insertion of n
elements is at most

1

2
·

n∑
i=1

X2
i ≤ 8n ·

(
log n

log log n

)2

.

(b) By writing N =
∑n

j=1 Zj , where Zj ∼ Ber(p), we have that

E
[
N2

]
= E


 n∑

j=1

Zj

2


≤
n∑

j=1

E
[
Z2
j

]
+

n∑
j=1

n∑
k=1,k ̸=j

E [ZjZk]

≤
n∑

j=1

E [Zj] +

n∑
j=1

n∑
k=1,k ̸=j

E [Zj]E [Zk]

≤ n · p+ n · (n− 1) · p2.

(c) Using (b) for p = 1/n, we get that

E
[
X2

i

]
= 1 + 1− 1

n
≤ 2.

19

https://en.wikipedia.org/wiki/Reservoir_sampling#Optimal:_Algorithm_L
https://en.wikipedia.org/wiki/Reservoir_sampling#Algorithm_A-Res
https://www.cl.cam.ac.uk/teaching/2223/RandAlgthm/lec2_concentration.pdf#page=12

Hence, in expectation the total amount of work is

E

[
n∑

i=1

X2
i

]
≤ 2n.

4 Concentration inequalities

Exercise 35 [Chernoff Bound for Balls-into-Bins] Use the following Chernoff bound

Pr [X ≥ (1 + δ) ·E [X]] ≤ exp

(
−δ2E [X]

3

)
,

with an appropriate choice of δ to show that when allocating m balls into n bins uniformly at random,
with m ≥ n log n, then the the maximum load of any bin is at most m

n +O(
√

m
n · log n) with probability

at least 1− n−2.

(Answer) Let Xi be the load of bin i ∈ [n] after the m allocations. Then Xi =
∑m

j=1 Zj where Zj ∈ {0, 1}
indicates whether the j-th ball was allocated to bin i. Since the balls are allocated uniformly we have that
Pr [Zj] =

1
n and also that E [Xi] =

m
n .

Now, how should we pick δ? We want to pick δ such that (1+ δ) · mn is m
n +O(

√
m
n · log n). Therefore, we pick

δ := C ·
√

m

n
· log n,

where C > 0 is a constant that we will choose later (to get the probabilities to work correctly).
Therefore, applying the Chernoff bound we have that

Pr

[
X ≥ m

n
+ C ·

√
m

n
· log n

]
≤ exp

(
−C2 log n

3

)
,

By setting C := 3, we have that

Pr

[
Xj ≥

m

n
+ C ·

√
m

n
· log n

]
≤ n−3.

Now, it remains to prove that this bound holds for all bins. For this we take the union bound over the n bins,

Pr

[
max
j∈[n]

Xj ≥
m

n
+ 3 ·

√
m

n
· log n

]
≤ n−2.

Exercise 36 [Number of inversions Concentration] In Exercise 15, you proved that for a random
permutation of elements [n] := {1, . . . , n}, the number of inversions X is 1

4 · n(n− 1) in expectation. In
this exercise, you will apply McDiarmid’s inequality to obtain a concentration bound.

(a) Argue that one can generate a random permutation of [n] by sampling n independent values from
U [0, 1] and then replacing each with their rank (e.g., (0.1, 0.41, 0.23, 0.21) would correspond to
(1, 4, 3, 2)),

(b) Let f be the function that counts the number of inversions in a given permutation. Prove that f
is Lipschitz with parameter n.

(c) Use McDiarmid’s inequality to deduce that

Pr

[∣∣∣∣X − 1

4
· n(n− 1)

∣∣∣∣ < √
n3 log n

]
≥ 1− 2n−2.

(Answer)
(a) We start by noting that the probability two samples form U [0, 1] to be equal is 0. Then, because the n

random variables are completely symmetric each one is equally likely to be at any fixed rank i. So the
rank of these elements creates a random permutation.

20

(b) Let f : [0, 1]n → N be the function that counts the number of inversions. Then, for any u1, . . . , un, any
position i and any u′

i ∈ [0, 1], we have that

|f(u1, . . . , ui−1, ui, ui+1, . . . , un)− f(u1, . . . , ui−1, u
′
i, ui+1, . . . , un)| ≤ n,

since changing one element can increase the number of inversions by at most n.

(c) Since the u1, . . . , un are independent and f is 1-Lipschitz, we have that

Pr [|f −E [f]| > t] ≤ 2 · exp
(
− 2t2

n · n2

)
.

By choosing t :=
√
n3 log n, we get the conclusion

Pr
[
|f −E [f]| >

√
n3 log n

]
≤ 2 · exp

(
−2n3 log n

n · n2

)
= 2n−2.

Exercise 37 [Number of Records Concentration] In Exercise 16, you proved that the expected
number of records in a random permutation of elements in [n] is log n + Θ(1) in expectation. In this
exercise, you will prove concentration.

(a) Let Ei be the event that element i is smaller than all previous elements. Then for any i ̸= j the
events Ei and Ej are independent.

(b)

(Answer)
(a) We will generate the random permutation by assigning ranks to elements one by one starting with i = 1,

then i = 2 and so on. The i-th element has (i− 1) + 1 possible ranks

(b) The number of records is a function of the

Exercise 38 [Local Maxima Concentration] In Exercise 17, you proved that the expected number
of local maxima in a random permutation of [n] := {1, . . . , n} is (n+ 1)/3.
Prove that the number of local maxima is concentrated around this mean.

(Answer) We generate the random permutation by first generating n independent uniform random variables
U1, . . . , Un ∼ U [0, 1] and then reporting the rank of the values as the permutation.
Then the number of local maximuma is a function f(U1, . . . , UN). By changing any one value, we can change
the number of local maxima by at most 2 (why not 3?).
Hence, applying McDiarmid’s inequality, we have that

Pr [|f −E [f]| ≥ t] ≤ 2 · exp
(
− 2t2

n · 22

)
.

By setting t := 2
√
log n, we get that

Pr
[
|f −E [f]| < 2

√
log n

]
≥ 1− n−1.

Exercise 39 [Longest Increasing Subsequence Concentration (I)] In this exercise, you will prove
that the length of the longest increasing subsequence is O(

√
n) with high probability.

(a) Let Xn,k be the number of increasing subsquences of length k. Show that

E [Xn,k] =
1

k!
·
(
n

k

)
.

(b) Using Exercise 7, show that

E [Xn,k] ≤
nk

(k/e)2k
.

21

(c) By arguing that
Pr [L ≥ k] ≤ E [Xn,k] ,

and using Markov’s inequality, show that for any constant C > 2, we have that

Pr
[
L ≥ Ce

√
n
]
≤

(
1

C

)2Ce
√
n

.

(d) Deduce that E [L] = O(
√
n).

Exercise 40 [Longest Increasing Subsequence Concentration (II)] In Exercise 39, you proved
that the length of the longest subsequence in a random permutation of [n] is Θ(

√
n) in expectation. As

an alternative, use McDiarmid’s inequality to prove that it is concentrated around the expectation.

(Answer) We will generate the random permutation by sampling n uniform random variables u1, . . . , un ∼
U [0, 1] and then generate a permutation by looking at their ranks.
Let f : [0, 1]n → N be the function that takes u1, . . . , un and returns the length of the longest increasing
subsequence of the corresponding permutation. We will now show that this function is 1-Lipschitz. Consider
the change of any of the coordinates i from ui to u′

i. Then, for any increasing subsequence i1 < . . . < ik, its
length can either increase by 1 (if i was not in the subsequence) or it decreases by 1 (if i was in the subsequence
and now violates the central property). Therefore,

|f(u1, . . . , ui−1, ui, ui+1, . . . un)− f(u1, . . . , ui−1, u
′
i, ui+1, . . . , un)| ≤ 1.

By applying McDiarmid’s inequality, we have that

Pr [|f −E [f] | ≥ t] ≤ 2 · exp
(
− 2t2

n · 12

)
By choosing t = Θ(

√
n) or t = Θ(

√
n log n), we get concentration.

Exercise 41 [Pattern Matching Concentration] In Exercise 21, we found the expectation for the
number of occurrences N of pattern P (of length k) in a random string X (of length n).

(a) Prove that N is concentrated around its mean.

(b) For which values of N and k does your bound make sense?

(Answer)
(a) Let f : Σn → N be the function that takes as input the n random characters of X and outputs the

number of occurrences of P in X. Any character appears in at most k substrings of length k. Hence, by
changing one character, we can change the number of occurrences by at most k. Therefore, f satisfies the
k-Lipschitz property

Pr [|f −E [f]| ≥ t] ≤ 2 · exp
(
− 2t2

n · k2

)
.

(b) Note that if k > 3 log|Σ| n, then the number of occurrences is < 1 in expectation. For values less than
that, we can choose t = k

√
n log n to get a concentration with high probability (and the value of t will be

small in comparison to the expectation).

Exercise 42 [Searching a Random Hash Table Concentration] In Exercise 34, you proved that
the insertion time of n random elements in a hash table takes amortised O(n) time in expectation.
Let Xi be the loads of the bins after the n elements have been allocated, Yi = X2

i and Y ′
i = min(Yi, log

2 n).
Further let Y =

∑n
i=1 Yi and Y ′ =

∑n
i=1 Y

′
i .

(a) Using Exercise 34, argue that E [Y ′] = O(n).
(b) Argue that Y ′ is (5 log n)-Lipschitz with respect to the n elements being inserted.

(c) Prove that Y ′ is concentrated around its mean.

22

(d) Deduce that Y is concentrated.

(Answer)
(a) Note that Y ′

i ≤ Yi and so Y ′ ≤ Y . Therefore, by Exercise 34, we have that E [Y ′] ≤ E [Y] ≤ 2n.

(b) By moving one ball from bin i to bin j

|∆Y ′| ≤ |(min(Xi − 1, log n))2 − Y ′
i |+ |(min(Xj + 1, log n))2 − Y ′

j |
≤ 2 ·

∣∣(log n+ 1)2 − (log n)2
∣∣

≤ 2 · (2 log n+ 1) ≤ 5 log n.

(c) Since each ball is allocated independently we can apply McDiarmid’s inequality to get

Pr [|Y ′ −E [Y ′]| ≥ t] ≤ 2 · exp
(
− 2t2

n · (5 log n)2

)
.

By choosing t = n, we (quite generously) get that

Pr [Y ′ ≤ 3n] ≥ 1− 2 · exp
(
− 2n2

25n log2 n

)
≥ 1− n−3.

(d) From the lectures, we know that

Pr

[
max
i∈[n]

Xi ≤ 4 · log n

log log n

]
≥ 1− n−1. (1)

When Xi ≤ log n, we have that Y ′
i = Yi and so

Pr [Y = Y ′
i] ≥ Pr

[
max
i∈[n]

Xi ≤ 4 · log n

log log n

]
≥ 1− n−1.

By taking the union bound with 1, we have that

Pr [Y ≤ 3n] ≥ 1− n−1 − n−3 ≥ 1− 2n−1.

Exercise 43 [LCS Concentration] In Exercise 22, you proved that the length n of the longest common
subsequence between two random strings X and Y is Θ(n).
Prove that L is concentrated around its mean.

(Answer) Let f(x1, . . . , xn, y1, . . . , yn) be the function that takes the two random strings and outputs the
length of the longest common subsequence. Then by changing any of the characters the length of a common
subsequence can either increase by 1, decrease by 1 or stay the same. Hence, f is 1-Lipschitz.
Since the characters of the two strings are chosen independently, we can apply McDiarmid’s inequality, to get
that

Pr [|f −E [f] | ≥ t] ≤ 2 · exp
(
−2t2

n

)
.

Hence, by choosing t :=
√
n log n we have that

Pr
[
|f −Θ(n)| ≥

√
n log n

]
≤ 2 · n−2.

Exercise 44 [Monte Carlo Estimation Concentration]

Exercise 45 [Chromatic Number Concentration] The chromatic number χ(G) of a graph is the
minimum number of colours to colour the vertices of G such that no two adjacent vertices have the same
colour.
Consider an undirected graph G where each edge is inserted independently with probability p. Show

23

that
Pr

[
|χ(G)−E [χ(G)]| ≥ t

√
n
]
≤ 2 · e−2t2 .

(Answer) We define the random vectors E1, . . . , En, where Ei reveals the edges between vertex i and ver-
tices 1, . . . , i − 1. Note that Ei’s are independent. Then the chromatic number of the graph is a function
f(E1, . . . , En).
Let’s assume that we have changed the Ei’s. Then, by assigning the colour of i to a new colour, the total
number of colours increases by 1. Hence, f is 1-Lipschitz and so,

Pr
[
|f −E [f]| ≥ t

√
n
]
≤ 2 · exp

(
− 2t2n

n · 12

)
≤ 2e−2t2 .

Q: Why did we not define Ei to be the set of vertices adjacent to i? Because the Ei’s would not be independent.
Q: Why did we not define Euv for each edge (u, v)? Because there could be Θ(n2) edges.

Exercise 46 [Isolated vertices] Consider a graph sampled uniformly at random from the set of graphs
with n vertices and cn edges for c > 0 being constant. Let X be the number of vertices that are isolated,
i.e., have zero degree.

(a) Compute the expected value of X.

(b) Prove concentration for X.

(Answer)
(a) Fix a vertex v. Let Xv be the indicator of the event Ev that vertex v is isolated. Then, this means that

none of the edges got assigned to it. Letting M = n · (n− 1), then

Pr [Ev] =
(
1− n− 1

M

)
·
(
1− n− 1

M − 1

)
· . . . ·

(
1− n− 1

M − cn+ 1

)
.

(Note: This is roughly e−(n−1)·(ln(M)−ln(M−cn)))

5 Derandomisation

Exercise 47 [Derandomise Max-Cut] Derandomise the Max-cut algorithm that you saw in Lecture
1.

Exercise 48 [Derandomise 3-CNF] Derandomise the algorithm for the 3-CNF problem presented in
Exercise 20.

6 Randomised data structures

Exercise 49 [Randomised Binary Search Trees] In Part IA, you saw that Binary Search Trees
without some balancing mechanism (e.g., rotations) can lead to depths that are Ω(n) in size.
In this exercise you will analyse the expected time complexity for a BST where the input values are
random.

(a) What is the expected number of comparisons when building a RBST?

(b) What is the expected number of comparisons when searching for a random element in the RBST?

Exercise 50 [SkipList] The SkipList is a data structure like lists, but it aims to support O(log n) access
time to every element with high probability and it can also serve as a BST.
The idea is that when inserting an element x we also add a random number of pointers, generated by
sampling a Geom(1/2) (the 1/2 not being important). For instance, here is a randomly generated skip
list, where element 14 has 3 pointers. To search for an element we start from the top left and follow the
pointers as long as we are before our target element.

24

14 245 12 25 280 211716 213

NIL

NIL

NIL

NIL

NIL

NIL

NIL

(a) Show that for all of the n items have at most O(log n) levels with probability at least 1− n−2.

(b) By arguing backwards from the target element to the root, show that the search algorithm needs
O(log n) heads in Θ(log n) coin flips and prove that this happens with high probability.

(c) (optional +) Argue that in total this data structure uses O(n) memory.

7 Chernoff Bounds

Exercise 51 [For Geometric r.vs.] Consider n independent geometric random variables X1, . . . , Xn

with Xi ∼ Geom(p).
(a) Prove that for any t > 0,

E
[
etXi

]
=

p

e−t − 1 + p
.

(b) Using the inequality 1 + x ≤ ex, show that

E
[
etXi

]
≤ p

p− t
=

(
1− t

p

)−1

.

(c) Compute the Chernoff bound for X :=
∑n

i=1 Xi and optimise the choice of t to get for any δ > 0,

Pr [X ≥ (1 + δ)E [X]] ≤ e−n·(δ−ln(1+δ)).

8 Puzzles

8.1 Generating Random Variables

Exercise 52 You are given a biased coin which produces heads with probability p and tails with proba-
bility 1− p, for some unknown p ∈ (0, 1).

• Design an algorithm that uses samples from this biased coin and produces an unbiased binary
value.

• How efficient is your algorithm, i.e. how many biased samples does it need in expectation to
generate an unbiased one (as a function of p)?

Exercise 53

• How would you use a (unbiased) random binary variables to generate random integers in the set
{0, 1, . . . , n}

• What is the expected running time of your algorithm?

Further Reading 3 You can find more problems of this sort here.

25

http://www.eecs.harvard.edu/~michaelm/coinflipext.pdf

Exercise 54 [Random permutation] Design an algorithm that samples a permutation of n elements
uniformly at random. How efficient is your algorithm?

26

	Basic techniques
	Common asymptotics
	Inequalities and Taylor estimates
	Indicator random variables
	Useful identities

	Probabilistic Method
	Various Algorithms
	Concentration inequalities
	Derandomisation
	Randomised data structures
	Chernoff Bounds
	Puzzles
	Generating Random Variables

