
Intro to Probability
Solution Notes for Example Sheet 3

1 Sum of distributions

Extended Note 1 [Computing the random variables] Consider two discrete independent random
variables X and Y with pmfs fX and fY . Then, we want to compute the pmf for the random variable
Z = X + Y .
In order to do this we sum up the probabilities for all ways of making the sum z.

fZ(z) = Pr [Z = z ] =

∞∑
k=−∞

Pr [X = k, Y = z − k ] =

∞∑
k=−∞

Pr [X = k ] ·Pr [Y = z − k ]

=

∞∑
k=−∞

fX(k) · fY (z − k).

Using this formula we can compute the pmf for Z.
For continuous random variables X and Y with pdfs fX and fY , the formula becomes

fZ(z) =

∫ ∞

k=−∞
fX(k) · fY (z − k) dk.

This type of summation is also known as convolution and it is used in several places, like signal processing,
computer vision or efficient computation (see this video if you would like to learn more).

Exercise 1 [Sum of Poisson r.vs.] Consider two independent Poisson r.vs. X ∼ Poi(µ) and Y ∼ Poi(λ).
Show that Z = X + Y ∼ Poi(µ+ λ).

(Answer) Using the above formula we have that

fZ(z) =

∞∑
k=−∞

fX(k) · fY (z − k)

=

z∑
k=0

e−µ · µk

k!
· e

−λ · λz−k

(z − k)!

= e−µ−λ
z∑

k=0

µk

k!
· λz−k

(z − k)!

=
1

z!
· e−µ−λ

z∑
k=0

z!

k!(z − k)!
· µk · λz−k

=
1

z!
· e−µ−λ

z∑
k=0

(
z

k

)
· µk · λz−k

=
e−µ−λ · (µ+ λ)z

z!
,

using in the last step the Binomial sum formula, i.e., (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k. Therefore, Z ∼ Poi(µ+ λ).

Exercise 2 [Sum of uniform distributions] Consider three independent uniform distributions
X1, X2, X3 ∈ U [0, 1].

(a) Determine the pdf for S2 = X1 +X2.

(b) Determine the pdf for S3 = X1 +X2 +X3.
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(Answer)
(a) Using the formula, we have that

fS2(z) =

∫ ∞

k=−∞
fX1(k) · fX2(z − k) dk =

∫ 1

k=0

fX2(z − k) dk.

Case A [z ∈ [0, 1]]: Here k can be in [0, z], so

fS2
(z) =

∫ z

k=0

1 dk = k
∣∣∣z
0
= z.

Case B [z ∈ [1, 2]]: Here k can be in [z − 1, 1], so

fS2
(z) =

∫ 1

k=z−1

1 dk = k
∣∣∣1
z−1

= 2− z.

Combining these cases, we deduce that

fS2
(z) =


z if z ∈ [0, 1]

2− z if z ∈ (1, 2]

0 otherwise.

(b) For three random variables, we are going to use the pdf for S2 = X1 +X2,

fS3
(z) =

∫ ∞

k=−∞
fX1+X2

(z − k) · fX3
(k) dk =

∫ 1

k=0

fX1+X2
(z − k) dk.

We now consider three cases based on the value of z:
Case A [z ∈ [0, 1]]: Here k can be in [0, z], so

fS3(z) =

∫ z

k=0

(z − k) dk = (zk − k2/2)
∣∣∣z
0
=

z2

2
.

Case B [z ∈ [1, 2]]: Here k can be in [0, 1] and we break the integral depending on whether z − 1 = 1 or
not. So,

fS3
(z) =

∫ z−1

k=0

fX1+X2
(z − k) dk +

∫ 1

k=z−1

fX1+X2
(z − k) dk

=

∫ z−1

k=0

(2− z + k) dk +

∫ 1

k=z−1

(z − k) dk

= (2− z) · (z − 1) + (z − 1)2/2 + z − 1/2− (z − 1) · z + (z − 1)2/2

= −z2 + 3z − 3

2
.

Case C [z ∈ [2, 3]]: This case is symmetric to Case A. Therefore,

fS3
(z) =

1

2
· (3− z)2.

Exercise 3 Given the following pmf for random variables X and Y , compute the pmf for Z = X + Y .

1 2 3 4

Pr [X = x ] 1
6

2
6

1
6

2
6

Pr [Y = y ] 0 1
4

2
4

1
4

(Answer)

1 2 3 4 5 6 7 8
Pr [X + Y = z ] 0 0 1

24
2+2
24

1+4+1
24

2+2+2
24

4+1
24

2
24

Question 1: How would you compute the pmf for X − Y ?
Question 2: How would you recover the marginal distributions given the pmf for X + Y and X − Y ?
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2 Minimum/Maximum of random variables

Extended Note 2 [Computing the distribution function] Given two independent random variables
X and Y with cummulative distribution functions FX and FY , we want to compute the cummulative
distribution function FZ for Z = max{X,Y }.
The main observation is to see that max{X,Y } ≤ z iff both X ≤ z and y ≤ z (Why? ). Then, we obtain

FZ(z) = Pr [Z ≤ z ] = Pr [ max{X,Y } ≤ z ] = Pr [X ≤ z, Y ≤ z ] = Pr [X ≤ z ] ·Pr [Y ≤ z ]

= FX(z) · FY (z).

Similarly for Z = min{X,Y } we have that

FZ(z) = Pr [Z ≤ z ] = 1−Pr [Z > z ] = 1−Pr [ min{X,Y } > z ] = 1−Pr [X > z, Y > z ]

= 1−Pr [X > z ] ·Pr [Y > z ] = 1− (1− FX(z)) · (1− FY (z)).

Exercise 4 [Minimum of uniform r.vs.] Consider n independent uniform random variables
X1, . . . , Xn ∼ U [0, 1].

(a) Determine the cummulative distribution function for Z = max{X1, . . . , Xn}.
(b) Determine the probability density function for Z.

(c) Determine the expectation for Z.

(Answer)
(a) Using the above technique for n random variables we have that for any z ∈ [0, 1],

FZ(z) = Pr [Z ≤ z ] = Pr [ max{X1, . . . , Xn} ≤ z ]

= Pr [X1 ≤ z ] · . . . ·Pr [Xn ≤ z ]

= z · . . . · z
= zn.

Therefore,

FZ(z) =


0 if z < 0

zn if z ∈ [0, 1]

1 otherwise.

(b) By differentiating, we get the pdf for Z:

fZ(z) =
d

dz
FZ(z) =


0 if z < 0

n · zn−1 if z ∈ [0, 1]

0 otherwise.

(c) For the expectation of Z, we have that

E [Z ] =

∫ 1

z=0

fZ(z) · z dz

=

∫ 1

z=0

n · zn−1 · z dz

=

∫ 1

z=0

n · zn dz

= n · z
n+1

n+ 1

∣∣∣∣1
0

=
n

n+ 1
.
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Exercise 5 [Minimum of Exponential r.vs.] Consider two independent Exponential r.vs. X ∼ Exp(λ)
and Y ∼ Exp(µ). Find the cummulative distribution of Z = min{X,Y }.

(Answer) Recall that the cdf of an Exponential r.v. is given by

FX(x) =

{
1− e−λx if x ≥ 0

0 otherwise,
and FY (y) =

{
1− e−µy if y ≥ 0

0 otherwise.

Therefore, for any z ≥ 0, we have that

FZ(z) = 1− (1− FX(z)) · (1− FY (z)) = 1− e−λz · e−µz = 1− e−(λ+µ)·z.

Therefore, Z follows Exp(λ+ µ).

Exercise 6 [Minimum of geometric r.vs.] Consider two independent Geometric r.vs. X ∼ Geom(p)
and Y ∼ Geom(q). Find the cummulative distribution of Z = min{X,Y }.

(Answer) Recall that the cdf of a Geometric r.v. is given by

FX(x) =

{
1− (1− p)x if x ≥ 0

0 otherwise,
and FY (y) =

{
1− (1− q)y if y ≥ 0

0 otherwise.

Using the formula above, we have that

FZ(z) = 1− (1− FX(z)) · (1− FY (z)) = 1− (1− p)z · (1− q)z = 1− (1− p− q + pq)z.

Therefore, Z follows Geom(p+ q − pq).

3 Joint and marginal distributions

Exercise 7 The joint probability density function of X and Y is given by

f(x, y) = c · (y2 − x2) · e−y, −y ≤ x ≤ y, 0 < y < ∞.

(a) Find c.

(b) Find the marginal densities of X and Y .

(c) Find E [X ].

(Answer) See solution to problem 9 here.

Exercise 8 The joint probability density function of X and Y is given by

f(x, y) = e−x−y, 0 ≤ x < ∞, 0 ≤ y < ∞.

(a) Find Pr [X < Y ].

(b) Find Pr [X < a ].

(Answer) See solution to problem 10 here.

Exercise 9 The joint probability density function of X and Y is given by

f(x, y) = 12xy(1− x), 0 < x < 1, 0 < y < 1.

(a) Are X and Y independent?
(b) Find E [X ] and E [Y ].
(c) Find Var [X ] and Var [Y ].

(Answer) See solution to problem 23 here.
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Exercise 10 Suppose that X and Y have a discrete joint distribution for which the joint PMF is defined
as follows:

f(x, y) =

{
c|x+ y|, x = −1, 0, 1 and y = −1, 0, 1

0, otherwise.

Determine:
(a) Determine c.

(b) Determine Pr [X = 0, Y = 1 ] and Pr [X = 1 ].

(c) Determine Pr [ |X − Y | < 1 ].

(Answer) See solution to problem 1 here.

Further Reading 1 [Further exercises] You can find more exercises with solutions here and here.

4 Computing the variance

Exercise 11 [Hats] There are n people taking their hats randomly. Let N be the total number of
people that got the correct hat back.

(a) Show that E [N ] = 1.

(b) Show that Var [N ] = 1.

(c) Use Chebyshev’s inequality to deduce bounds on N .

(Answer)
(a) Let Xi be the indicator of the event Ei = {Person i got their hat back}. Then

E [Xi ] = Pr [ Ei ] =
1

n
.

By linearity of expectation, we have that

E [N ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] = n · 1
n
= 1.

(b) Using the formula for the variance

Var [X ] = E
[
X2
]
− (E [X ])2

= E

( n∑
i=1

Xi

)2
− 1

=

n∑
i=1

n∑
j=1

E [XiXj ] .

We distinguish two cases for E [XiXj ]:

• Case [i = j]: Since Xi ∈ {0, 1} we have that Xi = X2
i , so

E
[
X2

i

]
= E [Xi ] =

1

n
.

• Case [i ̸= j]: This one is a bit more involved:

E [XiXj ] = Pr [XiXj = 1 ] = Pr [XiXj = 1 | Xi = 1 ] ·Pr [Xi = 1 ]

= Pr [Xj = 1 | Xi = 1 ] ·Pr [Xi = 1 ]

=
1

n− 1
· 1
n
,
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since given that person i got the correct hat back, there are n− 1 remaining items in n− 1 slots, so
the probability that j also got the correct hat back is 1/(n− 1).

By combining the two cases, we have that

Var [X ] = n · 1
n
+ n · (n− 1) · 1

n · (n− 1)
− 1 = 1.

Exercise 12 [Max-Cut] In Part IA Algorithms, you saw the Min-Cut problem, where given a graph
G = (V,E) the goal is to find a subset S ⊆ V such that the number of the edges crossing S and V \ S
is minimised. In this exercise, we will look at the problem of maximising the number edges crossing the
cut.
Consider the algorithm that goes through the vertices one by one and adds it to S independently with
probability 1/2.

(a) Show that the exected size C of the cut produced is |E|/2. Argue that this is within a factor 2 of
the optimal.

(b) Compute the Var [C ].

(c) Use Chebyshev’s inequality to deduce bounds on C.

(Answer)
(a) For each edge e ∈ E, let Xe be the indicator of the event Ee = {edge e crosses the cut}. Then, for edge

e = (u, v), then

E [Xe ] = Pr [ Ee ] = Pr [u ∈ S, v /∈ S ] +Pr [u /∈ S, v ∈ S ] =
1

2
· 1
2
+

1

2
· 1
2
=

1

2
.

Therefore, by linearity of expectation

E [C ] = E

[∑
e∈E

Xe

]
=
∑
e∈E

E [Xe ] = |E|/2.

The maximum cut can have at most |E| edges, therefore, this simple algorithm gives a 2-approximation
for max-cut in expectation.

(b) Using the formula for the variance

Var [X ] = E
[
X2
]
− (E [X ])2

= E

( n∑
i=1

Xi

)2
− |E|2/4

=

n∑
i=1

n∑
j=1

E [XiXj ]− |E|2/4.

We distinguish two cases for E [XiXj ]:

• Case [i = j]: Since Xi ∈ {0, 1} we have that Xi = X2
i , so

E
[
X2

i

]
= E [Xi ] =

1

2
.

• Case [i ̸= j]: This one is a bit more involved

E [XiXj ] = Pr [XiXj = 1 ] = Pr [XiXj = 1 | Xi = 1 ] ·Pr [Xi = 1 ]

= Pr [Xj = 1 | Xi = 1 ] ·Pr [Xi = 1 ] .

Now we consider further subcases based on the number of common vertices between edges i =
(u− 1, v1) and j = (u2, v2),
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– Case [u1 ̸= u2, v1 ̸= v2]: The two edges are independent so

E [XiXj ] =
1

2
· 1
2
.

– Case [u1 ̸= u2, v1 = v2]: The two edges share a vertex. They both cross the cut iff the two
different vertices are in the oposite sets, which again happens with probability 1/2

E [XiXj ] =
1

2
· 1
2
.

By combining the cases, we have that

Var [X ] = |E|/2 + |E| · (|E| − 1)/4− |E|2/4 = |E|/4.
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