
— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

(a) What does the OCaml function map do? Give an example, first coded without
map and then with it, to illustrate how it can lead to more compact or
comprehensible code. [3 marks]

(b) Functions fold left and fold right might be defined as

let rec fold_left f e = function

| [] -> e

| x::xs -> fold_left f (f ex) xs

let rec fold_right f l e = match l with

| [] -> e

| x::xs -> f x (fold_right f xs e)

Explain what these two functions do and why they may be useful. [4 marks]

(c) Here is a typical use of map:

let mangle n = (n - 2) * (n + 7)

let mangle_list x = map mangle x

Show how to express mangle list using one of the “fold” functions rather than
map. [3 marks]

1

— Solution notes —

5

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

The following OCaml type can be viewed as defining a lazy or infinite sort of tree
where each node in the tree holds an integer:

type tr = N of int * unit -> tr * unit -> tr

(a) Write a function called ndeep such that if n is an integer and z is a tree (i.e. of
type tr) the call ndeep n z will return an ordinary list of all the 2n integers at
depth exactly n in the tree. Note that if n = 0 it will return a list of length 1,
being just the top integer in the tree. Comment on its efficiency. [8 marks]

Answer:

let rec ndeep n (N(v, l, r)) =

if n = 0 then

[v]

else

ndeep (n - 1) (l ()) @ ndeep (n - 1) (r ())

The append makes this slower than would be perfect, and experts can do the usual conversion
to avoid that.

(b) You are given a tr, and told that it contains arbitrarily large values at least
somewhere in it. You want to find a value from it that is bigger than 100 (but
if there are many big values it does not matter which one is returned). Because
the tree is infinite you cannot use simple depth-first search: you decide to use
iterative deepening. Thus you first check all integers at depth 1, then at depth 2,
depth 3, . . . and return when you first find a value that is greater than 100.

Use exception handling to return the large value when you find it. Present and
explain code that searches the lazy tree. [12 marks]

Answer:

exception Found of int

let rec throwifin = function

| [] -> ()

| x::xs ->

if x > 100 then

raise (Found x)

else

throwifin xs

let search z =

let rec depth n =

throwifin (ndeep n z);

1

— Solution notes —

depth (n + 1)

in

try

depth 1;

0 (* Unreachable *)

with Found x -> x

2

— Solution notes —

6

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

In OCaml it is possible to use functions as values: they can be passed as arguments
and returned as results. Explain the notation used to write a function without having
to give it a name. [2 marks]

Answer:

fun x -> A

This question looks at two different ways of implementing functional arrays.

(a) One possible functional implementation of an array is based on trees, and the
path to a stored value follows the binary code for the subscript:

1

2 3

4 6 5 7

. . .

where in the above diagram the numbers show where in the tree a value with
the given subscript will live.

Write code that creates, retrieves values from and updates an array that has
this representation, and using big-O notation explain the associated costs.

[8 marks]

Answer: I will give here the code to read from the tree-style array, but update is then trivial
and follows from it.

let rec access n (B(v, l, r)) =

if n = 1 then

v

else if n mod 2 = 1 then

access ((n - 1) / 2) r

else

access (n / 2) l

Cost is guaranteed O(log n) where n is subscript being used.

(b) A different way of handling functional arrays is to represent the whole array
directly by a function that maps from integers to values. To access the item
at position k in such an array you just use the array as a function and give it

1

— Solution notes —

k as its argument, and to update the array you need to create a new function
reflecting the changed value.

If the array is to hold integer values, what OCaml type does it have? [1 mark]

Answer:

int -> int

Write a function update a n v where a is a functional array in this style, n is
an integer index and v is a new value. The result of the call to update must
behave as an array that stores all the values that a did except that it is as if an
assignment of the style “a[n] := v” has been performed. [5 marks]

Answer:

let update a n v =

fun i -> if i = n then v else a n (* easy *)

In big-O notation, what is the cost of your update function? After a sequence
of updates what is the cost of accessing the array? [4 marks]

Answer: Cost of update is O(1), but cost of access is linear in number of updates done.

2

— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

Recall that a dictionary of (key, value) pairs can be represented by a binary searchlecture 8, general
programming
skills

tree. Define the union of two binary search trees to be any binary search tree
consisting of every node of the given trees.

(a) Write an OCaml function union to return the union of two given binary search
trees. [Note: You may assume that they have no keys in common.] [6 marks]

Answer: This particular solution uses the general update function, but there could be many
alternative solutions. Taking this function for granted (in other words, omitting it from the
solution) isn’t acceptable, as that would make the problem almost trivial.

let rec update k v = function

| Lf -> Br ((k, v), Lf, Lf)

| Br ((a, x), t1, t2) ->

if k < a then

Br ((a, x), update k v t1, t2)

else if a < k then

Br ((a, x), t1, update k v t2)

else (* a = k *)

Br ((a, v), t1, t2)

let rec union l r =

match l, r with

| (Lf, r) -> r

| (Br ((k, v), t1, t2), r) ->

union t1 (union t2 (update k v r))

Define a slice of a binary search tree to be a binary search tree containing every (key,
value) node from the original tree such that x ≤ key ≤ y, where x and y are the
given endpoints.

(b) Write an OCaml function takeSlice to return a slice – specified by a given pair
of endpoints – from a binary search tree. [4 marks]

Answer: The solution is a straightforward recursion.

let rec takeSlice x y = function

| Lf -> Lf

| Br ((k, v), t1, t2) ->

if y < k then

takeSlice x y t1

else if k < x then

takeSlice x y t2

else

Br ((k, v), takeSlice x y t1, takeSlice x y t2)

This can also be done with when (pattern guards):

let rec takeSlice (x, y) = function

1

— Solution notes —

| Lf -> Lf

| Br ((k, v), t1, t2) when y < k ->

takeSlice (x, y) t1

| Br ((k, v), t1, t2) when k < x ->

takeSlice (x, y) t2

| Br ((k, v), t1, t2) ->

Br ((k, v), takeSlice (x, y) t1, takeSlice (x, y) t2)

(c) Write an OCaml function dropSlice to remove a slice from a binary search
tree: given a tree and a pair of endpoints, it should return the binary search
tree consisting of precisely the nodes such that x > key or key > y. [Hint: First
consider the simpler task of deleting a node from a binary search tree.]

[8 marks]

Answer: Deletion is not straightforward. The problem is to combine the remaining subtrees
while preserving the ordering. A simple approach is to attach the right-hand tree at the
far-right end of the left-hand tree, but inevitably, the resulting tree will be unbalanced.

Given deletion, the solution is once again a straightforward recursion.

let rec join l r =

match l r with

| (Lf, r) -> r

| (Br (x, t1, t2), r) ->

Br (x, t1, join t2 r)

let rec dropSlice (x, y) = function

| Lf -> Lf

| Br ((k, v), t1, t2) ->

if y < k then

Br ((k, v), dropSlice (x, y) t1, t2)

else if k < x then

Br ((k, v), t1, dropSlice (x, y) t2)

else

join (dropSlice (x, y) t1) (dropSlice (x, y) t2)

(d) The tree t need not be identical to that returned by

union (takeSlice (x, y) t)

(dropSlice (x, y) t)

Briefly explain how such an outcome is possible. [2 marks]

Answer: They will represent equivalent dictionaries, in that they map the same values to
the same keys. However, many distinct binary search trees can represent any particular
dictionary. It’s highly unlikely that the operation described in the question would preserve
the exact structure of a binary search tree.

[Note: All OCaml code must be explained clearly and should be free of needless
complexity.]

2

— Solution notes —

2

COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on fun-notation and curried functions in OCaml. Illustratesecond half of the
course, in
particular lectures
10–14

your answer by presenting the code for a polymorphic curried function
replicate, which given a non-negative integer n and a value x, returns the
list [x; . . . ;x︸ ︷︷ ︸

n

]. [6 marks]

Answer: The syntax of fun-notation is fn x -> E, denoting a function with argument x
that returns when called the value of E. The point is the ability to express such a function
without having to name it first. This notation, obviously, always yields expressions that have
a function type derived from the types of x and E.

Given fun-notation, we can express curried functions, that is, functions that return another
function as their result, and this function will typically make use of supplied argument. One
advantage of currying is that it allows partial application: regarding such a returned function
as useful in its own right.

OCaml provides a special syntax for writing curried functions, which is especially useful in
the case of recursion. The function replicate can be declared as follows:

let rec replicate n x =

if n = 0 then

[]

else

x :: replicate (n - 1) x

Its polymorphic type is int -> ’a -> ’a list.

(b) Write brief notes on references in OCaml. Illustrate your answer by
discussing (with the aid of a diagram) the effect of the following two top-level
declarations:

let rlist = replicate 4 (ref 0) @ List.map ref [1; 2; 3; 4]

let slist = List.map (fun r -> ref !r) rlist

[6 marks]

Answer: The key concepts of references include the function ref, which creates a reference
cell, !, which inspects a reference cell, and :=, which updates a reference cell with a given
value. These cells are mutable, but the references to them are pure values, like everything else
in OCaml.

The first declaration yields a list whose first four elements refer to a single shared reference cell
containing zero. (The diagram should show this sharing.) The remaining four list elements
refer to reference cells containing the integers 1 up to 4, respectively. The second declaration
creates a new list referring to freshly-allocated (and therefore distinct) reference cells, the first
four containing zero and the remaining four again holding the integers 1 up to 4. Students are
expected to understand the use of List.map in this question.

(c) The following three lines are typed at the OCaml top-level, one after the other.
What value is returned in each case? Justify your answer clearly. [Note: Recall
that an expression of the form v := E has type unit.]

1

— Solution notes —

List.map (fun r -> (r := !r + 1)) rlist

List.map (fun r -> (r := !r - 1; !r)) rlist

List.map (fun r -> (r := !r + 3; !r)) slist

[8 marks]

Answer: The values of the three lines are given as follows:

- : unit list = [(); (); (); (); (); (); (); ()]

- : int list = [3; 2; 1; 0; 1; 2; 3; 4]

- : int list = [3; 3; 3; 3; 4; 5; 6; 7]

The first one is trivial, for students who can remember that the only value of type unit is ().
But students must also recognise that this first line has side effects: the first shared reference
in rlist is increased by four (in four separate increments) while the remaining four references
are increased by one.

For the second one, students need to understand the semi-colon notation, which in this case
returns the contents of the reference at the given moment. The first four values of this result
illustrate successive decrementing of the shared reference.

For the third one, students need to understand that all the references in slist are independent.

2

— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on OCaml variants and pattern-matching in functionvariants,
pattern-matching declarations. [6 marks]

Answer: Solutions should include examples of variant type declarations and mention the
concept of a constructor. Examples of pattern-matching should be non-trivial, with nested
constructors and (preferably) overlapping patterns.

(b) A binary tree is either a leaf (containing no information) or is a branchprogramming,
binary trees containing a label and two subtrees (called the left and right subtrees). Write

OCaml code for a function that takes a label and two lists of trees, returning all
trees that consist of a branch with the given label, with the left subtree taken
from the first list of trees and the right subtree taken from the second list of
trees. [6 marks]

Answer: The variant type declaration is not required as part of the answer, but sets the
stage. Students are unlikely to know about List.concat, but it can be coded in two lines
with the help of @ (append).

type 'a tree = Lf

| Br of 'a * 'a tree * 'a tree

let make_trees v t1 =

List.map (fun t2 -> Br (v, t1, t2))

let make_trees2 v t1s t2s =

List.concat (List.map (fun t1 -> make_trees v t1 t2s) t1s)

(c) Write OCaml code for a function that, given a list of distinct values, returns aprogramming,
binary trees list of all possible binary trees whose labels, enumerated in inorder, match that

list. For example, given the list [1; 2; 3] your function should return (in any
order) the following list of trees:

1

2

3

1

3

2

2

31

3

2

1

3

1

2

[8 marks]

Answer:

let rec anti l1 = function

1

— Solution notes —

| [] -> []

| v::l2 ->

make_trees2 v (anti_inorder (List.rev l1)) (anti_inorder l2) @

anti (v::l1) l2

and anti_inorder = function

| [] -> [Lf]

| xs = anti [] xs

Note that the question refers to binary trees, not to binary search trees, and it does not impose
an ordering constraint on the labels of these trees.

All OCaml code must be explained clearly and should be free of needless complexity.

2

— Solution notes —

2

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

The function perms returns all n! permutations of a given n-element list.algorithms, lists,
curried functions,
higher-order
functions

let rec perms = function

| [] -> [[]]

| xs ->

let rec perms1 xs ys =

match xs with

| [] -> []

| x::xs ->

List.map (List.cons x) (perms (List.rev ys @ xs)) @

perms1 xs (x::ys)

in

perms1 xs []

(a) Explain the ideas behind this code, including the function perms1 and the ex-
pression List.map (List.cons x). What value is returned by perms [1; 2; 3]?

[7 marks]

Answer: The base case is [[]] because the empty list has one permutation, namely []. The
idea of the code is that the permutations of a list containing some element x consist of (a)
those that begin with x, the tail computed by a recursive call, and (b) those that do not begin
with x. The function perms1 walks down a list, choosing successive list elements to play the
role of x above. The expression List.map (List.cons x) modifies the list of permutations
obtained from the recursive call by inserting x as the first element of each. Here, List.cons
is a curried function.

perms [1; 2; 3] =

[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

(b) A student modifies perms to use an OCaml type of lazy lists, where appendqlazy lists

and mapq are lazy list analogues of @ and List.map.

let rec lperms = function

| [] -> Cons ([], fun () -> Nil)

| xs ->

let rec fun perms1 xs ys = function

| [] -> Nil

| x::xs ->

appendq (mapq (List.cons x) (lperms (List.rev ys @ xs)))

(perms1 xs (x::ys))

in

perms1 xs []

Unfortunately, lperms computes all n! permutations as soon as it is called.
Describe how lazy lists are implemented in OCaml and explain why laziness is
not achieved here. [5 marks]

1

— Solution notes —

Answer: OCaml’s lazy values do not form part of the syllabus. Lazy lists can be simulated
using the following variant type declaration:

type 'a seq = Nil

| Cons of 'a * (unit -> 'a seq)

Laziness can be obtained through writing functions of the form fun () -> E, for then the
expression E is not evaluated until the function is called, with argument ().

Thw function above uses lazy list primitives correctly as regards types, but the only occurrence
of fun () -> protects an instance of Nil. All recursive calls to lperms take place when the
function is called, and therefore all permutations are computed.

(c) Modify the function lperms, without changing its type, so that it computeslazy lists

permutations upon demand rather than all at once. [8 marks]

Answer: The trick is to insert an occurrence of fun () -> within the recursive calls. One
way of doing this is by modifying the function mapq. There are other solutions.

let rec mapapp f xq yf =

match xq with

| Nil ->

yf ()

| Cons (x, xf) ->

Cons(f x, fun () -> mapapp f (xf ()) yf)

let rec lperms = function

| [] -> Cons ([], fun () -> Nil)

| xs ->

let rec perms1 xs ys =

match xs with

| [] -> Nil

| x::xs ->

mapapp (List.cons x) (lperms (List.rev ys @ xs))

(fun () -> perms1 xs (x::ys))

in

perms1 xs []

An OCaml version of this Tripos would probably have prohibited the use of the Lazy module,
but this can also be achieved with:

type 'a seq = Nil

| Cons of 'a * 'a seq lazy_t

let rec mapapp f xq yf =

match xq with

| Nil ->

Lazy.force yf

| Cons (x, xf) ->

Cons (f x, lazy (mapapp f (Lazy.force xf) yf))

let rec lperms = function

| [] -> Cons ([], lazy Nil)

| xs ->

let rec perms1 xs ys =

match xs with

2

— Solution notes —

| [] -> Nil

| x::xs ->

mapapp (List.cons x) (lperms (List.rev ys @ xs))

(lazy (perms1 xs (x::ys)))

in

perms1 xs []

All OCaml code must be explained clearly and should be free of needless complexity.

3

— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on polymorphism in OCaml, using lists and standard listtypes,
polymorphism functions such as @ (append) and List.map. [4 marks]

Answer: Key points are that polymorphism assigns a type to every expression — at
compile time — while at the same time allowing natural genericity. For instance, the
elements of a list must have the same type, but it can be any type. The type of append,
'a list -> 'a list -> 'a list, indicates that it combines two lists of the same type,
returning another list of that type. The type of map, ('a -> 'b) -> 'a list -> 'b list,
indicates that it transforms a list of one type to another, as indicated by the type ('a -> 'b)
of the function.

(b) Explain the meaning of the following declaration and describe the correspondingvariants,
functions data structure, including the role of polymorphism.

type 'a se = Void | Unit of 'a | Join of 'a se * 'a se

[4 marks]

Answer: This declares a variant type containing three constructors: Void, Unit and Join.
The latter two constructors require arguments, while Void is a constant. This is a tree-like
data structure with unlabelled binary branching (Join), labelled leaves (Unit) and unlabelled
leaves (Void). Type 'a se is polymorphic, as indicated by the type variable 'a, which shows
that 'a is the type of the labels. Functions involving the new type can be declared using
pattern matching.

(c) Show that OCaml lists can be represented using this variant type by writing thevariants,
functions,
recursion

functions encode_list of type 'a list -> 'a se and decode_list of type
'a se -> 'a list, such that decode_list (encode_list xs) = xs for every
list xs. [3 marks]

Answer:

let rec encode_list = function

| [] -> Void

| x::xs -> Join (Unit x, encode_list xs)

exception Not_a_list

let rec decode_list = function

| Void -> []

| Join (Unit x, v) ->

x :: decode_list v

| _ -> raise Not_a_list

(d) Consider the following function declaration:functions as
values

let rec cute p = function

1

— Solution notes —

| Void -> false

| Unit x -> p x

| Join (u, v) ->

cute p u || cute p v

What does this function do, and what is its type? [4 marks]

Answer: The function cute has type ('a -> bool) -> 'a se -> bool, and cute p s

returns true if and only if s contains an element of the form Unit x, where p x is true.
It is analogous to the function exists, for lists.

(e) Consider the following expression:functions as
values

fun p -> cute (cute p)

What does it mean, and what is its type? Justify your answer carefully.
[5 marks]

Answer: This is a function of type ('a -> bool) -> 'a se se -> bool. Through the
fun binder, it takes an argument p, which has type 'a -> bool. Now cute p has type
'a se -> bool, and because cute is polymorphic, cute (cute p) is well-defined and has
type 'a se se -> bool.

Now if fun p -> cute (cute p) is applied to some specific p and then to a term s, it returns
true if and only if s contains an element of the form Unit x, where cute p x is true. Thus
the expression is like cute but for type 'a se se -> bool, that is, for the data structure
nested in itself.

2

— Solution notes —

2

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on the queue data structure and how it can be implementedlists, queues,
complexity efficiently in OCaml. In a precise sense, what is the cost of the main queue

operations? (It is not required to present OCaml code.) [6 marks]

Answer: A queue represents a sequence, allowing elements to be taken from the head and
added to the tail. Lists can implement queues, but append is a poor means of adding elements
to the tail. The solution is to represent a queue by a pair of lists, where

([x1;x2, . . . , xm], [y1, y2, . . . , yn])

represents the queue x1x2 . . . xmyn . . . y1.

The front part of the queue is stored in order, and the rear part is stored in reverse order. We
add elements to the rear part using cons, since this list is kept reversed; this takes constant
time. To remove an element, we look at the front part, which normally takes constant time,
since this list is stored in order. When the last element of the front part is removed, we reverse
the rear part, which becomes the new front part.

Queue operations take O(1) time when amortized : averaged over the lifetime of a queue. Even
for the worst possible execution, the average cost per operation is constant.

(b) Run-length encoding is a way of compressing a list in which certain elementslists, exceptions,
programming are repeated many times in a row. For example, a list of the form [a; a; a; b; a; a]

is encoded as [(3, a); (1, b); (2, a)]. Write a polymorphic function rl_encode to
perform this encoding. What is the type of rl_encode? [6 marks]

Answer:

let rec rl_encode = function

| [] -> []

| x::xs ->

let rec code n = function

| [] -> [(n, x)]

| y::ys ->

if x = y then

code (n + 1) ys

else

(n, x) :: rl_encode (y::ys)

in

code 1 xs

The type is ’a list -> (int * ’a) list. The code function can also be expressed with
guard clauses:

let rec code n = function

| [] -> [(n, x)]

| y::ys when x = y -> code (n + 1) ys

| ys -> (n, x) :: rl_encode ys

(c) The simple task of testing whether two lists are equal can be generalised to allowlists,
programming

1

— Solution notes —

a certain number of errors. We consider three forms of error:

• element mismatch, as in [1; 2; 3] versus [1; 9; 3] or [1; 2; 3] versus [0; 2; 3]

• left deletion, as in [1; 3] versus [1; 2; 3] or [1; 2] versus [1; 2; 3]

• right deletion, as in [1; 2; 3] versus [1; 3] or [1; 2; 3] versus [1; 2]

Write a function genEquals n xs ys that returns true if the two lists xs and
ys are equal with no more than n errors, and otherwise false. You may assume
that n is a non-negative integer. [8 marks]

Answer:

let rec genEquals n xs ys =

match xs, ys with

| ([], []) -> true

| ([], y::ys) -> n > 0 && genEquals (n - 1) [] ys

| (x::xs, []) -> n > 0 && genEquals (n - 1) xs []

| ((x::xs), (y::ys)) ->

if x = y then genEquals n xs ys

else n > 0 && (genEquals (n - 1) xs ys

|| genEquals (n - 1) (x::xs) ys

|| genEquals (n - 1) xs (y::ys))

All OCaml code must be explained clearly and should be free of needless complexity.

2

— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes about a tree representation of functional arrays, subscriptedO-notation, lists,
binary trees,
functional arrays

by positive integers according to their representation in binary notation. How
efficient are the lookup and update operations? [6 marks]

Answer: The underlying data structure is the binary tree. A location in the tree is found by
starting at the root, testing whether the subscript is even or odd, and descending into the left
or right subtree, respectively; this process terminates when 1 is reached. Here is the code for
lookup:

exception Subscript

let rec sub k = function

| Lf -> raise Subscript

| Br (v, t1, t2) ->

if k = 1 then v

else if k mod 2 = 0 then

sub (k / 2) t1

else

sub (k / 2) t2

Lookup and update both take O(log n) time, where n is the size of the array, because the
representation guarantees balancing. The update operation naturally copies only the path
from the root to the updated node, rather than the entire tree.

(b) Write an OCaml function arrayoflist to convert the list [x1; . . . ;xn] to the
corresponding functional array having xi at subscript position i for i = 1, . . . , n.
Your function should not call the update operation. [6 marks]

Answer: The point is to realise the tree structure directly, rather than repeatedly updating.
Here is a straightforward solution:

let rec revalts ys zs = function

| [] -> (List.rev ys, List.rev zs)

| [x] -> (List.rev (x::ys), List.rev zs)

| x1::x2::xs -> revalts (x1::ys) (x2::zs) xs

let alts = revalts [] []

let rec arrayoflist = function

| [] -> Lf

| x::xs ->

let (evens, odds) = alts xs in

Br (x, arrayoflist evens, arrayoflist odds)

There is an elegant solution based on the following “cons” operation for Braun trees:

let rec tcons v = function

| Lf -> Br (v, Lf, Lf)

| Br (w, t1, t2) -> Br (v, tcons w t2, t1)

(c) Consider the task of finding out which elements of an array satisfy the
predicate p, returning the corresponding subscript positions as a list. For

1

— Solution notes —

example, the list [2; 3; 6] indicates that these three designated array elements,
and no others, satisfy p. Write an OCaml functional to do this for a given array
and predicate, returning the subscripts in increasing order. [8 marks]

Answer: The algorithm is a straightforward recursion. Using merge delivers a sorted result.
A solution that returns an unsorted result, combined with a sorting function, is likely to lose
marks due to inelegance and inefficiency.

let rec merge xs (ys : int list) =

match xs, ys with

| [], ys -> ys

| xs, [] -> xs

| x::xs, y::ys ->

if x<=y then

x::(merge xs (y::ys))

else

y::(merge (x::xs) ys)

let rec mfilter p = function

| Lf -> []

| Br (x, t1, t2) ->

let ks = merge (List.map (fun k -> 2 * k) (mfilter p t1))

(List.map (fun k -> 2 * k + 1) (mfilter p t2))

in

if p x then

1 :: ks

else

ks

All OCaml code must be explained clearly and should be free of needless complexity.

2

