
1995 Paper 1 Question 3

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

An OCaml list can be considered to be a set if it has no repeated elements,
e.g., [4; 2; 3] is a set but [4; 2; 4; 3] is not.

Write an OCaml function intersect to compute the set-theoretic intersection of
two lists that satisfy this property of being a set. (The intersection of two sets
is the set of elements that appear in both sets.) Your function must also satisfy
conditions (a)–(c) below:

(a) The result list has no repeated elements;

(b) The number of cons (::) operations performed does not exceed the number
of elements in the result list;

(c) The elements of the result list appear in the same order as they do in the first
argument list.

You may assume the existence of [] (empty list) and :: (cons operation). All other
functions over lists must be defined by you. Little credit will be given for answers
that do not satisfy conditions (a)–(c).

Write an OCaml function subtract that given two lists satisfying the property of
being a set, returns a list consisting of those elements of the first list that do not
appear in the second list. Your subtract function must satisfy conditions (a)–(c)
above.

Write an OCaml function union that given two lists satisfying the property of being
a set, returns a list consisting of those elements that appear in one or other or both
of the lists. Your union function must satisfy conditions (a) and (b) above and (d)
below:

(d) Elements from the first argument list appear before any others in the result
and in the same order as they appear in the first argument.

State the most general type of your union function.

[10 marks]

1

1995 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Describe and compare the call-by-value, call-by-name, and call-by-need evaluation
strategies for functional programming languages.

The OCaml function butlast removes the last element from a non-empty list:

exception Butlast

let rec butlast = function

| [] -> raise Butlast

| [] -> []

| (x::xs) -> x::(butlast xs)

Show how the evaluation of butlast [[1; 2]; []; [3]; [4; 5]] proceeds in
OCaml.

Write an iterative version of butlast (i.e. one in which the recursive function calls
are tail recursive). You may assume the existence of the append (@) function.

State with justification the time complexity of your function.

An OCaml variant type of lazy lists can be defined by:

type 'a lazy list = Nil | Cons of unit -> 'a * 'a lazy list

An ‘infinite’ list of increasing integers can be generated by the function infinite

below:

let rec infinite n = Cons (fun () -> (n, infinite (n + 1)))

Write a version of butlast for lazy lists which terminates when applied to an
infinite lazy list such as infinite 0.

Can an iterative version of this function be written that still terminates on infinite
lazy lists? Explain your reasoning.

[20 marks]

1

1995 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Consider the following OCaml declarations:

type bit = One | Zero

type cardinal = Cardinal of bit list

exception Result would be negative

Define functions to add, subtract and multiply cardinals, viewing them as
representations of integers stored as in binary with the least significant bit of the
value first in the list. Thus for instance the number eleven has the value 1011 in
binary and so would be represented (note the ordering of the bits) by the structure

Cardinal [One; One; Zero; One]

Using Big-O notation state the time complexity of your add and multiply functions.

[20 marks]

1

1996 Paper 1 Question 2

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

The OCaml variant type bool, defined below, is to be used to represent boolean
expressions.

type bool = Var of string

| Not of bool

| And of bool * bool

| Or of bool * bool

The constructor Var is used to represent named boolean variables, and Not, And
and Or are used to represent the corresponding boolean operators.

Define a function that will return a list of the distinct names used in a given boolean
expression. [4 marks]

A context is represented by a list of strings corresponding to the boolean variables
that are set to true. All other variables are deemed to be set to false. Define a
function that will evaluate a given boolean expression in a given context. [3 marks]

Incorporate your two functions into a program that will determine whether a given
boolean expression is true for all possible settings of its variables. [3 marks]

1

1996 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Define an OCaml function rotations that will compute the list of all rotations of
a given list. For example

rotations [1; 2; 3] = [[1; 2; 3]; [2; 3; 1]; [3; 1; 2]]

The order in which the rotations occur is unimportant. [10 marks]

Carefully explain how your function works and estimate the time complexity of
your solution. [10 marks]

1

1996 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Give the declaration of an OCaml variant type that could be used in the
representation of a lazy list of integers, and illustrate its use by defining a function
ints that when given an argument n yields a lazy list of integers from n to infinity.

[5 marks]

The decimal representation of a real number in the range 0 to 1 is to be represented
as an infinite sequence of the decimal digits following the decimal point (0.d1d2...).
Define a function mknumb which when applied to the digit function dig will construct
a lazy list of these digits where the ith digit (di) is given by dig i. [5 marks]

Suppose we have an infinite sequence of such numbers [r1, r2, ...], in which the
digits of the decimal expansion of ri are given by the digit function fi, and that
the collection of digit functions is represented by the lazy list [f1, f2, ...]. Define
suitable types for the list of numbers and the list of digit functions. [5 marks]

Define a function newnumb which when given the lazy list of digit functions will
yield a lazy list of digits that have the property that its ith digit differs from the
ith digit of ri. [5 marks]

1

1997 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

The variant type pri defined below is to be used for the representation of priority
queues which are finite or infinite ordered sets of integers.

type pri = E

| N of int * (unit -> pri)

Define an OCaml function intfromto i j : int -> int -> pri which will
return a representation of the ordered set of integers

{ i, i + 1, ..., j }

Define the function first p : pri -> int that will return the first (and hence
smallest) integer in the given queue p, and rest p : pri -> pri that will return
(if possible) a representation of the given queue p with its smallest element removed.
Your implementation should be such that the expression

first (rest (intsfromto 20 1000000))

should evaluate efficiently.

Define an OCaml function ins i p : int -> pri -> pri which will return a
priority queue with the integer i inserted in the proper position of the given queue
p.

[10 marks]

1

1997 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Noughts and Crosses is a game played by two players (O and X) on a board with
nine positions numbered as follows:

1 2 3

4 5 6

7 8 9

The players place their marks (O and X) in unoccupied positions on the board until
the game is complete. A completed game is when either

(a) there is a straight line of three Xs giving a win for X, or

(b) there is a straight line of three Os giving a win for O, or

(c) all nine positions are occupied, in which case the game is drawn.

O is the first player to move.

It is required to construct an OCaml structure representing the tree of all possible
games. Each node of the tree should represent a reachable board state, with the
root being the empty board, and the leaf nodes corresponding to won, lost or drawn
games.

Define the OCaml variant type tree that you would use to represent this game
tree. [3 marks]

Define the function mktree : unit -> tree to construct the complete game tree,
explaining carefully how it works. There is no need for your implementation to be
efficient in either space or time. [10 marks]

Briefly discuss ways in which your implementation of mktree could be made more
efficient. [4 marks]

Define a function winner is O : tree -> int which when applied to the complete
tree will yield the number of distinct games in which O wins. [3 marks]

1

1997 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

A rooted directed graph has vertices identified by integers. Each vertex v has a left
successor given by left v and a right successor given by right v, where left and
right are OCaml functions of type int -> int. The graph contains the root and
all vertices reachable by paths from the root.

Define a variant type graph that could be used to represent such a graph with
given root, and left and right functions, and define a function mkgraph root left

right that can create values of type graph. Show that such values can be used to
represent both finite and infinite graphs. [4 marks]

A path through the graph is represented by a bool list with true and false

indicating left and right edges, respectively.

Define the function last : graph -> bool list -> int that will yield, for a
given graph, the identity of the vertex reached by following the given path from the
root. [3 marks]

In a new application, where last is repeatedly called, it is required for it to return
both the identity of the last vertex and a count of how often this particular vertex
has been returned. Define a new version of the variant type graph, containing
mutable values, that could be used. [3 marks]

Illustrate the use of this type by defining the new versions of mkgraph and last.
[10 marks]

1

1998 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Code the function least n xs, which returns the least n elements of the list xs
of real numbers. The result does not have to be sorted. You may assume
n 6 List.length xs.

[Hint: Function least is a simple modification of quicksort. A solution that works
by sorting the entire list will receive little credit. You may take the function
List.length as given.]

[10 marks]

1

1998 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Discuss how lazy lists and mutable lists can be coded in OCaml. How do they
compare with OCaml’s built-in lists? Illustrate your answer by considering the
operations of reversing a list and of concatenating two lists. Your discussion should
mention the main programming hazards. [6 marks]

The function odds is to return the list of alternate elements of its input. For
example, odds [a; b; c; d; e] = [a; c; e] and odds [a; b] = [a]. Code
odds using

(a) ordinary OCaml lists [3 marks]

(b) lazy lists [5 marks]

(c) mutable lists (as an imperative operation — so that odds has type
'a mlist -> unit for a suitable variant type 'a mlist of mutable lists, to
be defined) [6 marks]

1

1998 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

What does O(g(n)) mean, and what is its relevance to programming? (Describe
both advantages and limitations.) [5 marks]

Consider the following OCaml declarations, for tree-like expressions:

type 'a expr = Join of 'a expr * 'a expr

| Tip of 'a

let rec flatten = function

| Tip x -> [x]

| Join (e1, e2) -> flatten e1 @ flatten e2

The size of an expression is the number of Tips it contains. State the complexity
of flatten e, measured in cons operations, as a function of the size of e:

(a) in the worst case [3 marks]

(b) in the average case [4 marks]

(c) in the best case [3 marks]

Code a function flat such that flat e = flatten e for all e, justifying this claim.
Show that flat’s worst-case complexity is linear. [5 marks]

1

1999 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

A permutation of a list is any list that can be derived from it by re-arranging the
elements. Write an OCaml function that returns the list of all the permutations of
its argument. Explain your code clearly and carefully.

For example, applied to the list [1; 2; 3], your function should return the
list whose elements are [1; 2; 3], [2; 1; 3], [2; 3; 1], [1; 3; 2], [3,1,2]
and [3,2,1].

You may assume that the elements of the argument are distinct. The elements of
the result may appear in any order.

[10 marks]

1

1999 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

“We face the Year 2000 crisis because programmers did not apply the principles of
data abstraction.” Discuss. [4 marks]

Your employer asks you to implement a dictionary. The pattern of usage will consist
of taking an empty dictionary and performing many insertions and lookups. You
must choose one of three data structures. Each requires O(log n) time for the lookup
and update operations, where n is the number of items in the dictionary. They are
(1) binary search trees, which take O(log n) time in the average case; (2) balanced
trees, which need complicated algorithms but take O(log n) time in the worst case;
(3) self-adjusting trees, which take O(log n) amortised time in the worst case.

Explain the differences between the three notions of O(log n) time. Argue that any
of the three data structures might turn out to be the best, depending upon further
details of the application. If no further details are available, which of the three is
the safest choice? [8 marks]

An algorithm requires T (n) units of space given an input of size n, where the
function T satisfies the recurrence

T (1) = 1

T (n) = T (n/2) + n (n > 1).

Express the algorithm’s space requirement using O-notation, carefully justifying
your answer. [8 marks]

1

1999 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Describe OCaml’s facilities for treating functions as data, giving examples of their
use in programs. Illustrate your answer by discussing the function fold right:

let rec fold right f l e

match l with

| [] -> e

| x::xs -> f x (fold right f xs e)

[7 marks]

You have been asked to implement a data structure to represent family
relationships. For each person, it should record his or her name, mother, father,
and children. As a first attempt, you have been given the following variant type

declaration:

type person = Person of string * person * person * person list

Identify two problems with this declaration that make it unusable. Modify the
declaration to correct these problems. [6 marks]

Consider the following, simpler data structure for associating a person with his or
her children:

type famtree = B of string * famtree list

Write an OCaml function that takes two arguments: a predicate P over family
trees (a function of type famtree -> bool) and a family tree t. The result should
be the list of all subtrees of t (possibly including t itself) satisfying the predicate.
For full credit, give due attention to efficiency. [7 marks]

1

2000 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Code the curried function exf, which takes as arguments the function f and the
list l. The result must consist of those elements x of l such that f x is also a
member of l. The elements of the result must be distinct from each other but may
appear in any order. For example, if f x = x + 1 and l = [9; 3; 2; 2; 8] then
the result should be [2; 8] or [8; 2]. [9 marks]

State, with justification, the type of exf. [1 mark]

1

2000 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

State the time complexity of the lookup and update operations for each of the
following:

(a) association lists

(b) binary search trees

(c) functional arrays (implemented as binary trees)

Use O-notation and include both the average-case and worst-case complexity.
[6 marks]

You are provided with the OCaml code for binary search trees, including the lookup
and update operations. Use these operations to code a sorting function that works
by repeatedly inserting elements of a list into a binary search tree, then converting
the final binary search tree back into a list. [4 marks]

Consider the following methods of sorting a list:

(a) Locate the smallest element of the input. The output is this element followed
by the result of recursively sorting the remaining elements.

(b) Take the first 16 elements of the input and sort them using special hardware.
Sort the remaining elements recursively. The output is the result of merging
the two sorted lists.

(c) Take the first 20% of the input elements. Sort them and the remaining 80%
recursively. The output is the result of merging the two sorted lists.

For each of these methods, state with justification the worst-case complexity in
terms of the number of comparisons. [10 marks]

1

2000 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Describe how OCaml lists are represented in storage. Your answer should include
diagrams illustrating how the representation of [a; b] @ [c; d] is derived from
those of the lists [a; b] and [c; d], indicating any sharing of memory. How
efficient is the evaluation of [a; b] @ l if the list l is very long? [4 marks]

What are cyclic lists and how can they be created in OCaml? [2 marks]
NB This question was unambiguous in Standard ML, which
doesn’t have OCaml’s recursive value definitions.

Describe OCaml’s reference types and their applications. In particular, compare
mutable data structures with ordinary OCaml types. [6 marks]

Code an OCaml function that takes a mutable list and returns true if the list is
cyclic, otherwise returning false. Explain why your function is correct.
[Hint: in OCaml, the physical equality test p == q is true if p and q refer to the
same location in memory.] [8 marks]

1

2001 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) An OCaml program makes the following declarations:

let x = ref 0

let f n = (x := !x + 1; n + !x)

let g n =

let x = ref 0 in

x := !x + 1; n + !x

Consider evaluating each of the following expressions:

let l1 = List.map f [1; 2; 3; 4]

let l2 = List.map g [1; 2; 3; 4]

let l3 = List.map ref [5; 5; 5]

What value is returned in each case and how are the references affected?
[5 marks]

(b) Code the function filter such that filter p xs returns the list of those
elements of the list xs satisfying the predicate p. [1 mark]

(c) Use filter to express Quicksort. [4 marks]

1

2001 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) Write brief notes on the following:

(i) Re-coding a function to make it iterative. [4 marks]

(ii) The difference between depth-first and breadth-first search. [4 marks]

(iii) OCaml’s exception-handling facilities. [4 marks]

(b) Code a function whose input is a list of integers and whose output is the
list of all the integers that can be expressed as the sum of one or more
of the supplied integers. For example, given [1; 5; 10] a correct output
is [1; 5; 10; 6; 11; 15; 16]; the order of the elements in the output does
not matter. [5 marks]

(c) Modify the function that you coded above so that the elements of its output
appear in numerical order and without repetitions. [3 marks]

1

2001 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

To represent the power series
∑∞

i=0 ai x
i in a computer amounts to representing

the coefficients a0, a1, a2, . . . One possible representation is by a function of type
int->real that returns the coefficient ai given i as an argument. An alternative
representation is the following type:

type power = Cons of float * (unit -> power)

(a) Demonstrate the two representations by using each of them to implement these
two power series:

(i) The constant power series c, with a0 = c and ai = 0 for i > 0. [3 marks]

(ii) The Taylor series
∑∞

i=0 x
i/i! for the exponential function. [4 marks]

(b) Also implement (using both representations) each of the following operations
on power series:

(i) Product with a scalar, given by c·
(∑∞

i=0 ai x
i
)

=
∑∞

i=0(cai)x
i. [3 marks]

(ii) Sum, given by
(∑∞

i=0 ai x
i
)

+
(∑∞

i=0 bi x
i
)

=
∑∞

i=0(ai + bi)x
i. [4 marks]

(iii) The product
(∑∞

i=0 ai x
i
)
×
(∑∞

i=0 bi x
i
)
, where the ith coefficient of the

result is a0 bi + a1 bi−1 + · · · + ai b0. [6 marks]

You may assume the OCaml function float of int of type int -> float that
maps an integer to the equivalent real number.

1

2002 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

Consider the following OCaml declarations, involving binary trees:

type 'a tree = Lf

| Br of 'a * 'a tree * 'a tree

exception E

let rec path = function

| Lf -> raise E

| Br(v, t1, t2) ->

try

if v = 7 then []

else 1 :: path t1

with E -> 2 :: path t2

(a) The function path returns a path (a list of 1s and 2s) to an occurrence of the
number 7 in the tree. Carefully explain how path works, taking the tree shown
below as an example and indicating which occurrence of 7 will be found.

[5 marks]

3

5 7

2 7 7

(b) Code the function paths, which returns the list of all paths to 7s in a binary
tree. [5 marks]

1

2002 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

This question concerns the following OCaml declaration of a tree type:

type 'a fan = Wave of 'a * ('a fan) list

(a) Declare the function flip, which maps a tree to a mirror image of itself, as
illustrated: [3 marks]

1
 432

1

5 6

1

24

56

3

(b) Declare the curried function paint f, which copies a tree while applying the
function f to each of its labels. [3 marks]

(c) Declare the function same shape, which compares two trees and returns true
if they are equal except for the values of their labels and otherwise returns
false. [5 marks]

(d) State the types of functions flip, paint and same shape. [3 marks]

(e) The function paper is declared in terms of the familiar functional fold right:

let rec fold right f l e =

match l with

| [] -> e

| x::xs -> f x (fold right f xs e)

let rec paper (Wave(x, fs)) q = fold right paper fs (q + 1)

Describe the computation that results when paper is applied to a tree.
[6 marks]

1

2002 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) Explain how O-notation is used to express efficiency of algorithms. [5 marks]

(b) Arrange the following list of complexity classes in order of decreasing efficiency
in n. Briefly justify each relationship.

O(5n2) O(en) O(n1/3) O(n3 − 3n2) O(log n) O(n2n)

[4 marks]

(c) Suppose that f is a function from integers to integers such that i 6 j implies
f(i) 6 f(j). Then there is an efficient algorithm to solve the equation f(k) = y,
given the desired y and a range of values in which to search for k: the idea
is repeatedly to halve this range. Code this algorithm as the OCaml function
search whose arguments are f , y, and the range (a, b). Its result should be
the greatest k such that f(k) 6 y and a 6 k 6 b, provided such a k exists.

[11 marks]

1

2003 Paper 1 Question 1

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) Carefully explain the concept of a curried function, with examples. [4 marks]

(b) Explain the purpose and operation of the function f:

let rec fold right f l e =

match l with

| [] -> e

| x::xs -> f x (fold right f xs e)

fun f xs =

fold right (fun (x, y) (xs, ys) -> (x::xs, y::ys)) xs ([], [])

[4 marks]

(c) Write a function that accepts a list and returns the list consisting of its first,
second, fourth, fifth, seventh, eighth, tenth, etc., elements. In other words,
your function should return all the elements except those whose position in
the input list is a multiple of three. [2 marks]

1

2003 Paper 1 Question 5

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) Describe how lazy lists can be implemented using OCaml. [2 marks]

(b) Code a function to concatenate two lazy lists, by analogy to the ‘append’
function for ordinary OCaml lists. Describe what happens if your function is
applied to a pair of infinite lists. [3 marks]

(c) Code a function to combine two lazy lists, interleaving the elements of each.
[3 marks]

(d) Code the lazy list whose elements are all ordinary lists of zeroes and ones,
namely []; [0]; [1]; [0; 0]; [0; 1]; [1; 0]; [1; 1]; [0; 0; 0];

[6 marks]

(e) A palindrome is a list that equals its own reverse. Code the
lazy list whose elements are all palindromes of 0s and 1s, namely
[]; [0]; [1]; [0; 0]; [0; 0; 0]; [0; 1; 0]; [1; 1]; [1; 0; 1]; [1; 1; 1];
You may take the reversal function List.rev as given. [6 marks]

1

2003 Paper 1 Question 6

Foundations of Computer Science

This question has been translated from Standard ML to OCaml

(a) Explain in detail how a binary search tree represents a dictionary. If reference
types are not used, what is the average-case cost of an update operation?

[8 marks]

(b) A mutable binary tree is either a leaf or a branch node containing a label and
references to two other mutable binary trees. Present the OCaml variant type
declaration for mutable binary trees. [2 marks]

(c) Describe how to use this type to implement (mutable) binary search trees. Give
OCaml code for the lookup and update operations. The update operation must
never copy existing tree nodes. [10 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

(a) What does the OCaml function map do? Give an example, first coded without
map and then with it, to illustrate how it can lead to more compact or
comprehensible code. [3 marks]

(b) Functions fold left and fold right might be defined as

let rec fold_left f e = function

| [] -> e

| x::xs -> fold_left f (f ex) xs

let rec fold_right f l e = match l with

| [] -> e

| x::xs -> f x (fold_right f xs e)

Explain what these two functions do and why they may be useful. [4 marks]

(c) Here is a typical use of map:

let mangle n = (n - 2) * (n + 7)

let mangle_list x = map mangle x

Show how to express mangle list using one of the “fold” functions rather than
map. [3 marks]

1

5

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

The following OCaml type can be viewed as defining a lazy or infinite sort of tree
where each node in the tree holds an integer:

type tr = N of int * unit -> tr * unit -> tr

(a) Write a function called ndeep such that if n is an integer and z is a tree (i.e. of
type tr) the call ndeep n z will return an ordinary list of all the 2n integers at
depth exactly n in the tree. Note that if n = 0 it will return a list of length 1,
being just the top integer in the tree. Comment on its efficiency. [8 marks]

(b) You are given a tr, and told that it contains arbitrarily large values at least
somewhere in it. You want to find a value from it that is bigger than 100 (but
if there are many big values it does not matter which one is returned). Because
the tree is infinite you cannot use simple depth-first search: you decide to use
iterative deepening. Thus you first check all integers at depth 1, then at depth 2,
depth 3, . . . and return when you first find a value that is greater than 100.

Use exception handling to return the large value when you find it. Present and
explain code that searches the lazy tree. [12 marks]

1

6

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

In OCaml it is possible to use functions as values: they can be passed as arguments
and returned as results. Explain the notation used to write a function without having
to give it a name. [2 marks]

This question looks at two different ways of implementing functional arrays.

(a) One possible functional implementation of an array is based on trees, and the
path to a stored value follows the binary code for the subscript:

1

2 3

4 6 5 7

. . .

where in the above diagram the numbers show where in the tree a value with
the given subscript will live.

Write code that creates, retrieves values from and updates an array that has
this representation, and using big-O notation explain the associated costs.

[8 marks]

(b) A different way of handling functional arrays is to represent the whole array
directly by a function that maps from integers to values. To access the item
at position k in such an array you just use the array as a function and give it
k as its argument, and to update the array you need to create a new function
reflecting the changed value.

If the array is to hold integer values, what OCaml type does it have? [1 mark]

Write a function update a n v where a is a functional array in this style, n is
an integer index and v is a new value. The result of the call to update must
behave as an array that stores all the values that a did except that it is as if an
assignment of the style “a[n] := v” has been performed. [5 marks]

In big-O notation, what is the cost of your update function? After a sequence
of updates what is the cost of accessing the array? [4 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2005 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

It is required to implement polynomials, which may contain any number of different
variables, with the operations of addition and equality test.

• Computing that the sum of xy2 + 2xz − y and y + 4xw − xz is xz + xy2 + 4xw
is an example of polynomial addition.

• Determining that xy + z2 equals zz + yx is an example of an equality test.

(a) Design a suitable representation of polynomials, in OCaml. Justify the choices
you make. [6 marks]

(b) Describe how you would implement addition and the equality test, and express
their efficiency using O-notation. It is not necessary to present OCaml code.

[4 marks]

1

5

COMPUTER SCIENCE TRIPOS Part IA – 2005 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Explain the operation of the Quicksort algorithm. Illustrate your answer by
applying it to the list [8; 3; 6; 12; 2; 9; 20; 1; 5; 0; 7; 13; 4; 11; 10].

[6 marks]

(b) Write an OCaml function for finding the median of three integers. [3 marks]

(c) A variant of Quicksort uses a novel method of choosing the pivot element.
Instead of using the head of the list, it uses the median of the first, middle and
last elements of the list. Express this algorithm in OCaml. You may assume the
existence of the function length, but you may not assume that the items being
sorted are distinct. [7 marks]

(d) What is the average-case execution cost, measured in terms of the number of
comparisons, for the version of Quicksort described in part (c) above? Justify
your answer carefully. [4 marks]

1

6

COMPUTER SCIENCE TRIPOS Part IA – 2005 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

Consider a variant type of binary trees where both leaves and branches carry labels:

type 'a tree = Twig of 'a

| Br of 'a * 'a tree * 'a tree

A path in a binary tree is a series of labels proceeding from the root to a leaf, as
shown in the diagram:

1

2

4

4

7 9 3

Consider the problem of finding a path in a binary tree such that the integer sum
of the labels satisfies a given property. (In the example above, the highlighted path
sums to a prime number.)

(a) Write an OCaml function find path such that find path p t returns some
path in t whose sum satisfies the boolean-valued function p. If no such path
exists, the function should raise an exception. [5 marks]

(b) Write an OCaml function all paths such that all paths p t returns the list
of all paths in t whose sums satisfy the boolean-valued function p. [6 marks]

(c) Write an OCaml function all pathq that is analogous to all paths but returns
a lazy list of paths. For full credit, your function should find paths upon
demand rather than all at once. [Hint: try adding solutions to an accumulating
argument.] [9 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2006 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

Give an example of an OCaml function belonging to each of the following complexity
classes:

(a) O(1);

(b) O(n);

(c) O(n log n);

(d) O(n2);

(e) O(2n).

Each answer may contain code fragments (involving well-known functions) rather
than self-contained programs, but must include justification. (The upper bound in
each case should be reasonably tight.) [2 marks each]

1

5

COMPUTER SCIENCE TRIPOS Part IA – 2006 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) This question concerns the data structure of queues.

(i) Describe the primitive queue operations. [3 marks]

(ii) Describe an efficient implementation of queues, presenting code fragments
as appropriate (a complete program listing is not required). [3 marks]

(iii) Carefully discuss the efficiency of your implementation, using the concept
of amortised time. [4 marks]

(b) Write an OCaml function to compute all permutations of its argument, a list.
(You may assume that the elements of this list are distinct.) For example, given
the argument [1; 2; 3], the result should be a list consisting of the elements
[1; 2; 3], [2; 1; 3], [2; 3; 1], [1; 3; 2], [3; 1; 2] and [3; 2; 1] in any order.
For full credit, your code must be well structured and clearly explained.

[10 marks]

1

6

COMPUTER SCIENCE TRIPOS Part IA – 2006 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Contrast ordinary lists, lazy lists and mutable lists by

(i) presenting the OCaml type declaration of each type of list, and [3 marks]

(ii) implementing a filter functional for each type of list. [7 marks]

(The mutable version should remove the elements that do not satisfy the given
predicate, rather than constructing a new list.)

(b) The intersection of two dictionaries is the largest dictionary that agrees with
them both. For example, if one dictionary is cat=3, dog=2, rabbit=9 while the
other is cat=4, dog=2, hamster=9, then their intersection is dog=2.

Code an OCaml function to compute the intersection of two dictionaries, where
dictionaries are represented by binary search trees. You may assume that the
dictionary lookup and update operations are provided. For full credit, your
solution must be simple and clear. [10 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2007 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Code the OCaml function merge, which combines two ordered lists to form an
ordered list containing the elements of both. [2 marks]

(b) Code a top-down merge sort function in OCaml. You may assume that basic
functions on lists are given, provided you describe them briefly. [3 marks]

(c) State the time complexities of merge and merge sort, justifying your answer
carefully. [5 marks]

1

5

COMPUTER SCIENCE TRIPOS Part IA – 2007 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Consider the following piece of OCaml code:

type 'a tree = Lf | Br of 'a * 'a tree * 'a tree

exception Blair

let rec tony p = function

| Lf -> true

| Br (x,t1,t2) -> if not (p x) then raise Blair

else try tony p t1 with Blair -> tony p t2

let gordon p t = try tony p t with Blair -> false

(i) Code a function that returns the same results as gordon but makes no use
of exceptions. [4 marks]

(ii) What property of binary trees does gordon express? [3 marks]

(b) Write brief notes on the OCaml type exn. [3 marks]

(c) Consider the following piece of OCaml code:

type 'a result = Ian of 'a | Cherie of exn

let what f x = try Ian (f x) with e -> Cherie e

We ask OCaml to evaluate the expression

map (what (tony (fun x -> x <> 0))) [ta; tb]

and the response is as follows:

- : bool result list = [Ian true; Cherie Blair]

What is the type of what (tony (fn x => x <> 0)), and what can we infer
about the binary trees ta and tb? Justify both answers carefully. [5+5 marks]

1

6

COMPUTER SCIENCE TRIPOS Part IA – 2007 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on reference types in OCaml and on control structures for
imperative programming. [6 marks]

Consider the following OCaml type:

type 'a meal = Snack of 'a

| Lunch of 'a meal * 'a meal

| Feast of 'a meal * 'a meal * 'a meal

(a) Write a function that is equivalent to snacker below but makes no use of
references. Briefly explain why the two functions are equivalent.

let snacker m =

let l = ref [] in

let munch = function

| Snack x -> (l := x :: !l)

| Lunch (m1, m2) -> (munch m1; munch m2)

| Feast (m1, m2, m3) -> (munch m1; munch m2; munch m3)

in

munch m; !l

[5 marks]

(b) Write a function gluttony such that gluttony m1 m2 makes a copy of m1,
replacing every Snack node with m2. [3 marks]

(c) Write a function glut such that glut k m1 m2 makes a copy of m1, replacing
the kth Snack node with m2. Nodes are counted from left to right, with the
leftmost node being number one. [6 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2008 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) This part concerned a feature of Standard ML which does apply to OCaml.
[3 marks]

(b) The list l2 is a sublist of l provided there exist lists l1 and l3 such that
l = l1@l2@l3. Write an OCaml function sublist to test whether one list is
a sublist of another one. Include a clear explanation of how your code works.

[7 marks]

1

5

COMPUTER SCIENCE TRIPOS Part IA – 2008 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Describe how lazy lists, which have possibly infinite length, can be implemented
in OCaml. Illustrate your answer by presenting a function that accepts one (or
more) lazy lists and produces another lazy list. [6 marks]

(b) A lazy binary tree either is empty or is a branch containing a label and two lazy
binary trees, possibly to infinite depth. Present an OCaml type to represent
lazy binary trees. [2 marks]

(c) Present an OCaml function that produces a lazy binary tree whose labels include
all the integers, including the negative integers. [3 marks]

(d) Present an OCaml function that accepts a lazy binary tree and produces a lazy
list that contains all of the tree’s labels. [9 marks]

All OCaml code must be explained clearly.

1

6

COMPUTER SCIENCE TRIPOS Part IA – 2008 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

A puzzle, or one-person game, can be represented in OCaml by two functions:

• a next-state function, which maps a state to a list of possible next states, and

• a wins function, which returns true if the given state counts as a win.

A simple example is a puzzle that has states consisting of positive integers, a
next-state function that maps n to [n+ 2, n+ 5], and a “wins” function that returns
true if n = 10. We can win if we start from n = 2 but not from n = 7.

(a) Code a polymorphic datatype ’a puzzle, to represent a puzzle by the pair of a
next-state function and a wins function. [2 marks]

(b) Briefly contrast depth-first search, breadth-first search and iterative deepening
as techniques for solving such puzzles. [6 marks]

(c) Write a function depth that accepts a puzzle, a state and a depth limit. It should
use depth-first search to determine whether the puzzle can be solved from the
given state within the given depth limit. [6 marks]

(d) Write a function breadth that accepts a puzzle and a state. It should use
breadth-first search to determine whether the puzzle can be solved from the
given state. [6 marks]

All code must be explained clearly. You may assume that any necessary OCaml data
structures or functions are available.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2009 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) The polymorphic curried function delFirst takes two arguments, a predicate
(Boolean-valued function) p and a list xs. It returns a list identical to xs except
that the first element satisfying p is omitted; if no such element exists, then it
raises an exception. Code this function in OCaml. [4 marks]

(b) Use the function delFirst to express the polymorphic function delFirstElt,
where delFirstElt x xs returns a list identical to xs except that it omits the
first occurrence of x. [2 marks]

(c) Carefully explain the polymorphic types of these two functions, paying particular
attention to currying and equality. [4 marks]

(d) A list ys is a permutation of another list xs if ys is obtained by rearranging the
elements of xs. For example, [2; 1; 2; 1] is a permutation of [2; 2; 1; 1].
Code an OCaml function to determine whether one list is a permutation of
another. [4 marks]

(e) A list ys is a generalised permutation of xs if ys is obtained by rearranging the
elements of xs, where one element of xs is specially treated: it may appear any
number of times (including zero) in ys. For example, [1; 2; 1] is a generalised
permutation of [1; 2] but [1; 2; 2; 1] is not because two elements (1 and 2)
appear the wrong number of times in it. Code an OCaml function to determine
whether one list is a generalised permutation of another. [6 marks]

All OCaml code must be explained clearly.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2009 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on top–down merge sort, contrasting it with insertion sort.
State its worst-case and average-case complexity, with brief justification. (There
is no need to present OCaml code.) [5 marks]

(b) Write brief notes on preorder, inorder and postorder tree traversal. Present
efficient code for one of them and state, with justification, its worst-case
complexity. [5 marks]

(c) The binary search tree t1 is superseded by t2 provided every (key, value) entry
in t1 is also present in t2. Code an OCaml function to determine whether one
binary search tree is superseded by another. Express its cost in terms of n1

and n2, the numbers of entries in t1 and t2, respectively. For full credit, the
worst-case cost should be no worse than O(n1 + n2). [10 marks]

All code must be explained clearly. You may assume that any necessary OCaml data
structures or functions are available.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2010 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Give an OCaml datatype declaration suitable for representing lazy lists, possibly
of infinite length. [2 marks]

(b) Code the OCaml function interleave, which takes two lazy lists and generates
a lazy list containing each of their elements. [2 marks]

(c) Code an OCaml function that applies a given function to every element of a lazy
list, returning a lazy list of the results (analogously to the function map).

[3 marks]

(d) Code the OCaml function iterates which, given a function f and some value
x, generates a lazy list containing all the values of the form fn(x) (that is,
f(· · · f(x) · · ·) with n applications of f) for n ≥ 0. [3 marks]

(e) Code the OCaml function iterates2 which, given functions f and g and values
x and y, generates a lazy list containing all the values of the form (fm(x), gn(y))
for m, n ≥ 0. [10 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2010 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on the function defined below:

let rec fold_left f e = function

| [] -> e

| x::xs -> fold_left f (f e x) xs

Illustrate your answer by describing the computations performed by the following
two functions:

let f x = fold_left (fold_left (*)) 1 x

let g p zs =

fold_left

(fun (x, y) z ->

if p z then

(z::x, y)

else

(x, z::y))

([], []) zs

[4 marks]

(b) Selection sort is a sorting algorithm that works by repeatedly identifying and
setting aside the smallest (or largest) item to be sorted. Implement selection
sort in OCaml and describe the efficiency of your solution using O-notation.

[4 marks]

(c) Code an OCaml function to generate a multiplication table in the form of a
list of lists of integers. For example, given the argument 3 it should return
[[1; 2; 3]; [2; 4; 6]; [3; 6; 9]]. [6 marks]

(d) Modify your solution to part (c) in order to generate a three-dimensional
table containing values xijk computed by calling a supplied 3-argument curried
function f . For example, given the argument 2 it should return [[[x111; x112];

[x121; x122]]; [[x211;x212]; [x221; x222]]]. [6 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2011 – Paper 1

Foundations of Computer Science (MOM)

This question has been translated from Standard ML to OCaml

This question considers 2-dimensional rectangular labyrinths such as the following.

0 1 2 3 4

0

1

2

3

4

Here horizontal and vertical bars indicate walls. One can step from a position to
an adjacent position if there is no wall obstructing the move. For example, one can
move in one step from position (1, 1) to position (2, 1), but not to (1, 0). Diagonal
steps are not allowed.

(a) Carefully explain a convenient way of representing such labyrinths in OCaml.
Then define a function, call it next, which takes two arguments, a position
(x, y) and a labyrinth, and returns a list of all positions that can be reached
in one step from position (x, y). [Hint: Consider representing labyrinths as
functions with a type of the form int * int -> something .] [8 marks]

(b) Use next to code, in OCaml, a space-efficient function that checks whether it is
possible to move from a position (x1, y1) to another position (x2, y2) in a
given labyrinth. For full marks, make sure your function always terminates.

[6 marks]

(c) Explain, not necessarily using OCaml code, how one can code a function that
returns the shortest path between two given positions. Here path means a list of
all the positions one would visit en route to the destination. The solution must
be space efficient and practical even for large labyrinths. Briefly explain why
your solution is space efficient. [6 marks]

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2011 – Paper 1

Foundations of Computer Science (MOM)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on exceptions in OCaml and on the functions and control
structures available for programming with them. [6 marks]

Parts (b) and (c) make use of the following OCaml exception:

exception Olive

(b) Code in OCaml a function called cannot which takes two arguments, a function f

and a value x. Define the cannot function in such a way that it returns true

if and only if evaluation of f(x) causes exception Olive. For all other inputs,
it should return false. [Hint: evaluation of f(x) may cause exceptions other
than Olive.] [4 marks]

(c) Consider the following OCaml type and functions bun and cheese.

type 'a tree = Leaf of 'a

| Branch of 'a tree * 'a tree

let rec bun x = function

| Leaf y -> if x = y then raise Olive else Leaf y

| Branch (t1, t2) -> Branch (bun x t1, bun x t2)

let cheese x t = if cannot (bun x) t then Leaf x else bun x t

(i) Write down the type of cheese. [3 marks]

(ii) Write a function that is equivalent to cheese but makes no use of
exceptions. Briefly explain why your function is equivalent to cheese.

[7 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

Recall that a dictionary of (key, value) pairs can be represented by a binary search
tree. Define the union of two binary search trees to be any binary search tree
consisting of every node of the given trees.

(a) Write an OCaml function union to return the union of two given binary search
trees. [Note: You may assume that they have no keys in common.] [6 marks]

Define a slice of a binary search tree to be a binary search tree containing every (key,
value) node from the original tree such that x ≤ key ≤ y, where x and y are the
given endpoints.

(b) Write an OCaml function takeSlice to return a slice – specified by a given pair
of endpoints – from a binary search tree. [4 marks]

(c) Write an OCaml function dropSlice to remove a slice from a binary search
tree: given a tree and a pair of endpoints, it should return the binary search
tree consisting of precisely the nodes such that x > key or key > y. [Hint: First
consider the simpler task of deleting a node from a binary search tree.]

[8 marks]

(d) The tree t need not be identical to that returned by

union (takeSlice (x, y) t)

(dropSlice (x, y) t)

Briefly explain how such an outcome is possible. [2 marks]

[Note: All OCaml code must be explained clearly and should be free of needless
complexity.]

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2012 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on fun-notation and curried functions in OCaml. Illustrate
your answer by presenting the code for a polymorphic curried function
replicate, which given a non-negative integer n and a value x, returns the
list [x; . . . ;x︸ ︷︷ ︸

n

]. [6 marks]

(b) Write brief notes on references in OCaml. Illustrate your answer by
discussing (with the aid of a diagram) the effect of the following two top-level
declarations:

let rlist = replicate 4 (ref 0) @ List.map ref [1; 2; 3; 4]

let slist = List.map (fun r -> ref !r) rlist

[6 marks]

(c) The following three lines are typed at the OCaml top-level, one after the other.
What value is returned in each case? Justify your answer clearly. [Note: Recall
that an expression of the form v := E has type unit.]

List.map (fun r -> (r := !r + 1)) rlist

List.map (fun r -> (r := !r - 1; !r)) rlist

List.map (fun r -> (r := !r + 3; !r)) slist

[8 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on OCaml variants and pattern-matching in function
declarations. [6 marks]

(b) A binary tree is either a leaf (containing no information) or is a branch
containing a label and two subtrees (called the left and right subtrees). Write
OCaml code for a function that takes a label and two lists of trees, returning all
trees that consist of a branch with the given label, with the left subtree taken
from the first list of trees and the right subtree taken from the second list of
trees. [6 marks]

(c) Write OCaml code for a function that, given a list of distinct values, returns a
list of all possible binary trees whose labels, enumerated in inorder, match that
list. For example, given the list [1; 2; 3] your function should return (in any
order) the following list of trees:

1

2

3

1

3

2

2

31

3

2

1

3

1

2

[8 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

The function perms returns all n! permutations of a given n-element list.

let rec perms = function

| [] -> [[]]

| xs ->

let rec perms1 xs ys =

match xs with

| [] -> []

| x::xs ->

List.map (List.cons x) (perms (List.rev ys @ xs)) @

perms1 xs (x::ys)

in

perms1 xs []

(a) Explain the ideas behind this code, including the function perms1 and the ex-
pression List.map (List.cons x). What value is returned by perms [1; 2; 3]?

[7 marks]

(b) A student modifies perms to use an OCaml type of lazy lists, where appendq

and mapq are lazy list analogues of @ and List.map.

let rec lperms = function

| [] -> Cons ([], fun () -> Nil)

| xs ->

let rec fun perms1 xs ys = function

| [] -> Nil

| x::xs ->

appendq (mapq (List.cons x) (lperms (List.rev ys @ xs)))

(perms1 xs (x::ys))

in

perms1 xs []

Unfortunately, lperms computes all n! permutations as soon as it is called.
Describe how lazy lists are implemented in OCaml and explain why laziness is
not achieved here. [5 marks]

(c) Modify the function lperms, without changing its type, so that it computes
permutations upon demand rather than all at once. [8 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on polymorphism in OCaml, using lists and standard list
functions such as @ (append) and List.map. [4 marks]

(b) Explain the meaning of the following declaration and describe the corresponding
data structure, including the role of polymorphism.

type 'a se = Void | Unit of 'a | Join of 'a se * 'a se

[4 marks]

(c) Show that OCaml lists can be represented using this variant type by writing the
functions encode_list of type 'a list -> 'a se and decode_list of type
'a se -> 'a list, such that decode_list (encode_list xs) = xs for every
list xs. [3 marks]

(d) Consider the following function declaration:

let rec cute p = function

| Void -> false

| Unit x -> p x

| Join (u, v) ->

cute p u || cute p v

What does this function do, and what is its type? [4 marks]

(e) Consider the following expression:

fun p -> cute (cute p)

What does it mean, and what is its type? Justify your answer carefully.
[5 marks]

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on the queue data structure and how it can be implemented
efficiently in OCaml. In a precise sense, what is the cost of the main queue
operations? (It is not required to present OCaml code.) [6 marks]

(b) Run-length encoding is a way of compressing a list in which certain elements
are repeated many times in a row. For example, a list of the form [a; a; a; b; a; a]
is encoded as [(3, a); (1, b); (2, a)]. Write a polymorphic function rl_encode to
perform this encoding. What is the type of rl_encode? [6 marks]

(c) The simple task of testing whether two lists are equal can be generalised to allow
a certain number of errors. We consider three forms of error:

• element mismatch, as in [1; 2; 3] versus [1; 9; 3] or [1; 2; 3] versus [0; 2; 3]

• left deletion, as in [1; 3] versus [1; 2; 3] or [1; 2] versus [1; 2; 3]

• right deletion, as in [1; 2; 3] versus [1; 3] or [1; 2; 3] versus [1; 2]

Write a function genEquals n xs ys that returns true if the two lists xs and
ys are equal with no more than n errors, and otherwise false. You may assume
that n is a non-negative integer. [8 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes about a tree representation of functional arrays, subscripted
by positive integers according to their representation in binary notation. How
efficient are the lookup and update operations? [6 marks]

(b) Write an OCaml function arrayoflist to convert the list [x1; . . . ;xn] to the
corresponding functional array having xi at subscript position i for i = 1, . . . , n.
Your function should not call the update operation. [6 marks]

(c) Consider the task of finding out which elements of an array satisfy the
predicate p, returning the corresponding subscript positions as a list. For
example, the list [2; 3; 6] indicates that these three designated array elements,
and no others, satisfy p. Write an OCaml functional to do this for a given array
and predicate, returning the subscripts in increasing order. [8 marks]

All OCaml code must be explained clearly and should be free of needless complexity.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2015 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on programming with lazy lists in OCaml. Your answer should
include the definition of a polymorphic type of infinite lazy lists, a function to
return the tail of a lazy list, a function to create the infinite list of all positive
integers, and an apply-to-all functional analogous to the list functional map.

[6 marks]

(b) Write a function diag that takes a lazy list of lazy lists,

[[z11; z12; z13; . . .];

[z21; z22; z23; . . .]; (∗)

[z31; z32; z33; . . .]; . . .]

and returns the diagonal, namely the lazy list [z11; z22; z33; . . .]. [3 marks]

(c) Write a function that takes two lazy lists [x1;x2;x3, . . .] and [y1; y2; y3, . . .] and
a function f of two arguments; it should return a lazy list of lazy lists like (∗)
above, with zij = fxi yj. [3 marks]

(d) Write a function that converts a lazy list of lazy lists like (∗) above to a lazy list
whose elements are all of the zij, enumerated in some order. [8 marks]

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on functions as values and results in OCaml, illustrated with
the help of the functionals map and exists. What functions can we obtain from
these via currying? [6 marks]

(b) Consider the function zarg defined below:

let rec zarg f l e = match l with

| [] -> e

| x::xs -> f x (zarg f xs e)

Show that with the help of this function, it is possible to write an expression for
the sum of a given list of integers. Then describe what zarg does in general.

[4 marks]

(c) A polymorphic type of branching trees can be declared as follows. Note that
the children of a branch node are given as a list of trees, and that only the leaf
nodes carry labels.

type 'a vtree = Lf of 'a

| Br of ('a vtree) list

(i) Write a function flat t that converts a given tree t of this type to a list
of the labels (without eliminating duplicates). Your function should run in
linear time in the size of the tree. [4 marks]

(ii) Write a function count x t that counts the number of times that x occurs
as a label in t, but without first converting t to a list.
Note: Minimal credit will be given for solutions that use flat. [5 marks]

(iii) What is the type of count? [1 mark]

All OCaml code must be explained clearly and should be free of needless complexity.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2016 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) A prime number sieve is an algorithm for finding all prime numbers up to a
given limit n. The algorithm maintains a list, which initially holds the integers
from 2 to n. The following step is then repeated: remove the head of this list,
which will be a prime number, and remove all its multiples from the list. Write
code for the algorithm above as an OCaml function of type int -> int list.

[4 marks]

(b) Consider the problem of eliminating all duplicates from a list of strings. Write
code for a function of type string list -> string list such that the output
contains the same elements as the input, possibly reordered, but where every
element occurs exactly once. The worst-case performance must be better than
quadratic in the length of the list. [6 marks]

(c) Consider the task of determining whether a given word (a string) can be
expressed by joining together various chunks (non-empty strings). If the
chunks are abra, cad and hal, then the word abracadabra can be expressed
as abra|cad|abra. Note that if the available chunks are ab, bra, cad and abra,
then the first two are no good for expressing abracadabra, and yet a solution
can be found using cad and abra. The chunks can be used any number of times
and in any order.

Write code for a function that takes a list of chunks along with a word, and
returns a list of chunks that yield the word when concatenated. For the examples
above, the result should be ["abra"; "cad"; "abra"]. Exception Fail should
be raised if no solution exists. [10 marks]

Note: You are given a function delPrefix for removing an initial part of a
string. For example, delPrefix "abra" "abracadabra" returns "cadabra",
but delPrefix "bra" "abracadabra" raises exception Fail.

All OCaml code must be explained clearly and should be free of needless complexity.
Well-known utility functions may be assumed to be available.

1

1

COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

A one-person game (such as Rubik’s cube, or peg solitaire) has a finite number of
possible states, some of which count as winning. A move is a step from one state to
another. From each given state, the player can choose from a set of (zero or more)
possible next moves. We call a state winnable if a winning state can be reached from
it in zero or more moves.

For simplicity, assume that states are coded as integers. Also assume that we are
given functions winning x returning true or false and next x returning the list of
states that can be reached in one move from state x.

(a) The following code is an attempt to implement the notion of winnable:

let rec exists p = function

| [] -> false

| x::xs -> p x || exists p xs

let rec winnable x = winning x || exists winnable (next x)

Briefly explain how this code works. Also describe its main limitation: how it
can fail to find a winning state that is only a few moves away. Illustrate this
point by giving specific definitions of winning and next. [5 marks]

(b) Modify the code above to yield the function winpath x, which returns the list
of states from x to the winning state found or, alternatively, the empty list to
indicate that no winning state was found. [4 marks]

(c) Sometimes we are only interested in a winnable state if it is only a few moves
away from the current state. Modify your solution from part (b) to obtain the
function bounded_winpath n x, which looks for winning states that are at most
n moves away from x. [3 marks]

(d) Use your solution from part (c) to obtain the function new_winpath x, which
has the same objective as winpath x, but without the limitation mentioned in
part (a). Briefly explain why the limitation no longer applies and the price that
has been paid for this. [5 marks]

(e) Briefly outline an alternative approach to correcting the limitation mentioned in
part (a), using the notion of a queue. What are the advantages and drawbacks
of this approach? [3 marks]

For full credit, code should be concise and clear. Exceptions may be useful in this
but are not required.

1

2

COMPUTER SCIENCE TRIPOS Part IA – 2017 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Define an OCaml variant type for infinite lists, without the possibility of
finite lists. Briefly illustrate programming techniques for your variant type by
declaring

(i) a recursive functional (analogous to map for ordinary lists) that applies a
given function to every element of an infinite list.

(ii) a function for generating infinite lists of the form x, f(x), f(f(x)), . . . for
any given f and x.

[6 marks]

(b) Briefly explain why the function analogous to append (@) for ordinary lists is
of no value for your infinite list data type. Code a function to combine two
arbitrary infinite lists, yielding a result that includes the elements of both lists.

[3 marks]

(c) Use the functions declared in your previous solutions to express an infinite list
consisting of all numbers of the form 5i × 7j × 9k for integers i, j, k ≥ 0.

[3 marks]

(d) The list [1; 5; 7; 25; 9; 35; 35; . . .] is a legitimate solution to part (c) above,
but note that the integers are out of order. Code a function to merge two ordered
infinite lists, and use that to modify your previous solution to yield the same set
of numbers but in strictly increasing order. Briefly comment, with justification,
on whether merge sort for ordinary lists can be generalised to infinite lists.

[8 marks]

For full credit, code should be concise and clear.

1

