
Foundations of Computer Science : Christmas
Revision

Start your revision by going through the lecture notes and the supervision problems.

This sheet breaks down past exam questions by topic. Try to answer around one from each topic.
For the “lists” topic do as many as you can. Take note of the questions you had trouble with, so we
can go through them during the revision class. As you gain more experience restrict yourself to
examination conditions.

For the revision class, the only requirement is to attempt the 2014-2016 past papers.

Language features

Type inference

2018p1q1 (c)
2014p1q2 (b)
2014p1q1 (a), (d), (e)
2009p1q1 (c)

Functions

2018p1q1 (b)
2016p1q1 (a)
2012p1q2 (a)
2004p1q6 (a)
2003p1q1 (a)
2001p1q5 (a (i))

Pattern matching:

2013p1q1 (a)

Exceptions

2011p1q2 (a), (b), (c)
2007p1q5
2001p1q5 (a (iii))

Data structures

Lists

2018p1q1 (a) Representing sets using lists
2016p1q1 (b) zarg (essentially foldr)

2014p1q2 (c) Compute cost difference to convert between two lists.
2014p1q2 (b) Run-length encoding on a list
2012p1q2 (a) replicate item function
2010p1q2 (a) foldl
2009p1q1 (a), (b) implement delFirst
2007P1Q6 (d) Replace the k-th instance of an item on a list
2004p1q1 map and foldr/foldl
2003p1q1 (b) foldr function and zipping, (c) Write a function that returns all elements except
those at an index that is a multiple of three
2000p1q6 (c) check if a list is cyclic
2000p1q1 exf operation

Queues

2006p1q5 (a)
2014p1q2 (a)

Binary trees

2013p1q1 (b), (c)
2016p1q1 (c)
2008p1q5 (b), (c), (d)
2007p1q5 (a), (c)
2006p1q6 (b)
2005p1q6

Binary search trees

2012p1q1
2009p1q2 (c)

Data types

2013p1q1 (a)
2011p1q2 (c (i))
2007p1q6 (b), (c)

Sorting

2010p1q2 (b)
2009p1q2 (a)
2007p1q1
2005p1q5
2001p1q1 (c)
1998p1q1

Permutations

Exercise [Check if a list is a permutation of another]: Write an OCaml function which given two
lists determines if one is a permutation of the other. (This is 2009p1q1(d))

Exercise [Generalised permutation]: 2009p1q1 (e)

Exercise [Generate all possible permutations]: 2006p1q5 (b)

Exercise [Lazy permutation generation]: Modify your code about to lazily generate all
permutations of a list.

Exercise [Generate all possible derangements]: Modify your code from the previous exercise to
generate all possible derangements. A derangement is a permutation such that none of its
elements maps back to its original position.

Exercise [Find the next permutation]: (+) Write an OCaml function which given a permutation
computes the lexicographically next permutation. For example, given it returns

.

Exercise [Generate all combinations]: Given and , write an OCaml function to generate all
combinations. (Can you make it generate the combinations lazily?)

Parentheses

Exercise [Check if parentheses are balanced]: You are given a list containing (and). Write a
program in OCaml to check if a sequence of parentheses are balanced. A sequence of open and
closed parentheses being balanced is defined recursively:

The empty list is balanced.
If s is balanced, then (s) is balanced.
If s and t are balanced, then st are balanced. How efficient is your algorithm?

Exercise [Generate all balanced parentheses]: Write a program in OCaml to generate all
balanced parentheses.

Exercise [Lazy generation]: Modify your code from the previous exercise to lazily generate all
balanced parentheses.

Infinite structures

Infinite lists

2017p1q2: Infinite lists and enumeration
2015p1q2: (b), (c), (d) Enumerating
2010p1q1 (b), (c) interleave, map infinite lists, + iterates and iterates2

Infinite Binary trees

2004p1q5

Games

[2; 3; 1; 4]
[2; 3; 4; 1]

n k

The lecture notes contain no mention of games, but these have appeared in past exam questions. If
you want to gain a basic background, read pages 1 to 10 from Ferguson’s book.

2018p1q2
2017p1q1
2011p1q1
2008p1q6

Imperative programming

Reference types

2012p1q2 (b), (c)
2007p1q6 (a)
2001p1q1 (a), b)

Mutability

2003p1q6 mutable BSTs

(Optional) BFS/DFS Exercise in Java

In this exercise, you will solve the Lights Out puzzle using BFS, DFS and iterative deepening DFS.
You are provided with Board.java (Java class that represents the Lights out board) and
DfsSolution.java (Java class that implements a DFS solution for Lights Out).

1. Argue why it is never beneficial to toggle the same light more than once.
2. Familiarise yourself with the DFS solution in DfsSolution.java. Explain how/why it works.
3. Run the DFS solution on the 4x4 board and on the 5x5 board and time it. Do these solutions

use the minimum number of moves?
4. Code a BFS solution for the problem and compare the solutions obtained with those

obtained by the DFS in terms of time, memory and moves needed.
5. Modify the DfsSolution code to become an iterative deepening DFS. (You should only need to

modify a few lines in the explore function) Again, compare the solutions obtained with the
standard DFS and BFS. What happens if you increase the board size?

6. (Optional) Read this tutorial and write an efficient non-brute-foce solution for the 5x5 case.
How does it compare to your previous solutions?

https://www.math.ucla.edu/~tom/Game_Theory/comb.pdf
http://www.logicgamesonline.com/lightsout/tutorial.html

