
Solution Notes for Data Science
Example Sheet 4

Question 1

We will use the property that Pr(A,B | C) = Pr(A | B,C) · Pr(B | C)(*) for Pr(C) > 0 and Pr(B,C) > 0.

Pr(X3 = r | X0 = g) =
∑
x1

∑
x2

Pr(X3 = r,X2 = x2, X3 = x3 | X0 = g) (by marginalisation)

=
∑
x1

∑
x2

Pr(X3 = r | X2 = x2, X1 = x1, X0 = g) · Pr(X2 = x2, X3 = x3 | X0 = g)(by *)

=
∑
x1

∑
x2

Pr(X3 = r | X2 = x2) · Pr(X2 = x2, X1 = x1 | X0 = g) (by memoryless property)

=
∑
x1

∑
x2

Px2r · Pr(X2 = x2, X1 = x1 | X0 = g)

=
∑
x1

∑
x2

Px2r · Pr(X2 = x2 | X1 = x1, X0 = g) · Pr(X1 = x1 | X0 = g)

=
∑
x1

∑
x2

Px2r · Px1x2
· Pgx1

Note: In matrix notation this can be written as (P 3)gr.

Question 2

Assuming a > 0 and b > 0, then there is a non-zero probability path from each state to the other.
The stationary equations give,(

πa
πb

)
=

[
1− α b
α 1− b

]
·
(
πa
πb

)
⇒ πa = (1− a)πa + bπb

πb = aπa + (1− b)πb
⇒ aπa = bπb.

Since π is a distribution we also have the constraint πa + πb = 1. Hence, a(1− πb) = bπb ⇒ πb = a
a+b and

πa = 1− a
a+b = b

a+b .

Question 3

0 . . . i− 1 i i+ 1 . . . M

3/4

1/4
1/4

1/2

1/4
1/4

3/4

The stationary distribution satisfies π = πP , and
∑M

n=0 πn = 1 or equivalently πT · 1 = 1.
The code below finds the stationary distribution:

import numpy as np

P = np.zeros((10, 10))

# Transition probabilities for state 0.

P[0, 0] = 3 / 4

P[0, 1] = 1 / 4

# Transition probabilities for state 9

P[9, 9] = 3 / 4
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P[9, 8] = 1 / 4

# Transition probabilities for state 0<i<9.

for i in range(1, 9):

P[i, i - 1] = 1 / 4

P[i, i] = 1 / 2

P[i, i + 1] = 1 / 4

# Sanity check for rows to sum to 1.

assert np.allclose(P @ np.ones(10), np.ones(10))

# Solve these equations simultaneously

A = np.concatenate([(P - np.eye(10)).T, np.ones((1, 10))])

pi = np.linalg.lstsq(A, np.concatenate([np.zeros(10), [1]]))[0]

print(f'The stationary distribution is : {pi}')

# Expected output: [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

Note: This is expected since the uniform distribution satisfies πx =
∑

y πy · Pyx.

Question 4

1. In order to generate the matrix we need to compute the transition probability from state x to state y.
Let A ∼ Po(r · x/d) and B ∼ Bin(x, 1/d) and let D = A−B. Then we want to compute Pr(D = y − x)
and we do this by marginalisation,

Pr(D = y − x) = Pr(A−B = y − x) =

x∑
k=max(0,x−y)

Pr(B = k,A−B = y − x)

=

x∑
k=max(0,x−y)

Pr(B = k,A = y − x+ k)

=

x∑
k=max(0,x−y)

Pr(B = k) · Pr(A = y − x+ k).

where Pr(B = k) and Pr(B = y−x+ k) we can compute using the pmfs of the Poisson and the Binomial
distributions. The code below does this:

def generate_matrix(N, r, d):

P = np.zeros((N + 1, N + 1))

for x in range(N):

binom_param = 1 / d

poisson_param = r * x / d

for y in range(N):

# Evaluate P(X_{n+1} = y | X_n = x).

prob = 0

for k in range(max(y - x, 0), x + 1):

prob += scipy.stats.binom.pmf(k=k, n=x, p=binom_param) * \

scipy.stats.poisson.pmf(k=y - (x - k), mu=poisson_param)

P[x, y] = prob

# Set the absorbing state.

P[:N, N] = 1 - np.sum(P[:N, :N], axis=1)

P[N, N] = 1

return P

2. We now need to solve the hitting equations, i.e. find the vector π such that πx =
∑

y Pxyπy and π0 = 1
(since it is the only item of the hitting set). We also need to set πN = 0 since N is absorbing (and the
previous equations leave it unconstrained).

The complete code is shown below:
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import numpy as np

import scipy.stats

def generate_matrix(N, r, d):

P = np.zeros((N + 1, N + 1))

for x in range(N):

binom_param = 1 / d

poisson_param = r * x / d

for y in range(N):

# Evaluate P(X_{n+1} = y | X_n = x).

prob = 0

for k in range(max(x - y, 0), x + 1):

prob += scipy.stats.binom.pmf(k=k, n=x, p=binom_param) * \

scipy.stats.poisson.pmf(k=y - (x - k), mu=poisson_param)

P[x, y] = prob

# Set the absorbing state.

P[:N, N] = 1 - np.sum(P[:N, :N], axis=1)

P[N, N] = 1

return P

r, d = 1.1, 14

N = 100

P = generate_matrix(N, r, d)

# Solve for the hitting probability vector as shown in Section 10.3.

Q = np.copy(P)

Q[0, :] = 0 # The elements of the hitting set have a probability 1.

Q[N, :] = 0 # Absorbing states have 0 probability of reaching the hitting set.

hit_probabilities = np.linalg.solve(np.eye(N + 1) - Q, np.concatenate([np.ones(1),

np.zeros(N)]))↪→

print(f"Probability of hitting 0 starting at X50: {hit_probabilities[50]}")

# Expected output: Probability of hitting 0 starting at X50: 0.007035837489220857

Question 5

To show that it is the stationary distribution we need to show that it is a distribution (πn ≥ 0 and
∑

n πn = 1)
and that it satisfies πx =

∑
y πyPyx.

We begin by verifying that πn is a distribution. One could argue directly that this is a Geometric distribution
with p = a

b < 1. But we can also prove this from first principles.

πn = (1− a

b
)
(a
b

)n
> 0 (since b > a > 0 so 0 <

a

b
< 1)

∞∑
n=0

πn =

∞∑
n=0

(1− a

b
)
(a
b

)n
= (1− a

b
) · 1

1− a
b

= 1

Now for the remaining condition,

π0 = (1− a)π0 + bπ1 = (1− a

b
)(1− a) + b(1− a

b
)
a

b
= (1− a

b
)(1− a+ a) = (1− a

b
) = π0
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πn+1 = a · πn−1 + (1− a− b) · πn + b · πn+1

= a(1− a/b)(a/b)n−1 + (1− a− b)(1− a/b)(a/b)n + b(1− a/b)(a/b)n+1

= (1− a/b)(a/b)n−1(a+ (1− a− b)(a/b) + b(a/b)2)

= (1− a/b)(a/b)n−1(ab+ (1− a− b)a+ a2)/b

= (1− a/b)(a/b)n−1a/b

= (1− a/b)(a/b)n

Question 6

(a) In order for π to be a distribution we need to show that it is a distribution (holds by assumption) and
show that it satisfies πx =

∑
y πyPyx for all x.

πxPxy = πyPyx ⇒
∑
y

πxPxy =
∑
y

πyPyx ⇒ πx
∑
y

Pxy =
∑
y

πyPyx ⇒ πx =
∑
y

πyPyx

(b) Note that the stationary distribution exists because the graph is connected. We will try to find a distri-
bution that satisfies the detailed balanced equations, which is stronger than satisfying the equations for
the stationary distributions. In order for the distribution to satisfy the detailed balanced equations, we
need to have for any two directly connected nodes u and v,

πu ·
1

deg(u)
= πv ·

1

deg(v)

However, note that if u↔ v and v ↔ w, we have that

πu ·
1

deg(u)
= πv ·

1

deg(v)
and πv ·

1

deg(v)
= πw ·

1

deg(w)

By the transitivity property of connectedness, we get that the ratio πu · 1
deg(u) is constant (say k),

independent of the node u. So πu = deg(u) · k. By summing on both sides of the equation,∑
u

πu =
∑
u

deg(u) · k ⇒ 1 = k ·
∑
u

deg(u)⇒ k =
1∑

u deg(u)
.

Hence, for every node v, we have πv = deg(v)∑
u deg(u) . Since this distribution satisfies the detailed balanced

equations, it also satisfies the second requirement for the stationary distribution by (a).

Note: An alternative approach is to guess the stationary distribution πv = deg(v)∑
u deg(u) and prove that it is indeed

a stationary distribution.

Question 7

(a)
X0 → X1 → X2 → · · ·
↓ ↓ ↓
Y0 Y1 Y2

(b) The base case is just an application of Bayes’ rule.

Pr(x0 | y0) =
Pr(y0 | x0) Pr(x0)

Pr(y0)
= (const) · Pr(y0 | x0) Pr(x0)

Pr(xn | h) =
∑
xn−1

Pr(xn, xn−1 | h) =
∑
xn−1

Pr(xn | xn−1) · Pr(xn−1 | h)

Pr(xn | h, yn) =
Pr(yn | xn, h) Pr(xn | h)

Pr(yn | h)
= (const) Pr(yn | xn) Pr(xn | h)

Note that any probability involving only yn and h can be regarded constant.

4



(c) By combining the two terms above we get

Pr(xn | yn, h) = (const) · Pr(yn | xn)
∑
xn−1

Pr(xn−1 | h) · Pr(xn | xn−1)

= (const) · Exnyn

∑
xn−1

Pr(xn−1 | h) · Pxnxn−1

where E is the emission matrix and P is the transition matrix. By denoting π
(n)
x = Pr(x | yn, h), we get

the following recursive equation π(n+1) ∝ E � (π(n) · P ) (where � is element-wise multiplication). This
leads to the following filter implementation.

def filter(P, E, ys):

pi = np.ones(MAX_STATE + 1) / (MAX_STATE + 1)

for yn in ys:

# Compute const * P(yn | xn) * Sum_{x_{n-1}} P(x_{n-1} | h) P(x_n | x_{n-1})

pi = np.multiply(E[:, yn], pi @ P)

# Normalise the probability vector.

pi = pi / np.sum(pi)

return pi

The entire code is shown below:

import numpy as np

MAX_STATE = 9

def generate_emission_matrix():

# Emission matrix. E[x, y] = Pr(y | x)

E = np.zeros((MAX_STATE + 1, MAX_STATE + 1))

for x in range(MAX_STATE + 1):

E[x, max(x - 1, 0)] += 1 / 3

E[x, x] += 1 / 3

E[x, min(x + 1, MAX_STATE)] += 1 / 3

assert np.allclose(np.sum(E, axis=1), np.ones(MAX_STATE + 1))

return E

def generate_transition_matrix():

# Transition matrix. P[x,y] = Pr( y | x)

P = np.zeros((MAX_STATE + 1, MAX_STATE + 1))

for x in range(MAX_STATE + 1):

P[x, max(x-1, 0)] += 1 / 4

P[x, x] += 1 / 2

P[x, min(x + 1, MAX_STATE)] += 1 / 4

assert np.allclose(np.sum(P, axis=1), np.ones(MAX_STATE + 1))

return P

def filter(P, E, ys):

pi = np.ones(MAX_STATE + 1) / (MAX_STATE + 1)

for yn in ys:

# Compute const * P(yn | xn) * Sum_{x_{n-1}} P(x_{n-1} | h) P(x_n | x_{n-1})

pi = np.multiply(E[:, yn], pi @ P)

# Normalise the probability vector.

pi = pi / np.sum(pi)

return pi
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E = generate_emission_matrix()

P = generate_transition_matrix()

print(filter(P, E, [3, 3, 4, 5, 4, 3, 3, 2, 2, 1, 2, 1, 2, 2]))

# Expected output: [0. 0.3749904 0.41518442 0.20982518 0. 0. 0. 0. 0. 0.]

print(filter(P, E, [3, 3, 4, 9]))

# Expected output: [nan nan nan nan nan nan nan nan nan nan]

(d) It fails by divide-by-zero because the event {Xn = 9 | Xn−1 = 4} has zero probability, so Bayes’ rule does
not apply.

Note: It is possible to avoid the matrix multiplication since the matrix is very sparse, i.e. it has 3 entries
on every row.

Question 8

We only need to change the transition matrix, so that we can reach any state from any other state with
probability at least ε.

eps = 0.01

def generate_transition_matrix():

# Transition matrix. P[x,y] = Pr( y | x)

P = (eps / (MAX_STATE + 1)) * np.ones((MAX_STATE + 1, MAX_STATE + 1))

for x in range(MAX_STATE + 1):

P[x, max(x-1, 0)] += 1 / 4 * (1 - eps)

P[x, x] += 1 / 2 * (1 - eps)

P[x, min(x + 1, MAX_STATE)] += 1 / 4 * (1 - eps)

assert np.allclose(np.sum(P, axis=1), np.ones(MAX_STATE + 1))

return P

print(filter(P, E, [3, 3, 4, 5, 4, 3, 3, 2, 2, 1, 2, 1, 2, 2]))

# Expected output: [0. 0.3749904 0.41518442 0.20982518 0. 0. 0. 0. 0. 0.]

# Contrast with : [0. 0.37478324 0.41479646 0.2104203 0. 0. 0. 0. 0. 0.]

print(filter(P, E, [3, 3, 4, 9]))

# Expected output: [0. 0. 0. 0. 0. 0. 0. 0. 0.33333333 0.66666667]

# Contrast with : [nan nan nan nan nan nan nan nan nan nan]

For the alternative scheme, we can deterministically achieve this by discarding entries yn whose probability
is 0. (Note: we might discard many entries..)

Question 9

−1 0

1

1/30

14/15

1/30

1/30

14/15

1/30
1/30

14/15

1/30
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import numpy as np

N = 10 # Number of states for X

total_states = 3 * N

def convert_pair(x, v):

return v * N + x

def convert_single(a):

return a % N, a // N

P = np.zeros((total_states, total_states))

for a in range(0, total_states):

x, v = convert_single(a)

for dv in range(0, 3):

pv = 14/15 if v == dv else 1/30

xx = max(0, min(N - 1, x + v - 1))

# Different velocities might lead to the same states

# so we need to accumulate the transition probabilities.

P[a, convert_pair(xx, dv)] += pv

# Sanity check for rows to sum to 1.

assert np.allclose(P @ np.ones(total_states), np.ones(total_states))

# Solve these equations simultaneously.

A = np.concatenate([(P - np.eye(total_states)).T, np.ones((1, total_states))])

pi = np.linalg.lstsq(A, np.concatenate([np.zeros(total_states), [1]]))[0]

print(f'The stationary distribution is : {pi}')

Question 10

The chain is irreducible because the teleport functionality for d < 1 guarantees that every node can be visited
from any other node.

We begin by writing out the transition matrix

Puv =

{
1−d
|V | + d

|Γu| for v ∈ Γu

1−d
|V | otherwise.

To verify that the given π is a distribution we notice that:

1. πu ≥ 0 for every u ∈ V .
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2.
∑

v∈V = 1 for d < 1 since

∑
v∈V

πv =
∑
v

1− d
|V |

+ d
∑

u:u→v

πv
|Γu|

=
1− d
|V |

· |V |+ d
∑
v

∑
u:u→v

πv
|Γu|

= (1− d) + d
∑
v∈V

∑
u:u→v

πu
|Γu|

= (1− d) + d
∑
u∈V

∑
v:u→v

πu
|Γu|

(By changing summation order)

= (1− d) + d
∑
u∈V
|Γu| ·

πu
|Γu|

(Since the inner term depends only on u)

= (1− d) + d ·
∑
u∈V

πu ⇒ (1− d)
∑
u∈V

= 1− d⇒
∑
u∈V

= 1.

3. It satisfies πv =
∑

u∈V Pvuπu, since

πv =
∑
u∈V

Puvπu ⇔

πv =
∑
u∈V

πu
1− d
|V |

+
∑

u:u→v

(1− d)πu
1

|Γu|
⇔

πv =
1− d
|V |

∑
u∈V

πu +
∑

u:u→v

(1− d)πu
1

|Γu|
⇔

πv =
1− d
|V |

+ (1− d)
∑

u:u→v

πu
|Γu|

where the last statement holds.

The code below implements the PageRank algorithm for the graph of 10.3.2.

import numpy as np

neighbours = [

[1, 2], [3, 4], [0, 5],

[1, 5], [0], [4, 2]

]

V = len(neighbours)

def generate_transition_matrix(d):

P = np.zeros((V, V))

for v in range(V):

neigh_count = len(neighbours[v])

for neigh in neighbours[v]:

P[v, neigh] = d / neigh_count

factor = d if neigh_count > 0 else 0

for u in range(V):

P[v, u] += (1 - factor) / V

return P

def get_stationary_distribution(P):

# Sanity check for rows to sum to 1.
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assert np.allclose(P @ np.ones(V), np.ones(V))

# Solve these equations simultaneously.

A = np.concatenate([(P - np.eye(V)).T, np.ones((1, V))])

return np.linalg.lstsq(A, np.concatenate([np.zeros(V), [1]]))[0]

def run_for(d):

P = generate_transition_matrix(d)

pi = get_stationary_distribution(P)

print(f'The stationary distribution for d={d} is :\n {pi}')

run_for(0.85)

run_for(0.05)

run_for(0.01)

# Expected output;

# The stationary distribution for d=0.85 is :

# [0.2404889 0.16821698 0.18948795 0.09649221 0.15877238 0.14654157]

# The stationary distribution for d=0.05 is :

# [0.17083575 0.16666673 0.16676835 0.1625 0.16666413 0.16656504]

# The stationary distribution for d=0.01 is :

# [0.16750002 0.16666667 0.16667081 0.16583333 0.16666665 0.16666252]

As d → 0, the stationary distribution becomes more and more uniform, this is expected because the
underlying graph structure matters less and less. On the other hand when d = 1, the graph structure
only affects the transition probabilities.

Question 11

We start by deriving the recurrence relation, noticing that the expectation for the Poisson distribution is just
its parameter and the expectation for the Binomial it is the product of its two parameters,

xn+1 = E[Xn+1 | Xn = xn] = xn +
r · xn
d
− xn

d
= xn

(
1 +

r

d
− 1

d

)
= x0 ·

(
1 +

r

d
− 1

d

)n

The following code collects samples and plots a histogram of the values obtained. Notice that the values
are concentrated around the expectation. (Note: the code will be slow for N = 200, you can start with smaller
parameters)

import numpy as np

import scipy.stats

import matplotlib.pyplot as plt

def generate_matrix(N, r, d):

P = np.zeros((N + 1, N + 1))

for x in range(N):

binom_param = 1 / d

poisson_param = r * x / d

for y in range(N):

# Evaluate P(X_{n+1} = y | X_n = x).

prob = 0

for k in range(-min(y - x, 0), x + 1):

9



prob += scipy.stats.binom.pmf(k=k, n=x, p=binom_param) * \

scipy.stats.poisson.pmf(k=y - (x - k), mu=poisson_param)

P[x, y] = prob

# Set the absorbing state.

P[:N, N] = 1 - np.sum(P[:N, :N], axis=1)

P[N, N] = 1

return P

def run_simulation(x0, P, n):

x = x0

while n > 0:

p = P[x]

x = np.random.choice(a=len(p), p=p)

n = n - 1

return x

def calculate_expected(x0, r, d, n):

return x0 * ((1 + r/d - 1/d) ** n)

r, d = 1.1, 14

N = 200

samples = 1000

x0 = 100

P = generate_matrix(N, r, d)

def plot_for(steps):

v_samples = [run_simulation(x0, P, steps) for _ in range(samples)]

plt.hist(v_samples)

plt.vlines(x=calculate_expected(x0, r, d, steps), ymin=0, ymax=samples/3)

plt.show()

plot_for(steps=10)

plot_for(steps=20)

plot_for(steps=30)

plot_for(steps=50)
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