
Fibonacci Numbers for Part IA Discrete Mathematics

Note: This handout contains several exercises and related past papers to the Fibonacci numbers

The material in this handout appears in multiple books and other resources, so you will find a more complete
treatment there. For instance, Chapter 14 of “Elementary Number Theory” by David M. Burton (most of the
exercises come from here) and “Fibonacci Numbers” by N. Vorobiev. Also, several innovations regarding the

Fibonacci numbers along with a problem list appear in the “Fibonacci Quarterly” (see this archive).

Fibonacci numbers appear in several places in CS, such as the analysis of algorithms (gcd algorithm (Part IA
DM), Fibonacci Heaps (Part IA Algorithms)) and computation theory (crucial in the solution of Hilbert’s

tenth problem (related to Part IB Computation Theory)).
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Recursive formula
Definition 1. The Fibonacci sequence is defined by F0 = 0, F1 = 1, and for natural n ≥ 0,

Fn+2 := Fn+1 + Fn.

Closed-form solution
Theorem 1. Show that the n-th Fibonacci is given by

Fn =
1√
5
·
(
φn − (−φ)−n

)
=

1√
5
·

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
where φ = 1+

√
5

2 and ψ = −φ−1 = 1−
√
5

2 . Hint: use strong induction starting from n = 2 and show that
φ2 = 1 + φ and φ−2 = 1− φ−1.

Note: The term 1+
√
5

2 is the golden ratio number φ and the number 1−
√
5

2 is the (less-known) ψ.

Note: that φ = 1.61.. > 1 and |ψ| = 0.618.. < 1, so as n grows large the dominating term in the expression is
φn

√
5
. See the table below for the approximation of the n-th Fibonacci number using just φn/

√
5.

F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
1.89 3.07 4.96 8.02 13.0 21.0 34.0 55.0 89.0 144. 233. 377. 610. 987. 1600.

Why does this formula give integer numbers? Well one reason is that it evaluates to the Fibonacci numbers,
which are integers (as sum of integers from the recursive formula). OK, but this is not very illuminating. Where
do the

√
5 go? Let’s expand out the terms using the Binomial theorem,

Fn =
1√
5
·

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)

=
1√
5

(
1

2n

n∑
i=0

(
n

i

)
(
√

5)i1n−i − 1

2n

n∑
i=0

(
n

i

)
(−
√

5)i1n−i

)

=
1√

5 · 2n

(
n∑
i=0

(
n

i

)
(
√

5)i −
(
n

i

)
(−
√

5)i

)

=
1√

5 · 2n

(
n∑
i=0

(
n

i

)(
(
√

5)i − (−
√

5)i
))
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Notice that for i odd, i.e. 2k + 1 for k ∈ Z, (
√

5)2k+1 + (
√

5)2k+1 =
√

5((
√

5)2k + (
√

5)2k) = 2
√

5 · 5k. For i
even, we have (

√
5)i − (

√
5)i = 0. Hence, only the odd terms remain,

Fn =
1√

5 · 2n−1

((
n

1

)√
5 +

(
n

3

)√
5 · 5 +

(
n

5

)√
5 · 52 + . . .+ +

(
n

2i+ 1

)√
5 · 5i + . . .

)
=

1

2n−1

((
n

1

)
+

(
n

3

)
· 5 +

(
n

5

)
· 52 + . . .+ +

(
n

2i+ 1

)
5i + . . .

)
So, the

√
5 values cancel out. The fact that 2n−1 |

(
n
1

)
+
(
n
3

)
· 5 +

(
n
5

)
· 52 + . . .+ +

(
n

2i+1

)
5i + . . . will be proven

in the Binomial handout.

(optional) 2nd-order linear recurrence relations
How did we come up with that formula? The answer comes from a general method of solving linear recurrence
relations. The method for solving a recurrence relation of the form an+2 = A · an+1 + B · an (when a0 and a1
are known) is the following:

(a) Replace an+2 with x2, replace an+1 with x and an with 1. To get an equation of the form x2 = Ax+ B
(called the characteristic equation).

(b) Solve the equation x2 = Ax+B or x2 −Ax−B = 0 to find x1 and x2.

(c) Based on x1 and x2, we can determine the form of the equation for C1 and C2 constants.

(i) If x1 = x2 then the general solution has the form an = C1x
n
1 + C2x

n
1 · n.

(ii) If x1 6= x2, then the general solution has the form an = C1x
n
1 + C2x

n
2 .

(d) Find constants C1, C2 by plugging in n = 0, n = 1 and equating with the given values a0 and a1.

This technique generalises to higher order linear recurrence relations (see p.359 and forward in “Discrete
Mathematics with Proof” (2nd edition) by Eric Gossett).

How is it applied for the Fibonacci case?

For the Fibonacci numbers Fn+2 = Fn+1 + Fn and F0 = 0 and F1 = 1. Hence, the characteristic equation is

x2 − x = 1 = 0, which has two roots x1 = 1+
√
5

2 and x2 = 1−
√
5

2 . So, the solution has the form

Fn = C1 · xn1 + C2 · xn2 = C1 ·

(
1 +
√

5

2

)n
+ C2 ·

(
1−
√

5

2

)n
,

which explains the presence of φ and ψ. For n = 0, we get F0 = 0 = C1 + C2 and for n = 1 we get

C1 ·
(

1−
√
5

2

)
+ C2 ·

(
1+
√
5

2

)
= 1, so C1 = −C2 = 1√

5
. This gives,

Fn =
1√
5
·

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)

Exercise 1. Write a short program to compute the first ten terms for a linear recurrence relation of the form
an+2 = A · an+1 +B · an. Find the closed-form solution for the following linear recurrence relations and verify
that the terms match.

(a) an+2 = −an+1 + 2an with a0 = 5 and a1 = 3.

(b) an+2 = −4an+1 − 3an with a0 = 2 and a1 = 4.

(c) an+2 = −6an+1 − 9an with a0 = 6 and a1 = 2.

Exercise 2. (optional) What happens if the roots of the characteristic equations are not real? For example,
take an+2 = an+1 − an and a0 = 5, a1 = 3.

(a) Write out the first 10 terms. What do you notice?

(b) Determine the general formula for an.
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(c) Solve the formula using the above methodology. What answers do you get? (you should get a solution of
the form C · cos(πn/3 + ω) or C1 cos(πn/3) + C2 sin(πn/3))

Why should these be solutions?

In order to answer this questions, we need to prove some properties of the solutions of recurrence equations.
If bn and cn solve the recurrence (i.e. bn+2 = A · bn+1 + B · bn and cn+2 = A · cn+1 + B · cn), then so does
dn = bn + cn. To see this

Adn+1 +Bdn = A(bn+1 + cn+1) +B(bn + cn) = (Abn+1 +Bbn) + (Acn+1 +Bcn) = bn+2 + cn+2 = dn+2.

So dn is indeed also a solution.

Now let’s look at solutions of the form an = C · rn for r 6= 0, C 6= 0, i.e. for what values of r this could be a
solution.

an+2 = A · an+1 +B · an ⇔ C · rn+2 = C ·Arn+1 + CBrn ⇔ rn(r2 −Ar −B) = 0

Hence, this is a solution iff r = r1 or r = r2 one of the roots of r2 − Ar − B = 0. This shows that bn = C1r
n
1

and cn = C2r
n are solutions. By the above, we have that bn + cn is also a solution, which proves that

an = C1r
n
1 + C2r

n
2 is a solution.

When there is a unique root r, i.e. r = −A/2 and B = −A4/4, we have that an = Crn · n is also a solution,
since

an+2 −Aan+1 −Ban = Crn+2(n+ 2)−ACrn+1(n+ 1)−BCrnn = Crn((r2 −Ar −B) + (r −A/2)) = 0

Why are these solutions unique?

To show that these solutions are unique we just need to show that for any a0 and a1 there exist coefficients C1

and C2, for which the formula agrees at n = 0 and n = 1. If the first two terms are determined by an inductive
argument (an−1 and an−2 are determined, hence so is an) all terms are determined.

(Distinct roots) We need to show that the following system has a solution, where the unknowns are C1 and
C2,

C1 + C2 = a0

C1x1 + C2x2 = a1

There are various different ways that you can show that this has a solution for x1 6= x2, the easiest being using
checking that the coefficient determinant is not zero, i.e. 1 · x2 − 1 · x1 = x2 − x1 6= 0.

(Equal roots) We need to show that the following system has a solution, where the unknowns are C1 and C2,

C1 + C2 · 0 = a0

C1x1 + C2x1 = a1

Again, the coefficient determinant is not zero, i.e. 1 · x1 − 0 · x1 = x1 6= 0, since x1 = x2 = 0 means that
A = B = 0.

(optional) Alternative derivation (under construction!)
Can be skipped on first reading. We already have shown how to solve linear recurrences. In case you still don’t
understand where solving the characteristic equation comes from, you may want to read the outline for another
derivation.

Note that since x1 and x2 are the solutions to x2−Ax−B = 0, they satisfy x1 +x2 = A and x1x2 = −B. This
allows to re-arrange the recurrence relation as,

an+2 − (x1 + x2)an+1 + x1x2an = 0⇒ an+2 − x1an+1︸ ︷︷ ︸
bn+1

= x2 (an+1 − x1an)︸ ︷︷ ︸
bn

.

Now notice that the recurrence equation for bn is just a geometric progression, so bn = xn2 b0, where b0 = a1−x1a0
which is just a constant. Hence, we have,

bn = xn2 b0 = an+1 − x1an ⇒ an+1 = x1an + xn2 b0 = 0.
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This does not look like any familiar sequence, but let’s try to expand some of the terms.

an+1 = x1an + xn2 b0 = x1(x1an−1 + xn−12 b0) + xn2 b0

= x21an−1 + x1x
n−1
2 b0 + xn2 b0

= x21(x1an−2 + xn−22 b0) + x1x
n−1
2 b0 + xn2 b0

= x31an−2 + x21x
n−2
2 b0 + x1x

n−1
2 b0 + xn2 b0

= xn+1
1 a0 + b0

n∑
i=0

xi1x
n−i
2

= xn+1
1 a0 + b0x

n
2

n∑
i=0

(
x1
x2

)i
Now we have to take two cases, if x1 = x2, then this gives an+1 = xn+1a0 +nb0x

n
1 (which is exactly of the form

that we proved above).

For x1 6= x2, this gives an+1 = xn+1
1 a0 + b0x

n
2 ·

(
x1
x2

)n+1
−1(

x1
x2

)
−1

= C1x
n+1
1 + C2x

n+1
2 (Why?)

Proving identities
In this section, we will investigate some techniques for proving properties of the Fibonacci numbers. These are
not the only techniques and they are not hard rules.

The first method is by expanding out terms.
For example, we can expand Fn+4 into Fn+3 + Fn+2 and then perhaps expand Fn+3, so we get
Fn+4 = (Fn+2 + Fn+1) + Fn+2 = 2Fn+2 + Fn+1. This is also a way to obtain novel identities.
Note that the term Fn+4 appears in two other recurrence formulas, namely in Fn+5 = Fn+4 +Fn+3 and
Fn+6 = Fn+5 + Fn+4. Hence, we can also use these expressions Fn+4 = Fn+5 − Fn+3 = Fn+6 − Fn+5.
Actually this first calculation, brings us to the first example,

Example 1. Show that for natural n,

Fn+2 =
Fn+3 + Fn

2

Proof.We have two options from where to start. We could start from the LHS or the RHS. Let’s start
from the RHS. Which terms should we expand? Fn+3 does not appear in the LHS and will also introduce
a Fn+2, so it reasonable to start from there.

Fn+3 + Fn
2

=
(Fn+2 + Fn+1) + Fn

2

Then we notice that Fn+1 + Fn is just Fn+2 so,

Fn+2 + (Fn+1 + Fn)

2
=
Fn+2 + Fn+2

2
= Fn+2

What if we had started from Fn? We have three options for what to replace Fn with. Two of the options
Fn = Fn−1 + Fn−2 and Fn = Fn+1 − Fn−1 include terms with smaller index, so they seem to make
things worse. So, we choose the third option Fn = Fn+2 − Fn+1,

Fn+3 + Fn+2 − Fn+1

2
=

(Fn+3 − Fn+1) + Fn+2

2
=

(Fn+2 + Fn+2)

2
= Fn+2

What if we started from the LHS? This is basically how we derived this identity in the first place, we
replace Fn+2 once using Fn+3 − Fn+1 and once using Fn+2 = Fn+1 + Fn.

2Fn+2 = Fn+2 + Fn+2 = (Fn+3 − Fn+1) + (Fn+1 + Fn) = Fn+3 + Fn ⇒ Fn+2 =
Fn+3 + Fn

2
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Example 2. Derive the identity for n ≥ 1.

Fn+3 = 3Fn+1 − Fn−1

Proof.Here, again we have the choice to start from the LHS or the RHS. Let’s start with the LHS, since
expanding Fn+3 seems to help us,

Fn+3 = Fn+2 + Fn+1

Now, we expand Fn+2 (the one with largest index), so

Fn+2 + Fn+1 = Fn+1 + Fn + Fn+1 = 2Fn+1 + Fn

Now, we are missing Fn+1 and a −Fn, so it is best to expand Fn = Fn+1 − Fn−1.

2Fn+1 + Fn = 2Fn+1 + (Fn+1 − Fn−1) = 3Fn+1 − Fn−1

which gives us the desired identity.
What if we start from the RHS? We want to replace Fn−1 and Fn+1 with larger indices Fibonacci numbers, so
let’s start with the smallest one Fn−1 = Fn+1 − Fn,

3Fn+1 − Fn−1 = 3Fn+1 − (Fn+1 − Fn) = 2Fn+1 + Fn

Again, we replace the smallest one, so

2Fn+1 + Fn = 2Fn+1 + (Fn+2 − Fn+1) = Fn+1 + Fn+2

where we recognise the last expression as Fn+3.

Sometimes you need to make progress on both sides.

Example 3. Show that for n ≥ 2,
F 2
n+1 − 4FnFn−1 = F 2

n−2
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Proof.Looking at the RHS, we know that if we expand Fn−2 = Fn − Fn−1, then we get an expression that has
the terms on the RHS, so intuitively it should help.

F 2
n−2 = (Fn − Fn−1)2 = F 2

n − 2FnFn−1 + F 2
n−1

It does not seem that we have a clear best choice, let’s expand work on the LHS and expand Fn+1,

(Fn + Fn−1)2 − 4FnFn−1 = F 2
n + F 2

n−1 + 2FnFn−1 − 4FnFn−1 = F 2
n − 2FnFn−1 + F 2

n−1

Note: Nothing guarantees that the terms will be separated between LHS and RHS in a reasonable way.
Sometimes it might make sense to bring everything on the same side.

Example 4. For n ≥ 2, show that
F 2
n − F 2

n−1 = Fn+1Fn−2.

Proof.Starting by factorising the LHS,

F 2
n − F 2

n−1 = (Fn − Fn−1)(Fn + Fn−1) = Fn−2 · Fn+1.

Exercise 3. Show that for an = F 2
n + F 2

n−1, bn = 2FnFn−1 and cn = Fn−2Fn+1,

a2n = b2n + c2n.

Exercise 4. Show that for an = F 2
n+1 + F 2

n+2, bn = 2Fn+1Fn+2 and cn = FnFn+3,

a2n = b2n + c2n.

The next method is the well-known method of proof by induction, which also usually requires the
expansion technique, especially in the induction step.

Example 5. Show that

F0 + F1 + . . .+ Fn =

n∑
i=1

Fi = Fn+2 − 1

Proof.We will prove this by induction.
(Base case) For F2 − 1 = 1− 1 = 0 = F0.
(Induction step) Assume true for n = k,

k+1∑
i=1

Fi =

k∑
i=1

Fi + Fk+1 = Fk+2 − 1 + Fk+1 = Fk+2 + Fk+1 − 1 = Fk+3 − 1

So it is true for n = k + 1 and hence by the principle of mathematical induction it holds for all natural
n.

An alternative approach is to write down:

F0 = F2 − F1

F1 = F3 − F2

F2 = F4 − F3

...

Fn = Fn+2 − Fn+1
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By summing up these equations many of the terms cancel out,

F0 =��F2 − F1

F1 =��F3 −��F2

F2 =��F4 −��F3

...

Fn = Fn+2 −��
�Fn+1

Hence, on the LHS we have
∑n
i=1 Fi and on the RHS we have Fn+2 − F1 = Fn+2 − 1.

Example 6 (Cassini’s Identity). For any n ≥ 1,

F 2
n = Fn+1Fn−1 + (−1)n−1

Proof.Note: It is clear that we cannot just use expansion in this problem because of the term (−1)n−1. The
expansion process will not generate any constant term.

(Induction step) Assume true for n = k, i.e. F 2
k = Fk+1Fk−1 + (−1)k−1. Now consider n = k+ 1, we start with

the RHS,

Fk+2Fk + (−1)k = (Fk+1 + Fk)Fk + (−1)k = Fk+1Fk + F 2
k + (−1)k = Fk+1Fk + Fk+1Fk−1 + (−1)k−1 + (−1)k

Notice that (−1)k−1 and (−1)k are opposite, so they cancel out. Hence,

Fk+1Fk + Fk+1Fk−1 = Fk+1(Fk + Fk−1) = Fk+1 · Fk+1 = F 2
k+1.

Example 7. Show for n ≥ 2, that

Fn+1Fn−1 − Fn+2Fn−2 = 2(−1)n.

8



Example 8. Prove that for all natural numbers k and n,

Fn+k+1 = Fk+1Fn+1 + FkFn.

Proof.Before we begin let’s examine our options. Note that we are asked to prove a statement of the form
∀n ∈ N.∀k ∈ N.P (n, k). The principle of induction allows us to do one quantifier at a time, i.e. prove by
induction on n that ∀k ∈ N.P (n, k) and each statement for every n will be proven by induction on k. So, let’s
begin.

(Base case) For n = 0, we need to show ∀k ∈ N.F0+k+1 = Fk+1F0+1 + FkF0. We note that this identity is
solvable using expansion, so there is no need for the nested induction,

Fk+1F0+1 + FkF0 = Fk+1 · 1 + Fk · 0 = Fk+1.

(Induction step) Assume it is true for n = `, i.e. ∀k ∈ N.F`+k+1 = Fk+1F`+1 + FkF`. We need to show
∀k ∈ N.F(`+1)+k+1 = Fk+1F(`+1)+1 + FkF`+1.

So let k be an arbitrary natural number,

F(`+1)+k+1 = F`+k+2 = F`+k+1 + F`+k = F`+k+1 + F`+(k−1)+1

By the induction hypothesis for k and k − 1 (note this is not strong induction),

F`+k+1 + F`+(k−1)+1 = Fk+1F`+1 + FkF` + FkF`+1 + Fk−1F`

= Fk+1F`+1 + FkF` + Fk−1F` + FkF`+1

= Fk+1F`+1 + (Fk + Fk−1)F` + FkF`+1

= Fk+1F`+1 + Fk+1F` + FkF`+1

= Fk+1(F`+1 + F`) + FkF`+1

= Fk+1F`+2 + FkF`+1

Hence, by the principle of ... .

Note: Below we give a proof of this formula using the closed-form solution and one using the matrix
representation.

Exercise 5. Show that the sum of the first n Fibonacci numbers with odd indices is given by the formula,

F1 + F3 + F5 + . . .+ F2n−1 = F2n.

Exercise 6. Show that the sum of the first n Fibonacci numbers with even indices is given by the formula,

F0 + F2 + F4 + . . .+ F2n = F2n+1 − 1.

Exercise 7. Show that the alternating sum of the first n ≥ 1 Fibonacci numbers is given by the formula,

(−1)F0 + F1 + (−1)F2 + F3 + (−1)F4 + . . .+ (−1)n+1Fn = 1 + (−1)n+1Fn−1

Try also solving this problem using Exercise 6 and Exercise 5.

Another method to prove an identity is to make use of an identity that you have already proven. This
can save a lot of effort.

Example 9. Show that for n ≥ 1, FnFn−1 = F 2
n − F 2

n−1 + (−1)n.

Proof.We are going to use Cassini’s identity, i.e. F 2
n = Fn+1Fn−1 + (−1)n−1. Let’s put the common

terms on one side, i.e. Cassini’s identity gives F 2
n + (−1)n = Fn+1Fn−1 and we want to prove that
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F 2
n + (−1)n = FnFn−1 − F 2

n−1.

F 2
n + (−1)n = Fn+1Fn−1 = (Fn + Fn−1)Fn−1 = FnFn−1 + F 2

n−1.

Exercise 8. Use Cassini’s identity to show that for n ≥ 1:

(a) F2n−1 = F 2
n + F 2

n−1

(b) F2n = F 2
n+1 − F 2

n−1

Exercise 9. Using the results from the previous exercise, show that

(a) For n ≥ 2, F 2
n+1 + F 2

n−2 = 2F2n−1.

(b) For n ≥ 1, F 2
n+2 + F 2

n−1 = 2(F 2
n + F 2

n+1).

Example 10. Show that for n ≥ 2,
F 2
n − Fn+2Fn−2 = (−1)n.

Proof.

F 2
n − Fn+2Fn−2 = F 2

n − (Fn+1 + Fn)Fn−2

= Fn(Fn − Fn−2)− Fn+1Fn−2

= FnFn−1 − (Fn + Fn−1)Fn−2

= Fn−1(Fn − Fn−2)− FnFn−2
= Fn−1Fn−1 − FnFn−2
= F 2

n−1 − FnFn−2
= (−1)n−2 = (−1)n

where the last step follows from Cassini’s identity for n− 1.

Exercise 10. Show that for n ≥ 2,

Fn+1Fn−1 − Fn+2Fn−2 = 2(−1)n

Hint: Start by expanding Fn+2 and Fn−2.

Exercise 11. (a) Show that for n ≥ 2, F 2
n = FnFn+1 − FnFn−1.

(b) Show that the sum of the squares of the first n Fibonacci is given by

F 2
0 + F 2

1 + F 2
2 + . . .+ F 2

n =

n∑
i=0

F 2
i = FnFn+1

(c) Show that for n ≥ 3,

F 2
n+1 = F 2

n + 3F 2
n−1 + 2(F 2

n−2 + F 2
n−3 + . . .+ F 2

2 + F 2
1 )
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Some of the identities can also be proven using the closed form solution. Usually this leads to long
calculations and it requires some properties for φ and ψ, the main one being that they both satisfy
x2 = x+ 1 and that ψ = −φ (Why? ).

Example 11. For all natural numbers n and k,

Fn+k+1 = Fk+1Fn+1 + FkFn.

Proof.

Fk+1Fn+1 + FkFn

=
1

5
· (φk+1 − (−φ)−(k+1))(φn+1 − (−φ)−(n+1)) +

1

5
· (φk − (−φ)−k)(φn − (−φ)−n)

=
1

5
· (φk+n+2 +���

���(−1)nφk−n +���
��(−1)kφn−k + (−1)−(n+k+2)φ−(n+k+2)

+ φk+n +(((
((((−1)k+1φn−k +(((

(((((−1)n+1φk−n + (−1)−(n+k)φ−(n+k))

=
1

5
· (φk+n+2 + φk+n + (−1)−(n+k+2)φ−(n+k+2) + (−1)−(n+k)φ−(k+n))

=
1

5
· (φk+n(φ2 + 1) + (−1)−(n+k)φ−(n+k+2)(1 + φ2))

=
1 + φ2

5
· (φk+n + (−1)−(n+k)φ−(n+k+2))

Now using the properties of φ, 1√
5
·(1+φ2) = 1√

5
·(1+(1+φ)) = 1√

5
·(2+ 1+

√
5

2 ) = 1√
5
· 5+
√
5

2 = 1+
√
5

2 = φ.

Hence,

Fk+1 =
φ√
5
· (φk+n + (−1)−(n+k)φ−(n+k+2))

=
1√
5
· (φk+n+1 + (−1)n+kφ−(n+k+1))

=
1√
5
· (φk+n+1 − (−1)n+k+1φ−(n+k+1))

= Fn+k+1

Divisibility properties
For computer science, Fibonacci numbers are particularly interesting because they provide a worst-case input for
the Euclidean gcd algorithm. We will demonstrate why this is the case and also look at some other interesting
divisibility properties of Fibonacci numbers. The main identity that we will be using is

Fn+m+1 = Fm+1Fn+1 + FmFn,

for which we provide three proofs in this document (induction, closed-form solution and matrix solution).

Lemma 1. For naturals n ≥ 1, gcd(Fn, Fn+1) = 1.

11



Proof.(Using gcd properties) We will prove this by induction. For n = 1, gcd(F1, F2) = gcd(1, 2) = 1.
Assume true for n = k, so gcd(Fk, Fk+1) = 1. Then for n = k + 1,

gcd(Fk+1, Fk+2) = gcd(Fk+1, Fk + Fk+1) = gcd(Fk+1, Fk + Fk+1 − Fk+1) = gcd(Fk+1, Fk) = 1.

Hence, by the principle of ...

(Using minimality) We will use a technique of minimality. Assume that n is the smallest natural such that
gcd(Fn, Fn+1) = d > 1. It has to be that n > 1 since gcd(F1, F2) = 1. So d | Fn and d | Fn+1. Hence,
d | Fn+1 − Fn ⇒ d | Fn−1. Hence, gcd(Fn, Fn−1) ≥ d > 1, but n − 1 < n, which contradicts that n is the
smallest such natural so it cannot exist.

Theorem 2. Computing gcd0(Fn+1, Fn) for any natural n ≥ 1, takes Θ(n) steps.

Proof.We know that the Fibonacci numbers are strictly increasing for n ≥ 2, so Fn > Fn−1. By definition,
Fn+1 = Fn · 1 + Fn−1. By the uniqueness of the remainder (see Division Theorem) Fn−1 = rem(Fn+1, Fn).
Hence, the next step of the algorithm gives gcd0(Fn, rem(Fn+1, Fn)) = gcd0(Fn, Fn−1). Hence, in each step
the indices decrease by 1, so it will take n− 1 steps to reach gcd0(F2, F1), where the algorithm terminates.

Note 1: We could make this a formal induction argument, but sometimes in the analysis of algorithms, it is
simpler to reason in this manner (though more error-prone).

Note 2: We proved in the second section that Fn ≈ φn

√
5
, hence log(Fn) = n log(φ) − 1

2 log(5) = Θ(n). This

means that computing gcd0(Fn, Fn+1) takes Θ(n) = Θ(logFn) steps, which establishes a lower bound on the
time complexity of the gcd0 which matches the upper bound (see the gcd handout).

Lemma 2. For naturals n ≥ 1 and m, Fnm is divisible by Fn.

Proof.We will prove this by induction over m, i.e. ∀m ∈ N.∀n ∈ N.n ≥ 1⇒ Fn | Fnm.

(Base case) For m = 0, Fmn = F0 = 0, which is divisible by any natural, so by Fn as well.

(Induction step) Assume true for m = k, i.e. ∀n ∈ N.n ≥ 1 ⇒ Fn | Fnk. Our goal is to prove that
∀n ∈ N.n ≥ 1 ⇒ Fn | Fn(k+1). Let n be arbitrary and assume n ≥ 1. By the induction hypothesis, we know
that Fn | Fnk and we need to show that Fn | Fn(k+1). So, we need to find the right parameters to use in the
identity

Fa+b+1 = Fa+1Fb+1 + FaFb.

A reasonable aim is to have the LHS be Fn(k+1). So we need a+ b = n(k+ 1). Now we want to break the sum
into a and b such that nk appears. We can do this as n(k + 1) = nk + n = (nk − 1) + n+ 1. One such choice
is a = nk − 1 (but of course b = nk − 1 also works).

Fnk+(n−1)+1 = Fnk+1F(n−1)+1 + FnkFn−1 = Fnk+1Fn + FnkFn−1

By the induction hypothesis Fn | Fnk so Fn | FnkFn−1. Also, Fn | Fnk+1Fn so Fn divides the sum
Fnk+1Fn + FnkFn−1 = Fn(k+1).

Lemma 3. If m = qn+ r for r > 0, then gcd(Fm, Fn) = gcd(Fr, Fn).

Proof.Assume m = qn+ r. Then using the identity Fa+b+1 = Fa+1Fb+1 + FaFb. We want a+ b+ 1 = m and a
reasonable splitting is a = qn and b = r − 1 (The splitting a = qn− 1 and b = r also works). Then,

Fm = Fqn+1F(r−1)+1 + FqnFr−1 = Fqn+1Fr + FqnFr−1.

By the previous Lemmas we know that Fn | Fqn and gcd(Fqn, Fqn+1) = 1. Hence, by properties of the gcd,

gcd(Fm, Fn) = gcd(Fqn+1Fr + FqnFr−1, Fn) = gcd(Fqn+1Fr, Fn) = gcd(Fr, Fn).

12



Lemma 4. For any natural n and m,

gcd(Fn, Fm) = Fgcd(n,m).

Proof.Let’s look at the k steps made by the gcd0(m,n):

m = q1n+ r1

n = q2r1 + r2

r1 = q3 + r3

...

rk−2 = qkrk−1 + rk

rk−1 = qk+1rk

Using the previous Lemma we know that,

gcd(Fm, Fn) = gcd(Fr1 , Fn) = gcd(Fr1 , Fr2) = . . . = gcd(Frk−1
, Frk)

Because we know that rk | rk−1, we have Frk | Frk+1
. So,

gcd(Fm, Fn) = gcd(Frk−1
, Frk) = Frk = Fgcd(n,m)

Exercise 12. In Example 9 you proved that

FnFn−1 = F 2
n − F 2

n−1 + (−1)n.

Show why this implies that consecutive Fibonacci numbers are relatively prime.

Exercise 13. Evaluate gcd(F9, F12), gcd(F15, F20) and gcd(F24, F36).

Example 12. Show that the sequence of rem(Fn, 2) repeats periodically.

Proof.Let’s look at the first Fibonacci values and their remainder divided by 2.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 1 2 3 5 8 13 21 34 55
1 1 0 1 1 0 1 1 0 1

It looks like they follow the pattern 1, 1, 0. Why? Let’s see what happens when we are at 1, 1. Assume
Fn = 2k1 + 1 and Fn+1 = 2k2 + 1, then Fn+2 = Fn+1 + Fn = 2k1 + 1 + 2k2 + 1 = 2(k1 + k2 + 1) + 0. So, we
get a 0. What happens if we are at 1, 0? We get rem(Fn+2, 2) = 1. So the next remainder only depends on the
previous two, so it will create the same pattern again and again.

Actually, the same holds for any fixed modulo. Take for example 4. The cycle here is a bit longer but it
eventually repeats.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

1 1 2 3 5 8 13 21 34 55 89 144 233 377
1 1 2 3 1 0 1 1 2 3 1 0 1 1

Exercise 14. Show that the sequence of rem(Fn, k) repeats periodically for any constant k. Show that this
period has length at most k2 − 1. Hint: Consider all possible pairs of remainders for Fn and Fn+1, and use
pigeonhole principle.

13



Note: The lengths of these periods are known as Pisano periods. You can find more on the wikipedia page.
Finding a closed-form solution for Pisano periods is an open problem (see here).

Example 13. Establish that Fn+3 ≡ Fn (mod 2) and deduce that F3, F6, F9, . . ..

Proof.This exercise is asking us to prove what we showed above in a different way. We will use expansion for
the first part,

Fn+3 = Fn+2 + Fn+1 = (Fn+1 + Fn) + Fn+1 = 2Fn+1 + Fn ≡ Fn (mod n).

Exercise 15. Show that Fn+5 ≡ 3Fn (mod 5) and deduce that F5, F10, F15, . . . are divisible by 5. Hint: You
will need to use expansion. Notice the order of expansion in the previous example to avoid having too many.

Exercise 16. Use the fact that m | n implies Fm | Fn to verify the assertions below:

(a) 2 | Fn iff 3 | n.

(b) 3 | Fn iff 4 | n.

(c) 5 | Fn iff 5 | n.

(d) 8 | Fn iff 6 | n.

Example 14. Show that if 2 | Fn, then 4 | (F 2
n+1 − F 2

n−1).

Proof.Since 2 | n and 2 | n+ 2, F2 = 2 | Fn+2.

F 2
n+1 − F 2

n−1 = (Fn+1 − Fn−1)(Fn+1 + Fn−1) = Fn · Fn+2

Hence, this is a product of two even numbers so divisible by 4.

Exercise 17. Use induction to show that F2n ≡ n(−1)n+1 (mod 5) for n ≥ 1.

Past papers

7

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Discrete Mathematics (MPF)

Recall the Fibonacci numbers defined by:

f0 = 0

f1 = 1

fn = fn−1 + fn−2 for n > 1

Using induction on n, or otherwise, show that fm+n = fm−1fn + fmfn+1 for m > 0. [4 marks]
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Deduce that ∀m,n > 0 . m|n⇒ fm|fn. [4 marks]

Deduce further that ∀n > 4 . fn prime ⇒ n prime. [2 marks]

Given n ∈ N, let gi = fi mod n, and consider the pairs (g1, g2),
(g2, g3), . . . , (gi, gi+1), . . . . Show that there must be a repetition in the first n2 + 1 pairs. Let r < s be
the least values with (gr, gr+1) = (gs, gs+1). Show that gr−1 = gs−1, and deduce that r = 1. Calculate g1 and
g2, and deduce that gs−1 = 0. Hence show that one of the first n2 Fibonacci numbers is divisible by n.

[10 marks]

15



9

COMPUTER SCIENCE TRIPOS Part IA – 2018 – Paper 2

Discrete Mathematics (MPF)

(a) Define F0 = 0, F1 =! and for n ∈ N, Fn+2 = Fn+1 + Fn.

For positive integers a and b, prove that

∀n ∈ N. gcd(aFn+3 + bFn+2, aFn+1 + bFn) = gcd(a, b)

(optional) Connection to matrices
Theorem 3. The Fibonacci numbers satisfy the following recurrence:[

Fn+2

Fn+1

]
=

[
1 1
1 0

] [
Fn+1

Fn

]

16



Theorem 4. Show that [
Fn+1

Fn

]
=

[
1 1
1 0

]n [
F1

F0

]

Theorem 5. Show that [
1 1
1 0

]n
=

[
Fn+1 Fn
Fn Fn−1

]

Example 15. Prove using the previous relation that for all n and m,

Fn+m+1 = Fn+1Fm+1 + FnFm.

Proof.We will use the fact that Mn+m = Mn ·Mm by associativity of multiplication. The top left entry in the
LHS is Fn+m+1, so we just need to find what is this equal to on the RHS,

Mn ·Mm =

[
Fn+1 Fn
Fn Fn−1

]
·
[
Fm+1 Fm
Fm Fm−1

]
=

[
Fn+1Fm+1 + FnFm . . .

. . . . . .

]
17



Since the two matrices are equal, the top left entries are equal so Fn+m+1 = Fn+1Fm+1 + FnFm.

Theorem 6. Let D =

[
d11 0
0 d22

]
be a diagonal 2 × 2 matrix with entries along the diagonal, then for any

positive integer n, Dn =

[
dn11 0
0 dn22

]
.

Theorem 7. Let M = UDU−1 where M , U and D are 2 × 2 matrices and D is diagonal. Show that
Mn = UDnUn−1

Hint: For n = 3, M3 = (UDU−1)(UDU−1)(UDU−1) = UD(U−1U)D(U−1U)DU−1 = UD3U−1

Theorem 8. Show using eigenvector decomposition or otherwise that[
1 1
1 0

]
=

[
1
2 (1−

√
5) 1

2 (1 +
√

5)
1 1

]
︸ ︷︷ ︸

U

[
1
2 (1−

√
5) 0

0 1
2 (1 +

√
5)

]
︸ ︷︷ ︸

D

[
− 1√

5
1
10 (5 +

√
5)

1√
5

1
10 (5−

√
5)

]
︸ ︷︷ ︸

V

and V = U−1.
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Exercise 18. Using Theorem 7, 6 and 8, prove the closed-formed formula for the Fibonacci numbers.

(optional) Further questions/references
You will find more related material in the following:

• Look at other methods for solving linear recurrences such as using generating functions.

• Look at Chapter 14 in Elementary Number Theory by Burton for more problems.

• Look at the Fibonacci Quarterly archive (containing several problem lists).

For more algorithmic material on the Fibonacci numbers:

• Look at the Fibonacci heaps in Part IA algorithms.

• Loot at the Fibonacci trees used for balls and bins analysis in randomised algorithms (possibly Part II
Probability and Computing).

(optional) Zeckendorf’s theorem
Exercise 19. (a) Prove that every non-negative integer can be written as the sum of distinct, nonconsecutive

Fibonacci numbers. That is, if the Fibonacci number Fi appears in the sum, it appears exactly once, and
its neighbors Fi−1 and Fi+1 do not appear at all. For example:

17 = F7 + F4 + F2

42 = F9 + F6

54 = F9 + F7 + F5 + F3
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(b) Prove that every positive integer can be written as the sum of distinct Fibonacci numbers with no
consecutive gaps. That is, for any index i ≥ 1, if the consecutive Fibonacci numbers Fi or Fi+1 do not
appear in the sum, then no larger Fibonacci number Fj with j > i appears in the sum. In particular, the
sum must include either F1 or F2. For example:

16 = F6 + F5 + F3 + F2

42 = F8 + F7 + F5 + F3 + F1

54 = F8 + F7 + F6 + F5 + F4 + F3 + F2 + F1

Source: Exercise 7 from this handout.

Further reading: This theorem finds application in a 2-player game, the Fibonacci Nim game. (You may
want to read Exercise 7 on page 7 in “Game Theory” by T. Ferguson and see this applet)
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