Discrete Mathematics Past Papers by topic

Logic

Logic used to be taught in more detail in previous versions of the course. In the current version of the course, logic appears in conjunction with other topics (e.g. set theory).

Logic:

- 2013P1Q4 rules for quantifier, existential, negation, prove first-order logic statements
- $2012 \mathrm{P} 1 \mathrm{Q3}$ prove propositional statements, rules for negation and falsity, contradiction
- $2012 P 1 Q 4(\mathbf{c}),(\mathbf{d})$ rules for universal quantifier, first-order logic statement
- $2011 \mathbf{P 1 Q 3}$ rules for implication and negation, proofs for propositional statements
- 2011P1Q4 (c) rules for universal quantifier
- 2010P1Q3
- 2010P1Q4 logic to natural language
- 2009P1Q3 (a),(b)] (define implication, disjunction rules, prove two propositional formulas)
- 2007P2Q6 (a)
- 2006P2Q6 (a) prove using truth tables

Number theory

Greatest common divisor and Diophantine equations:

- 2018 P 2 Q 7 (a) quadratic modular equation
- 2017 P 2 Q 7 (a)
- $2017 \mathrm{P} 2 \mathrm{Q8}$ (a) common divisor properties
- 2016 P 2 Q 8 (a)]
- 2016P2Q9 (a)
- $2015 \mathrm{P2Q7}(\mathbf{a})$ prove that if $\operatorname{gcd}(m, n)=1$, then there is no natural greater than 2 that divides any number
- 2015P2Q9 (a)
- 2014P2Q7 (c) find linear combination and multiplicative inverse
- 2008 P 2 Q 4 gcd , rule induction
- 2007P2Q3 (b)-(f) prove $\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b)$, derive Euclid's algorithm, determine the algorithm's efficiency, solve linear Diophantine equation, find multiplicative inverse)
- 2006P2Q4 define gcd, show that the gcd divides all possible linear combinations and all possible linear combinations are a multiple of the gcd, natural linear combinations
- $2003 P 1 Q 2$ (a)-(c)] find the gcd between two numbers, solve linear Diophantine equation, find multiplicative inverse
- 2000P1Q8 prove Stein's algorithm works

Binomial coefficients:

- [2015P2Q7] Hockey stick identity
- 1995P1Q1 Vandermande's convolution using generating functions or a combinatorial argument

Fibonacci numbers:

- 2018P2Q9 (a)
- [2004P1Q7] divisibility properties of Fibonacci numbers

RSA encryption:

- $2001 \mathrm{P} 1 \mathrm{Q7}(\mathrm{c}),(\mathrm{d})$
- 1998P1Q7 (b)

Fermat's Theorem:

- 2014 P 2 Q 7 (b) state and prove application
- 2006P2Q3 Mersenne primes, infinitely many pseudo-primes
- $2005 \mathrm{P} 1 \mathrm{Q2}(\mathbf{a}),(\mathbf{b})]$ state, deduce for $n=2$, show that 341 is a pseudo-prime
- [2002P1Q7] Fermat's theorem and Diffie-Hellman protocol, Montgomery multiplication
- 2001P1Q7 (a),(b)] Euler's theorem, Fermat's theorem to show that a number is composite
- 1999P1Q7 (c),(d)

Euler's totient function:

- $2005 \mathrm{P} 1 \mathrm{Q7}(\mathrm{~b}),(\mathbf{c}),(\mathrm{d})]$ group of co-primes, definition, bijection, show that ϕ is multiplicative
- 1999P1Q7 (a),(b) define and prove Fermat-Euler

Division algorithm/Modulo:

- 2016P2Q7 (a)
- 2015 P 2 Q 8 (a)] 1365 divides $n^{13}-n$
- 2014 P 2 Q 7 (a)] equivalence classes of modula
- 2007P2Q3 (a) prove the division algorithm

Chinese Remainder theorem:

- 2016P2Q7 (a)(ii)
- $2007 \mathrm{P} 2 \mathrm{Q4}$] Chinese remainder theorem and its generalisation
- [2005P1Q7 (a)]
- 1998P1Q7 (a)]

Fundamental theorem of arithmetic:

- 2003P1Q7 (a)-(b) infinite primes, upper bound on the numbers with k given primes
- $2001 P 1 Q 2$ (a)-(c)] proof, count number of divisors, smallest number with given number of factors

Set theory

Set theory:

- 2018P2Q9 (b)
- 2015 P 2 Q 7 (c)
- $2014 \mathrm{P2Q8}(\mathbf{a}),(\mathrm{b}),(\mathbf{c})$ find the correct predicate and prove the statement, bijections between functions and injections
- 2011P2Q5
- 2010P2Q5 (a)-(d) requires knowledge of rule induction
- $2013 \mathrm{P} 1 \mathrm{Q3}$ (a) logic statements for set theory
- 2009P1Q3 (c) big intersection and big union properties
- 2002P1Q8 intersections and intersection-closed

Relations:

- 2018P2Q8 (a)] predicate statement involving relations
- 2018P2Q8 (b) prove injection, surjection
- $2017 \mathrm{P2Q8}$ (c) check if function is surjective
- 2017P2Q9 (c)
- 2016P2Q8 (c) show that one function is the inverse of the other
- 2016P2Q9 (c)
- 2015P2Q8 $i d_{A}$ subset $g \circ f$ and $f \circ g$ subset $i d_{B}$
- 2013P2Q6 rule induction for relations
- 2012P2Q5 (a),(b) relational composition
- 2012P1Q4 (a),(b) define transitive, find which of the relations are transitive, draw their graphs
- 2011P2Q6 (a)-(c)] membership, big intersection and big union
- 2011P1Q4 (a),(b) prove or disprove statements about relations
- 2009P1Q4 proofs and counterexamples
- 2008P2Q3 define injection, bijection iff $f \circ g=\mathrm{id}_{x}$ and $g \circ f=\operatorname{id}_{y}, \mathcal{P}(X \times Y) \rightarrow(X \rightarrow \mathcal{P}(Y))$
- 2006P2Q5 (a),(b) define injection, surjection and bijection, inverses
- 1998P1Q2 relations, equivalence classes, equivalence classes are disjoint, simple equivalence class
- $1997 \mathrm{P} 1 \mathrm{Q8}$ iterated relations

Equivalence relations:

- $1993 \mathrm{P} 10 \mathrm{Q11}$ (a)] elements that map to the same value form an equivalence relation

Discrete structures:

- $2017 \mathrm{P} 2 \mathrm{Q9}$ (b)

Partial functions:

- 1993P2Q3

Surjections:

- $1993 P 10 \mathrm{Q} 11$ (b) number of surjections

Bijections:

- 2018P2Q7 (b)
- 2017P2Q8 (b) prove bijection cross product
- 2015P2Q9 prove bijection between $\mathcal{P}(X \cup Y)$ and $\mathcal{P}(X) \times \mathcal{P}(Y)$
- 2013P2Q5 bijections
- 2007P2Q5 bijections
- 1999P1Q8 (a) bijection between equivalence classes and bijections

Countability:

- 2012 P 2 Q 5 (c) is relational composition countable?
- 2007 P 2 Q 6 (b)] : diagonalisation
- 2006P2Q5 (c) prove there is no injection between the power set of X and X.
- 2005P1Q8 various bijections, Russel's paradox, well-founded relation
- 2004P1Q8 various bijections
- 2003P1Q8 (a)-(c)] Schroder-Bernstein, enumerability properties and basic sets
- $1999 \mathrm{P} 1 \mathrm{Q8}$ (b)-(e) Schroder-Bernstein, integers, rationals, reals, ML programs

Orders: (lattices and well-founded relations are not define in the current version of the course, but some of these questions are good practice for set theory)

- 2012 P 2 Q 5 (d) well-founded
- 2011P2Q6 (d) down-closed
- 2010P2Q6 preorders, down-closed, complete primes
- 2009P2Q6 least upper bounds
- 2004P1Q2 partial order, well-founded relation, product ordering
- 2002P1Q2 well-founded relation, minimal elements, application to problem with strings
- 2001P1Q8 product order, least upper bounds, lattices
- 2000P1Q2 partial orders on partitions
- 2000P1Q7 separated elements in partial orders
- 1998P1Q8 partial order/total order
- 1997P1Q7 tree-like partial orders
- 1996 P 1 Q 7 topological sort on partially-ordered sets, isomorphism between orderings
- 1994P2Q3 partial order, total order, well-order
- 1994P11Q10 (a),(b) well-ordered relations
- 1993P11Q11 partial, total, well-order, closure

Induction

Rule induction:

- 2018P2Q10 (a)
- 2016P2Q7 (b)
- 2016P2Q10 prove or disprove inequalities between the counts of letters in strings
- 2016P2Q9 inductively defined total cover relation
- 2014P2Q9 (a) show that no multiple of 5 is in the set
- 2012P2Q6
- 2008P2Q4 rule induction for multiples of $n-m$, below a value
- 2009 P 2 Q 5 strings and there are more occurrences of a than b

Induction:

- 2017 P 2 Q 7 (b) count the number of ways to form n using 1 s and 2 s
- $2017 \mathrm{P} 2 \mathrm{Q9}$ (a)
- 2016P2Q8 (b)
- 2016P2Q9 (b)
- $2015 \mathrm{P} 2 \mathrm{Q8}$ (b) prove that a natural is either even or odd.
- 2014P2Q9 (b),(c) principle of induction for set of strings
- $2013 \mathrm{P} 1 \mathrm{Q3}$ (b),(c)] induction over lists, induction to prove the correctness of reverse and append
- 2006P2Q6 (b)
- 1994P11Q10 (c),(d) inductively defined relation

Counting:

- 2017P2Q7 (b)] count the number of ways to sum to n using 1 s and 2 s
- $2009 \mathrm{P} 1 \mathrm{Q} 4(\mathrm{c}),(\mathrm{d})$ count irreflexive symmetric relations, count symmetric and antisymmetric relations
- 2003P1Q7 (c): (inclusion/exclusion, find primes <100)
- 2001P1Q2 (b)] count the number of divisors for a number
- 1997 P 1 Q 7 (b)] counting tree-like partial orders
- 1997P1Q2 counting functions between two sets
- 1996P1Q1 count the number of bipartite graphs
- 1995P1Q8 principle of inclusion/exclusion, count surjections
- 1994 P 2 Q 1$]$ derive the recurrence relation for Stirling numbers
- 1994P10Q11 count the number of invalid strings
- 1993P2Q1 deriving the Catalan numbers
- $1993 \mathrm{P} 10 \mathrm{Q11}$ (b) number of surjections

Linear recurrences:

- 1996P1Q8
- 1994P2Q1 Stirling numbers recurrence
- 1994P10Q11
- 1994P11Q10 (c),(d) inductively defined relation
- 1993P2Q2

Bipartite matchings and flows: (out of syllabus - part of the Algorithms course)

- 1995P1Q7
- 1995P10Q13
- 1994P2Q2

Formal languages

Finite automata/Regular expressions:

- 2018P2Q9 (c)
- 2018P2Q10 (b) show that the language of all regular expressions is not regular
- $2017 \mathrm{P} 2 \mathrm{Q10}$ decide whether the given languages are regular or not
- 2016P2Q10 (c) prove r and s is regular if r, s are regular)
- 2016P2Q10 (b) prove or disprove regular language/ remove one character and check if language is regular
- 2015P2Q9 DFA for language of palindromes
- 2015P2Q10 DFA accepting a^{n} for $n=1,2, n \equiv 4(\bmod 6)$ or $n=7(\bmod 6)$, define regular, ultimately periodic sequences)
- 2014P2Q10 odd/even language, pumping lemma variant,
- 2013P2Q8 describe reg exp to DFA, reg exp for specific DFA, state pumping lemma, use pumping lemma to prove non-regular language (and some regular)
- 2012P2Q8 properties of the matches relation
- 2011P2Q8 reg exp for all strings over $\{a, b, c\}$ with at least one occurrence of each symbol, given NFA find DFA, find reg exp, show that if DFA accepts a string then it accepts one of length $<$ num states, pumping lemma to prove language not regular (or use intersection with $a^{*} b^{*}$)
- 2010P2Q9 def deterministic, complement of DFA, give counterexample for complement of NFA, design NFAs for $\{a, a a, a a a\}$, complement of $\{a, a a, a a a\}$, all strings with length mult of 3 or 5 , all strings matching $(a a \mid b)^{*}(b b \mid a)^{*}$, all strings matching $\left(\emptyset^{*}\right)^{*}$
- 2009P2Q9] L-equivalence classes for regular languages, upper bound on equivalence classes for concrete language, show that $a^{n} b^{n}$ has an infinite number of equivalence classes
- 2007P2Q8 pumping lemma for regular languages, palindromes over $\Sigma=\{a\}$ is regular, palindromes over $\{a, b\}$ is non-regular, $a^{*} b^{*}$ is regular, same number of $a s$ and $b \mathrm{~s}$ is non-regular, finite language is regular
- 2006P2Q8 difference of regular languages is regular, if DFA accepts all strings of length $<$ num states then it accepts all strings, describe algorithm for deciding if two languages are equivalent
- 2005 P 2 Q 9 (a) intersection of two regular languages is regular.
- 2004P2Q9 complement of regular language is regular, palindromes is non-regular, multiple of 3 s is regular, primes is non-regular
- 2003P2Q9 all strings without $b b$, def reg exp, if no occurrence of \emptyset then language non-empty, complement of reg exp is reg exp
- 2014P2Q1] 0 DFA and RE for languages with ever number of one of $\{a, b, c\}$, DFA for intersection, small variant of pumping lemma
- 2002P2Q9 $a^{m} b^{n}$ regular, $a^{m} b^{n}$ with $m \leq n$ non-regular, $a^{m} b^{n}$ with $m+n \leq 4$ regular, complement of regular is regular, complement of non-regular language is non-regular, (f) choose b^{n}
- 2001 P 2 Q 7 prove pumping lemma, $L_{1}=w w$ non-regular, $L_{2}=w v w$ is regular
- 2000P2Q7 def reg exp, def accept by DFA, prove DFA to reg exp, example construction from DFA to reg exp
- 1999P2Q7 Modifying one character from a string of a RL results into an RL, prove that a DFA accepts a string that is shorter than the number of states in the DFA, Kleene's theorem, give algorithm to check if RE accepts string
- 1998P2Q7 Define the pumping lemma, $a^{m} b^{2 n}$ is reg, $a^{p} b^{2 q}$ for p, q prime not reg, no infinite subset of $a^{n} b^{n}$ is regular, no infinite set of $w w$ is regular, every finite subset of $w w$ is regular.
- 1997P2Q7 Explain how to check if you regular languages are equivalent.
- 1996P2Q8 filter odd length strings from regular language, filter palindromes from regular language, find regular subset of Pal (e.g. 1111)
- 1995 P 2 Q 27 twice as many 0 s as 1 s , prefix language, any finite language, $(r \mid s)^{*}$ vs $\left(r^{*}\right)^{*}$
- 1995P3Q3 Equivalence between regular expressions and DFAs
- 1994P3Q3 define accept language, show that regular expressions can simulate DFAs, give example
- 1993P6Q12 set of strings that are not palindromes, union of countably many languages, set of strings where $3 \nmid \# a$ and $3 \nmid \# b$, all strings that are of the form $w w$,
- 1993P5Q12 definition of reg exp, $L(t \mid s r)$ subset $L(r)$, then it contains $L\left(s^{*} t\right)$ (empty string not in s), iff condition is empty string in s.

Context-free languages (out of syllabus):

- 2005P2Q9 (b) example of regular context free grammar
- 1995P4Q3 construct a pushdown automaton for accepting the propositional calculus language
- 1994 P 4 Q 3 define CFLs, union of CFLs is CFL, prove not CF.

