
Model Answers Complexity Theory

tms41, dl516

last updated: 16.5.2023, 22:22

Question (Exercise Sheet 1, Question 1). In the lecture, a proof was sketched showing a
Ω(n log n) lower bound on the complexity of the sorting problem. It was also stated that a
similar analysis could be used to establish the same bound for the Travelling Salesman Problem.
Give a detailed sketch of such an argument. Can you think of a way to improve the lower bound?

Answer. The computation tree with branches, binary decisions and n! leaves is the same as
with sorting. Also the derivation why log(n!) = Θ(n log n) can be found in the lecture notes of
Complexity Theory [page 5]. What remains to be verified that indeed all n! leaves are needed.
Each leaf corresponds to a particular permutation ρ of {1, 2, . . . , n}, and it suffices that for each
particular permutation there is an input graph so that the only optimal tour is ρ.

Actually, due to the nature of the TSP, every tour is equivalent to n− 1 other tours. This
means that we in fact only need (n − 1)! different branches (each branch corresponds to the
selection of a cycle of length n). Now for each i, j so that i and j are adjacent on the cycle,
define the costs c(i, j) := 1 and c(j, i) := 1. All other costs are defined as c(i, j) := 2. It is clear
that for this particular TSP instance, only the TSP tour (=cycle) which is formed by the 1-cost
edges is optimal, and all other TSP tours are sub-optimal. Hence any correct TSP algorithm
must have at least (n− 1)! different leaves.

To improve the argument, note there is a crucial difference between the input to the sorting
problem and the input to the TSP problem in that the TSP problem requires

(
n
2

)
different edge

costs (so it is order Θ(n2), as opposed to an input of size n for the sorting problem). Now
consider as possible TSP inputs all possible graphs with a cost function so that exactly one
edge has cost 1 and all other edges have cost 2. This means that in order to find the minimum
TSP tour, the TSP algorithm has to identify the 1-cost edge, which clearly requires scanning
through all edges, so we get a lower bound of Ω(

(
n
2

)
) = Ω(n2).

Question (Exercise Sheet 1 Question 3). Consider the language Unary-Prime in the one
letter alphabet {a} defined by Unary-Prime = {an | n is prime}. Show that this language is in
P.

Answer. We can simply check whether any of the numbers 2, . . . , n − 1 divides n. The school
division algorithm can be implemented in O(n2) time. Hence, the entire check can be done in
O(n3) time, which is polynomial in the input size n.

Note 1: We can improve the running time to O(
√
n · polylog(n)), by checking divisors

2, . . . , ⌊
√
n⌋ (we don’t need to check larger values) and using an efficient O(log n(log log n))

time for division.
Note 2: We can even use one of the polynomial time algorithms for the binary prime

problem (which is in P ) to get an even better time complexity.

Question (Exercise Sheet 1 Question 4). Suppose S ⊆ N is a set of natural numbers and
consider the language Unary-S in the one letter alphabet {a} defined by Unary-S = {an |
n ∈ S}, and the language Binary-S in the two letter alphabet {0, 1} consisting of those strings

1



starting with a 1 which are the binary representation of a number in S. Show that if Unary-S
is in P then Binary-S is in Time(2cn) for some constant c.

Answer. We can convert a number with n bits from its binary representation to its unary
representation by just appending a’s (at most 22n of them) in O(22n) time. Since UnaryS is
in P , for any input of length k we can determine if it is in the language in time O(kc) for some
constant c > 0. Hence, we can determine if n ∈ BinaryS in time O((22n)c) = O((22cn).

Question (Exercise Sheet 1 Question 5). We say that a propositional formula ϕ is in 2-CNF if
it is a conjunction of clauses, each of which contains exactly 2 literals. The point of this problem
is to show that the satisfiability problem for formulas in 2-CNF can be solved by a polynomial
time algorithm.

First note that any clause with 2 literals can be written as an implication in exactly two
ways. For instance (p ∨ ¬q) is equivalent to (q → p) and (¬p → ¬q), and (p ∨ q) is equivalent
to (¬p → q) and (¬q → p).

For any formula ϕ, define the directed graph Gϕ to be the graph whose set of vertices is the
set of all literals that occur in ϕ, and in which there is an edge from literal x to literal y if and
only if, the implication (x → y) is equivalent to one of the clauses in ϕ.

(a) If ϕ has n variables and m clauses, give an upper bound on the number of vertices and
edges in Gϕ

(b) Show that ϕ is unsatisfiable if, and only if, there is a literal x such that there is a path in
Gϕ from x to ¬x and a path from ¬x to x.

(c) Give an algorithm for verifying that a graph Gϕ satisfies the property stated in (b) above.
What is the complexity of your algorithm?

(d) From (c) deduce that there is a polynomial time algorithm for testing whether or not a
2-CNF propositional formula is satisfiable.

(e) Why does this idea not work if we have 3 literals per clause?

Proof. (a) For each variable x we have two vertices x and ¬x. So there can be at most 2n
vertices. For each clause there can be at most two new edges added, hence a total of at
most 2m.

(b) (⇒) If there is a path from x to ¬x (x → p1 → . . . → pk → ¬x) and a path from ¬x to x
(¬x → q1 → . . . → qk → x), then we will show that there is no satisfying assignment for x:

• Case 1 [x = T]: Then by induction each of p1, . . . , pk,¬x must be T and so x = ¬x
which is a contradiction.

• Case 2 [x = F]: Then by induction each of q1, . . . , qk, x must be T and so x = ¬x
which is a contradiction.

(⇐) This direction is slightly more tricky. Assume that there is no path from x →∗ ¬x
and ¬x →∗ x for any variable x. We will now construct a satisfying assignment for this
graph.

We start with the claim that if there is a path p1 → . . . → pk in the graph, then there is
also the path ¬pk → . . . → ¬p1 (where double negation gives the original variable). This
follows from the fact that when a → b is present in the graph, then so is ¬b → ¬a.
Consider the strongly connected components (SCC) of the graph, i.e., the equivalence
classes formed by the bidirectional reachability relation. These form a directed acyclic
graph with some of the components being potentially disconnected. We proceed for each
unassigned variable and assign the truth value of the component to T (and automatically
the truth value of the component of its negation to F).

2



We will now argue that this gives a valid truth assignment. To show this we need that there
is no path y →∗ x and y →∗ ¬x, i.e., that x and ¬x cannot be in the same component.
This follows from the above observation since a path from y →∗ x would also imply a path
from ¬x →∗ y, and so a path from x →∗ ¬x, which by assumption does not exist.

(c) A simple algorithm for performing this check is to start a BFS or DFS from each vertex
x and check if we can reach ¬x. This requires O(n · (n + m)) time. An O(n + m) time
algorithm can be obtained by computing the SCCs in O(n+m) time and checking if any
variable x is in the same component as its negation.

(d) Both of the above algorithms run in time polynomial to the size of the input.

(e) The above idea does not work because if we know that x is F in the clause (x∨ y∨ z), then
we cannot decuce anything about y and z individually.

Question (Exercise Sheet 1 Question 7). We define the complexity class of quasi-polynomial-
time problems Quasi-P by:

Quasi-P =
∞⋃
k=1

Time(n(logn)k).

Show that if L1 ≤P L2 and L2 ∈ Quasi-P, then L1 ∈ Quasi-P.

Answer. We need to design a Turing Machine M1 such that L(M1) = L1, and every accepting
computation is in quasi-polynomial-time.

By assumption, there is a Turing Machine M2 with L(M2) = L2, and for every x ∈ L2, the

accepting computation finishes in time O(n(logn)k2 ) for some constant k2 ≥ 1. Also there is a
polynomial-time computable function f : Σ⋆

1 → Σ⋆
2 such that x ∈ L1 if and only if f(x) ∈ L2.

Given x ∈ Σ⋆
1, the Turing MachineM1 first computes f(x). Then it inputs f(x) to the Turing

Machine M2. If M2 accepts it, then M1 accepts. Otherwise, M1 rejects (or runs forever). We
need to prove that L(M2) = L2 and for every accepting configuration, M2 finishes in time

O(n(logn)k).
Let L1 ⊆ Σ⋆

1 and x ∈ Σ⋆
1 be of length n. First, assume x ∈ L1. Then f(x) ∈ L2 and by

definition of M2, M2(f(x)) accepts. Furthermore, the length of f(x) is O(nc) for some constant
c > 0. Hence M2 will finish the computation in time

O((nc)(logn
c)k2 ) = O(nc·ck2 ·(logn)k2 ) ≤ O(nlogn·(logn)k2 ) = O(n(logn)k2+1

).

Hence the total time for M1 is

nd +O(n(logn)k2+1
) = O(n(logn)k2+1

),

where O(nd) for some constant d ≥ 1 is the time used to compute the function f .
Next assume x ̸∈ L1. Then f(x) ̸∈ L2, and M2(f(x)) does not accept (i.e., rejects or

runs forever). This proves that L(M2)) = L2, and also that every accepting computation is in
quasi-polynomial time. Therefore, L1 ∈ Quasi-P.

Question (Exercise Sheet 1 Question 8). In general k-colourability is the problem of deciding,
given a graph G = (V,E), whether there is a colouring χ : V → {1, . . . , k} of the vertices such
that if {u, v} ∈ E, then χ(u) ̸= χ(v). That is, adjacent vertices do not have the same colour.

1. Show that there is a polynomial time algorithm for solving 2-colourability.

2. Show that, for each k, k-colourability is reducible to (k + 1)-colourability. What can you
conclude from this about the complexity of 4-colourability?

Answer. First recall that as explained on page 29 of the notes, k is fixed and not part of the
input.

3



1. A polynomial-time algorithm for 2-colourability can be designed based on, e.g., BFS and
colouring each vertex that is explored from the current vertex alternately. (Details and a
formal proof are omitted here, but a formal correctness proof would need to exploit that
a graph is 2-colourable if and only if the graph is bipartite (which is equivalent to having
no cycles of odd length).

2. Given any graph G = (V,E), we need to give a polynomial-time1 construction of another
graph G′ (depending on G) such that G is k-colourable if and only if G′ is (k+1)-colourable.

To this end, let G = (V,E) be given. Construct G′ = (V ′, E′) by adding a single vertex z,
i.e., V ′ = V ∪{z}. With regards to the edges, keep all edges in G and additionally connect
z to all other vertices, i.e., E′ = E ∪ {{z, u} : z ∈ V } (see Figure 1 for an illustration).

First, we note that it is clear that the construction of G′ can be done in time polynomial
in the size of the input (which is the representation of the graph G). Secondly, we will
prove the equivalence. First assume G is k-colourability. Then, by colouring z with an
extra colour, we obtain a colouring of G′ with k + 1 colours. For the other direction,
assume G′ is (k + 1)-colourable. Then, since z is connected to all other vertices, its colour
must be unique. Hence for the set V ′ \ {z} = V only k colours are used, and since the
colouring is valid for G′, it follows that the same colouring also works for V , proving that
G is k-colourable.

z

G

Figure 1: Illustration of the construction of G′.

Regarding the additional question about the complexity of 4-colourability, it was shown
in the lectures that 3-colourability is NP-complete (which means it is NP-hard, i.e., any
problem in NP can be reduced to it, and additionally, it is also in NP). By the polynomial-
time reduction above, we can reduce every problem in NP first to 3-colourability, and then
to 4-colourability. This proves that 4-colourability is NP-hard. It also easy to see that
4-colourability is in NP (for example, simply guess non-deterministically a 4-colouring).

1The question did not explicitly ask for a polynomial time reduction, but this is needed for our conclusion
about the complexity of 4-colourability.

4


