
Algorithms Example Sheet 2: Problems

Solution Notes
These notes have not be fully proofread. So if you �nd any typos/mistakes or have any suggestions (even if very
small), please do let me know.

1 Dynamic programming

Exercise 2.P.1 [Pyramid of numbers] You are given a pyramid of boxes each of which contains a
number. You start at one at the top and at each step you move to the level below in one of the adjacent
boxes. Your goal is to �nd the path with minimum sum of entries. For example, in the image below the
largest sum is achieved by the path shown:
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(a) Design an algorithm to e�ciently solve this problem.

(b) What is the time and space complexity of your approach?

(c) Write pseudocode for the top-down and the bottom-up approach.

(d) (I) Implement this algorithm. (You may want to submit your solution to [LeetCode 120])

(a) The main idea for solving this problem is to �nd the minimum sum path to each box. In particular, we
de�ne dp[i][j] to be the minimum sum path from the top to the j-th box on level i (1-based).
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Then, the table dp satis�es the following properties:

� Base case: dp[1][1] = a[1][1]

� dp[i][1] = a[i][1] + dp[i − 1][1] for i > 1, since the box on the left boundary can be reached only
through one path.

� dp[i][i] = a[i][i] + dp[i− 1][i− 1] for i > 1, since the box on the right boundary can be reached only
through one path.

� dp[i][j] = a[i][j] + min(dp[i − 1][j − 1], dp[i − 1][j]), since any box in the middle of the level can be
reached from either parent.

Then the answer is the minimum over all dp[N ][·] values.
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𝑎𝑖1 𝑎𝑖𝑗 𝑎𝑖𝑖… …𝑖 → 𝑎𝑖𝑗−1 𝑎𝑖𝑗+1

𝑎𝑖-1𝑗-1 𝑎𝑖-1𝑗𝑖-1 →

𝑎11

𝑑𝑝 𝑖-1 [𝑗-1] 𝑑𝑝 𝑖-1 [𝑗]

𝑎𝑖1 𝑎𝑖𝑗 𝑎𝑖𝑖… …𝑖 →

𝑖-1 →

𝑎11

𝑎𝑖-11 𝑎𝑖-1𝑖-1

𝑑𝑝 𝑖-1 [1] 𝑑𝑝 𝑖-1 [𝑖-1]

Note 1: As with most DP problems, (we will see when we study graphs) that this is an instance of a
shortest path problem on a DAG. However, this representation allows us to use less memory.

Note 2: We could also start from the bottom and try to reach the top box.

(b) There are n · (n − 1)/2 states and each recurrence relation equation takes O (1) time. Hence, this is an
O
(
n2
)
time algorithm. By noticing that when computing the dp[i][·] values, we only need dp[i− 1][·] we

can only store the latest row of dp, leading to O (n) memory.

(c) See the implementations below.

(d) The following is a recursive (top-down) implementation of the DP recurrence relation:

class Solution {

int dp[][];

boolean isComputed [][];

public int minimumTotal(List <List <Integer >> triangle) {

dp = new int[triangle.size()][ triangle.size()];

isComputed = new boolean[triangle.size()][ triangle.size()];

int mn = Integer.MAX_VALUE;

for (int i = 0; i < triangle.size(); ++i) {

mn = Math.min(mn , minSum(triangle , triangle.size() - 1, i));

}

return mn;

}

public int minSum(List <List <Integer >> triangle , int i, int j) {

if (isComputed[i][j]) return dp[i][j];

dp[i][j] = triangle.get(i).get(j);

if (i == 0 && j == 0) return dp[i][j];

if (j == 0) dp[i][j] += minSum(triangle , i-1, j);

else if (j == i) dp[i][j] += minSum(triangle , i-1, j-1);

else dp[i][j] += Math.min(minSum(triangle , i-1, j), minSum(triangle ,

i-1, j-1));

isComputed[i][j] = true;

return dp[i][j];

}

}

The following is an iterative (bottom-up) implementation of the DP recurrence relation which has linear
memory using memoisation:

class Solution {

public int minimumTotal(List <List <Integer >> triangle) {

int dp[][] = new int[triangle.size() ][2];

int cur = 0;

dp [0][1] = triangle.get (0).get(0);

for (int i = 1; i < triangle.size(); ++i) {

int prev = 1 - cur;

for (int j = 0; j <= i; ++j) {
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dp[j][cur] = triangle.get(i).get(j);

if (j == 0) dp[j][cur] += dp[j][prev];

else if (j == i) dp[j][cur] += dp[j - 1][ prev];

else dp[j][cur] += Math.min(dp[j][prev], dp[j-1][ prev]);

}

cur = 1 - cur;

}

int mn = dp [0][1 - cur];

for (int i = 0; i < triangle.size(); ++i) {

mn = Math.min(mn , dp[i][1 - cur]);

}

return mn;

}

}

And a shorter implementation..

/* Code by : zmith_nh */

public int minimumTotal(List <List <Integer >> triangle) {

int n = triangle.size();

if(n == 0) return 0;

int[] dp = new int[n+1];

while(n > 0){

int[] curr = new int[n];

for(int i = 0; i < curr.length; i++){

curr[i] = Math.min(dp[i], dp[i+1]) + triangle.get(n-1).get(i);

}

dp = curr;

n--;

}

return dp[0];

}

Question: Find a counterexample for the following greedy algorithms:

� Start from the root and always follow the smallest value.

� Start from the bottom and always follow the smallest value.

� Start from the root and always follow the smallest sum two steps ahead.

Exercise 2.P.2 [Longest Common Substring] The longest common substring between two strings
is de�ned as the longest (continuous) string s that appears in both strings. For example, the longest
common substring of abcarexample and simplexactcat is s = mple. Design an algorithm to retrieve
the longest common substring. What is the time and space complexity of your algorithm?

We can de�ne dp[i][j] to be the length of the longest common substring ending on the i-th character (using
indexing at 1) of the �rst string and the j-th character of the second string. Then, we make the following
observations:

1. If A[i] 6= B[j], then dp[i][j] = 0.

2. If A[i] = B[j], then dp[i][j] = dp[i− 1][j − 1] + 1.

3. The base case dp[0][x] = dp[y][0] = 0 for all x and y.

More concisely, the recurrence relation can be written as

dp[i][j] =

{
dp[i− 1][j − 1] + 1 if A[i] = B[j]

0 otherwise
.
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The longest common substring will have to end at some indices i and j, hence we have to �nd the maximum
of these values. By noticing that we always need the values of the previous row (row i− 1), we can implement
this with linear memory using memoisation.
The following solution implements the iterative longest common substring algorithm for [LeetCode 718].

class Solution {

public int findLength(int[] A, int[] B) {

int dp[][] = new int[B.length + 1][2];

int cur = 0;

int mx = 0;

for (int i = 0; i < A.length; ++i) {

for (int j = 0; j < B.length; ++j) {

if (A[i] == B[j]) dp[j+1][ cur] = dp[j][1-cur] + 1;

else dp[j+1][ cur] = 0;

mx = Math.max(mx , dp[j+1][ cur]);

}

cur = 1-cur;

}

return mx;

}

}

The following code implements the recursive version,

class Solution {

int dp[][];

public int findLength(int[] A, int[] B) {

dp = new int[A.length + 1][B.length + 1];

for (int i = 0; i <= A.length; ++i) {

for (int j = 0; j <= B.length; ++j) {

dp[i][j] = -1;

}

}

int mx = 0;

for (int i = 0; i <= A.length; ++i) {

for (int j = 0; j <= B.length; ++j) {

mx = Math.max(mx , lcs(A, B, i, j));

}

}

return mx;

}

public int lcs(int[] A, int[] B, int i, int j) {

if (dp[i][j] != -1) return dp[i][j];

if (i == 0 || j == 0) return 0;

if (A[i-1] == B[j-1]) dp[i][j] = lcs(A, B, i - 1, j - 1) + 1;

else dp[i][j] = 0;

return dp[i][j];

}

}

Note: This is a slightly simpler problem than the longest common subsequence problem, in the sense that
there are only Θ(n2) possible substrings in each string, while there are Θ(2n) possible subsequences in each
string.
Further reading: There is actually a more e�cient way to �nd the longest common substring in O (n log n)
time (using su�x arrays) or in O (n) time (using su�x trees).

Exercise 2.P.3 [Bounded knapsack] In the bounded knapsack problem each item can be used at
most ci times.
(a) How would you solve the knapsack problem by reducing it to the 0/1 knapsack? What is the time

complexity for this?

(b) (optional +) Read this article about speeding this up.
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(a) For the i-th item, we can create ci copies of it and then run the 0/1 knapsack algorithm. There will be a
total of

∑n
i=1 ci items, so the time complexity of the approach in Exercise ?? will take O ((

∑n
i=1 ci) · C)

time.

(b) One of the approaches in the article, instead of creating ci copies of the i-th item, it creates blog2 cic ≤
log2 C items with weights wi, 2 ·wi, 2

2 ·wi, 2
3 ·wi, . . . and values vi, 2 ·vi, 22 ·vi, 23 ·vi, . . .. These correspond

to grouping the elements in groups of size a power of 2. Then, if the optimal solution uses x instances of
item i, then this can be achieved by picking the groups whose index appears in the binary representation
of x. For example, if x = 1010112, then we should take the groups with weight wi, wi · 21, wi · 23, wi · 25.
Hence, this takes Θ((n log2 C) · C).

Exercise 2.P.4 [Unbounded knapsack]
(a) Extend your solution for 0/1 knapsack to the case where you have an in�nite supply of each item.

(b) What is the time and space complexity of your approach?

(c) (I) Implement the algorithm and test your solution on [GeeksForGeeks Unbounded knapsack].

(d) Explain how you can modify your algorithm to count the number of optimal subsets.

(a) One way would be to add bC/wic instances of item i and run the 0/1 knapsack problem (or the bounded
knapsack problem) and get a solution with running time Θ((

∑n
i=1bC/wic) · C) (or Θ((n · log2 C) · C)).

Another way that is faster is to notice that if we �ll in the dp[i][·] array from bottom to top, then we
e�ectively allow re-using an item many times. For example if the dp array before processing item with
wi = 3 (vi = 20), was the following Then one update, gives the following The second update does not

0 1 2 3 4 5 6 7 8 9 10
0 −∞ 2 −∞ 6 −∞ 8 −∞ 12 −∞ 14

0 1 2 3 4 5 6 7 8 9 10
0 −∞ 2 20 6 −∞ 8 −∞ 12 −∞ 14

update the array, the third update gives: And the interesting part is that the fourth update, uses the

0 1 2 3 4 5 6 7 8 9 10
0 −∞ 2 20 6 25 8 −∞ 12 −∞ 14

entry where the i-th item was used (namely 3): More formally, the recurrence relation is given by (the
underlined part indicates the di�erence from the 0/1 knapsack):

dp[i][w] =


0 if i = 0 ∧ w = 0

−∞ if i = 0 ∧ w > 0

max(dp[i− 1][w], vi + dp[i][w − wi]) otherwise

and the following code implements this approach:

class Solution{

static int knapSack(int N, int W, int val[], int wt[]) {

int dp[] = new int[W + 1];

for (int i = 1; i <= W; ++i) dp[i] = Integer.MIN_VALUE;

int mx = 0;

for (int i = 0; i < N; ++i) {

for (int j = wt[i]; j <= W; ++j) {

if (dp[j - wt[i]] != Integer.MIN_VALUE)

dp[j] = Math.max(dp[j], val[i] + dp[j - wt[i]]);

mx = Math.max(mx , dp[j]);

}

}

return mx;

}

}
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0 1 2 3 4 5 6 7 8 9 10
0 −∞ 2 20 6 25 40 −∞ 12 −∞ 14

(b) If two (or more) items have the same weight, then we can keep only the one with smallest value. We keep
c[i][w] the count of con�gurations that lead to the value dp[i][w]. Whenever we �nd a way to make w using
the i-th item leading to a new best (i.e. dp[i− 1][w] < vi + dp[i][w −wi]), we set the counter at c[i][w] =
c[i][w−wi]. If dp[i−1][w] = vi +dp[i][w−wi], then we set the counter at c[i][w] = c[i−1][w]+c[i][w−wi].

The base case c[0][0] = 1.

Exercise 2.P.5 [Knapsack variants]
(a) Given an array of positive integers ≤ U , determine if it is possible to partition the array into two

sets so that they have the same sum. [LeetCode 416]

(b) You are given an array of binary strings strs and two integers m and n. Return the size of the
largest subset of strs such that there are at most m 0's and n 1's in the subset. [LeetCode 474]

(c) You are given an integer n and you are asked to break it into the sum of k positive integers, where
k ≥ 2, so as to maximise the product of those integers. [LeetCode 343]

(a) class Solution {

public boolean canPartition(int[] nums) {

int sum = 0;

for (int v : nums) sum += v;

if (sum % 2 == 1) return false;

boolean dp[] = new boolean[sum + 1];

dp[0] = true;

for (int i = 0; i < nums.length; ++i) {

for (int j = sum; j >= nums[i]; --j) {

dp[j] |= dp[j - nums[i]];

}

}

return dp[sum / 2];

}

}

(b) The idea is to keep track of the number of 0's and 1's in the same way that classical knapsack keeps track
of the weights, i.e. by adding one more dimension. The following implementation takes O

(
n · C2

)
time

and ΘC2 space.

class Solution {

public int countZeros(String s) {

int zeros = 0;

for (int i = 0; i < s.length (); ++i) {

if (s.charAt(i) == '0') ++ zeros;

}

return zeros;

}

public int findMaxForm(String [] strs , int m, int n) {

int [][] dp = new int[m+1][n+1];

dp [0][0] = 1;

int mx = 1;

for (int i = 0; i < strs.length; ++i) {

int zeros = countZeros(strs[i]);

int ones = strs[i]. length () - zeros;

for (int j = m; j >= zeros; --j) {

for (int k = n; k >= ones; --k) {

if (dp[j-zeros][k-ones] >= 0) dp[j][k] = Math.max(dp[j][k],

dp[j-zeros ][k-ones] + 1);

mx = Math.max(mx , dp[j][k]);

}

}

6

https://leetcode.com/problems/partition-equal-subset-sum/
https://leetcode.com/problems/ones-and-zeroes/
https://leetcode.com/problems/integer-break/


}

return mx - 1;

}

}

(c) Let dp[i] be the maximum product that can be made by breaking i into parts. Then,

dp[i] = max(i− 1i=n, max
1<j<i

j · dp[i− j]).

class Solution {

public int integerBreak(int n) {

int dp[] = new int[n + 1];

dp[1] = 1;

for (int i = 2; i <= n; ++i) {

dp[i] = i - 1;

// If i is not the target , then we can make a product of i.

if (i < n) dp[i] += 1;

for (int j = 1; j < i; ++j) {

dp[i] = Math.max(dp[i], j * dp[i - j]);

}

}

return dp[n];

}

}

Exercise 2.P.6 [Change-making]
(a) Recall the change-making problem (de�ne in FoCS). Design a DP algorithm to determine if it is

possible to make change for value C. How does the running time compare to that of the FoCS
solution?

(b) (I) Implement the algorithm for �nding the

(c) How would you �nd the way to make a change w using the fewest number of coins?

(d) Design an algorithm for counting the number of ways of making change.

(e) (I) Implement the algorithm for counting the ways of making change. You can test your imple-
mentation on [LeetCode 518].

(a) We change the recurrence relation of the unbounded knapsack problem such that dp[w] indicates whether
or not we can make a change of value w. Then,

dp[i][w] =


T if i = 0 ∧ w = 0

F if i = 0 ∧ w > 0

dp[i− 1][w] ∨ dp[i][w − wi] otherwise

(b) The following code implements this approach:

public int coinChange(int[] coins , int amount) {

boolean dp[] = new boolean[amount + 1];

for (int coin : coins) {

for (int j = coin; j < amount; ++j) {

dp[j] |= dp[j - coin];

}

}

return dp[amount ];

}

(c) We can just convert the problem to the unbounded knapsack problem where the value of each item is 1.

(d) Instead of using a boolean for the value we can use a counter:

count[i][w] =


1 if i = 0 ∧ w = 0

0 if i = 0 ∧ w > 0

count[i− 1][w] + count[i][w − wi] otherwise

7

https://leetcode.com/problems/coin-change-2/


Again, we can implement this using ΘC memory.

(e) The following code implements this approach:

class Solution {

public int change(int amount , int[] coins) {

int count [] = new int[amount + 1];

count [0] = 1;

for (int coin : coins) {

for (int j = coin; j <= amount; ++j) {

count[j] += count[j - coin];

}

}

return count[amount ];

}

}

Note: There exist some more e�cient ways of solving this problem. These are described in [? ] and [? ] (see
here and here).

Exercise 2.P.7 [Seam Carving]
(a) Watch this video of seam carving in action (or if you are very interested, this extended one).

(b) Attempt Problem 15.8 in CLRS to see how it is implemented.

The solution is similar to the pyramid problem. We need to �nd the shortest path from one parallel edge to
the other.

Exercise 2.P.8 Attempt [2019P1Q7].

See of�cial solution notes

Exercise 2.P.9 [Max-cost independent set on trees] (optional) Attempt problem 15.6 in CLRS.

You are given a (rooted) tree and you need to select some of the vertices so that you do not select two adjacent
ones.
We can solve this using the following dynamic programming algorithm. Let

� dp[v][0] be the max-cost independent set for the subtree of v without using v in the solution.

� dp[v][1] be the max-cost independent set for the subtree of v including v in the solution.

The motivation for this de�nition is that in order to �nd the max-cost independent set for the subtree of v, we
need to know whether its children were chosen or not. If any of the children was chosen, then we cannot choose
v. Otherwise, we can choose the best of the two. This gives rise to the following recurrence relations:

dp[v][0] =

{
0 if children(v) = ∅,∑

c∈children(v) max(dp[c][0], dp[c][1]) otherwise

dp[v][1] =

{
0 if children(v) = ∅,
p[v] +

∑
c∈children(v) dp[c][0] otherwise

where p[v] is the price of v.
Questions: Find counterexamples for the following greedy algorithms:

� In each step choose the vertex with most fewest neighbours (and none of them being in the cover) and
include it to the cover.

� Choose either the vertices in the odd levels or the even levels to be in the min-cover.
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Exercise 2.P.10 [Longest Increasing Subsequence] The longest increasing subsequence of sequence
a1, . . . , an is the longest subsequence ai1 , ai2 , . . . , aik such that i1 ≤ i2 ≤ . . . ≤ ik and ai1 ≤ ai2 ≤ . . . ≤
aik . For example, in the sequence [4; 2; 3; 7; 5; 1; 2; 9] the longest increasing subsequence is [2; 3; 5; 9].
(a) Design an algorithm to solve this problem.

(b) (I) Implement the LIS algorithm. You may want to test your implementation on [LeetCode 300].

(c) Explain how you could retrieve a longest increasing subsequence.

(d) (+) Think how you could use binary search to improve the time complexity of your algorithm to
O (n log n).

(a) Let dp[i] be the longest increasing subsequence terminating at i. In order to determine this, we can look
at all possible previous elements a[j] in the sequence such that a[j] < a[i], and we could extend their LIS
by one. If there are none, then dp[i] = 0, otherwise it is dp[i] = 1. Hence, the recurrence equation is given
by

dp[i] = max(1, max
j<i,a[j]<a[i]

dp[j] + 1).

(b) class Solution {

public int lengthOfLIS(int[] nums) {

int dp[] = new int[nums.length ];

int mx = 1;

for (int i = 0; i < nums.length; ++i) {

dp[i] = 1; // Sequence with {nums[i]}

for (int j = 0; j < i; ++j) {

if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {

dp[i] = dp[j] + 1;

}

}

mx = Math.max(mx , dp[i]);

}

return mx;

}

}

(c) For each element i we keep the element that lead to the best sequence. The following code implements
this:

public class LongestIncreasingSubsequence {

public static int[] findALIS(int[] nums) {

int dp[] = new int[nums.length ];

int par[] = new int[nums.length ];

int mx = 1, maxValue = 0;

for (int i = 0; i < nums.length; ++i) {

dp[i] = 1; // Sequence with {nums[i]}

par[i] = -1;

for (int j = 0; j < i; ++j) {

if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {

dp[i] = dp[j] + 1;

par[i] = j;

}

}

if (dp[i] > mx) {

mx = dp[i];

maxValue = i;

}

}

// Reconstruct the LIS.

int cur = maxValue;

int lis[] = new int[mx];

while (cur != -1) {

lis[--mx] = nums[cur];

cur = par[cur];
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}

return lis;

}

public static void main(String [] args) {

int[] ans = findALIS(new int[] {10,9,2,5,3,7,101,18});

for (int v : ans) System.out.println(v);

}

}

(d) We make the following observation:

Observation: If i < j and a[i] < a[j], then dp[i] < dp[j].

Proof. Assume otherwise, i.e. that dp[i] ≥ dp[j], then we could extend the LIS at i by appending a[j] to
obtain a sequence of length dp[i] + 1 > dp[j]. This contradicts the optimality of dp[j].

Hence, if we keep sorted[i][j] to be the smallest element for a LIS of length j using the �rst i elements,
then sorted[i][·] will be sorted in increasing order. For item a[i] we can �nd the longest sequence ending at
this item by binary searching the largest index k such that sorted[i− 1][k] < a[i]. Then sorted[i][k+ 1] =
min(sorted[i− 1][k+ 1], a[i]). Since we are only updating one entry, we do not need a new array for each
i.

This takes O (n log n) time and a sample implementation is shown below:

class Solution {

public int lengthOfLIS(int[] nums) {

int sorted [] = new int[nums.length + 1];

sorted [0] = Integer.MIN_VALUE;

int right = 0;

for (int i = 0; i < nums.length; ++i) {

int v = 1; // Sequence with {nums[i]}

int st = 0, en = right;

while (st < en) {

// Note the +1.

int mn = (st + en + 1) / 2;

if (sorted[mn] < nums[i]) st = mn;

else en = mn - 1;

}

v = st + 1;

if (v > right) {

sorted[v] = nums[i];

++right;

} else sorted[v] = Math.min(sorted[v], nums[i]);

}

return right;

}

}

Further reading 1: The van Embde Boas data structure (which used to be part of the course) is a data
structure that allows �nding the predecessor/successor and do insertion for integers in [1, U ] in O (log logU)
time. Hence, the binary search part of the LIS algorithm can be implemented in O (log log n) time, giving a
total complexity of O (n log log n).
Further reading 2: Read the paper �On computing the length of longest increasing subsequences� (1974)
by Michael L. Fredman (from example from here) and describe the Ω(n log n) lower bound for the longest
increasing subsequence problem in the comparison model.

Exercise 2.P.11 [Longest Palindromic Subsequence] A palindrome is a string that reads the same
way forwards and backwards, e.g. abcba. The longest palindromic subsequence of a1, . . . , an is the longest
subsequence that is a palindrome. For example, s = anotherexample then LPS is aerea. Design an
algorithm that e�ciently solves this problem. (If you prefer you can attempt [2013P1Q6])

10

https://www.sciencedirect.com/science/article/pii/0012365X7590103X
https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2013p1q6.pdf


(Solution 1) Let dp[i][j] be the longest palindromic subsequence in s1, . . . , sj . Then for j = i, dp[i][i] = 1 and
dp[i][i+ 1] = 2 if si = si+1, otherwise it is 1. In the general case the longest palindromic subsequence for [i, j] is
either thee longest palindromic subsequence for [i+ 1, j] or for [i, j − 1] or dp[i+ 1][j − 1] + 1 is si = sj . Hence,
we get the following recurrence relation,

dp[i][j] =



1 if j = i

1 if j = i+ 1 ∧ si 6= si+1

2 if j = i+ 1 ∧ si = si+1

max(dp[i+ 1][j], dp[i][j − 1]) j > i+ 1 ∧ si = si+1

max(dp[i+ 1][j], dp[i][j − 1], 1 + dp[i+ 1][j − 1]) otherwise

This gives an Θ(n2) algorithm. We can implement this using Θ(n2) memory:

class Solution {

public int longestPalindromeSubseq(String s) {

int dp[][] = new int[s.length ()][s.length ()];

for (int len = 0; len < s.length (); ++len) {

for (int i = 0; i + len < s.length (); ++i) {

if (len == 0) dp[i][i] = 1;

else if (len == 1) dp[i][i+1] = 1 + (s.charAt(i) == s.charAt(i+1) ?

1 : 0);

else {

dp[i][i + len] = Math.max(dp[i][i + len - 1], dp[i+1][i + len]);

if (s.charAt(i) == s.charAt(i+len)) {

dp[i][i + len] = Math.max(dp[i][i + len], 2 +

dp[i+1][i+len -1]);

}

}

}

}

return dp[0][s.length () -1];

}

}

or using Θ(n) space by observing that when computing dp[i][i+ `] we only need the entries dp[i][i+ `− 1] and
dp[i][i+ `− 2].

class Solution {

public int longestPalindromeSubseq(String s) {

int dp[][] = new int[s.length ()][3];

for (int len = 0; len < s.length (); ++len) {

for (int i = 0; i + len < s.length (); ++i) {

if (len == 0) dp[i][0] = 1;

else if (len == 1) dp[i][1] = 1 + (s.charAt(i) == s.charAt(i+1) ? 1

: 0);

else {

dp[i][len%3] = Math.max(dp[i][(len -1)%3], dp[i+1][(len -1) %3]);

if (s.charAt(i) == s.charAt(i+len)) {

dp[i][len%3] = Math.max(dp[i][len%3], 2 +

dp[i+1][(len -2) %3]);

}

}

}

}

return dp[0][(s.length () -1)%3];

}

}

(Solution 2) An alternative solution is to �nd the LCS between the string s and its reverse ←−s . This gives an
Θ(n2) time and Θ(n) algorithm.
The reason why it works is not obvious. Of course every palindromic subsequence corresponds to a common
subsequence of s and ←−s . It remains to show the reverse direction, i.e. that if there is an LCS of length `, then
there is a common subsequence of the same length that is palindromic.
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Assume that the LCS consists of indices a1 < . . . < a` and b1 > . . . > b` (in the original string) and let
m = b`/2c. If am ≤ bm, then we can construct the index sequences a1 < . . . < am ≤ bm < bm−1 < . . . < b1 and
b1 > b2 > . . . > bm ≥ am > . . . > a1, which is palindromic and has length at least `.
Otherwise, construct the sequence b` < b`−1 < . . . < bm < am < . . . < a` and a` > a`−1 > . . . > am > bm >
. . . > b`.

Fact 7.2 in this paper

Exercise 2.P.12 [Bring your own problem I] Find at least one problem solvable using dynamic
programming and attempt to solve it (or just bring it to the supervision and be ready to discuss it).
(One possible source is the end of Chapter 15 in CLRS)

Greedy algorithms

Exercise 2.P.13 [Minimising waiting time at the queue] There are n customers waiting at a
supermarket queue. You know that the i-th person will take ti minutes to be served. You want to �nd
the order to serve the n customers, which minimises the total waiting time. For example, if t1 = 5,
t2 = 7 and t3 = 2, then serving customer 2 (waits 0 minutes), then 3 (waits 7 minutes) and 1 (waits 7+2
minutes) gives a total of 16 minutes (which is not optimal).
(a) Design an algorithm to �nd the optimal order to serve the customers.

(b) Prove that your algorithm is optimal.

(a) The time is minimised when serving the customers in decreasing order of ti. So, an algorithm for this
would be sort the serving times and then serve the one that is �rst, then the one that is second, and so
on.

Consider the serving sequence i1, . . . , in, then the total waiting time is

0 + t11 + (ti1 + ti2) + (ti1 + ti2 + ti3) + . . . =

n−1∑
j=1

j∑
k=1

tik .

By grouping terms, this is equal to

t1 · (n− 1) + t2 · (n− 2) + t3 · (n− 3) + . . . =

n−1∑
j=1

(n− j)tij .

Now, we are ready to prove that the algorithm produces the minimal total waiting time. Assume that the
optimal sequence is not sorted. Then, tij < tik but j > k. Hence, the cost contributed by these two terms
is tij · (n− j) + tik(n− k). If we swapped them around, then the cost would be tij · (n− k) + tik(n− j).
Let's compare the two by taking their di�erence,

tij · (n− j) + tik(n− k)− tij · (n− k) + tik(n− j) = tij (k − j) + tik(j − k) = (j − k)(tik − tij ),

which is > 0, since both j−k > 0 and tik− tij > 0. This means that by making this swap we are reducing
the cost for the optimal solution (contradiction).

Note: As we will see in Exercise 14 is an instance of the re-arrangement inequality.

Exercise 2.P.14 [Rearrangement inequality] You are given positive values a1, . . . , an and b1, . . . , bn.
Design an algorithm that pairs them up (say using an bijection f : [n] → [n]) so that

∑n
i=1 aibf(i) is

minimised. Prove that your algorithm is optimal.

The idea is to sort the two sequences and obtain a′1, . . . , a
′
n and b′1, . . . , b

′
n. Then, their inner product is

minimised when multiplying the terms of a′ with terms of b′ in reverse order:

n∑
i=1

a′ib
′
n−i+1.
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This requires O (n log n) time to �nd by sorting the two sequences.
To prove that this is optimal, we follow an exchange argument as in the previous exercise. Assume that the
matching is not as above, then there exist j < k such that b′f(j) < b′f(k). Then the contribution of this to the

value is a′j · b′f(j) + a′k · b′f(k). If we swap these matchings, then the contribution is a′j · b′f(k) + a′k · b′f(j). Let's
compare these by taking their di�erence,

a′j · b′f(j) + a′k · b′f(k) − a
′
j · b′f(k) + a′k · b′f(j) = a′j(b

′
f(j) − b

′
f(k)) + a′k(b′f(k) − b

′
f(j) = (a′j − a′k)(b′f(j) − b

′
f(k)),

which is > 0 since a′j < a′k and b′f(j) < b′f(k). Hence, by swapping j ↔ i we get a smaller value than the optimal

(contradiction).

Exercise 2.P.15 [Fractional knapsack] You are given a knapsack of capacityW . There are n di�erent
types of cheese with weight xi and total value ci. You can choose to include a fractional amount of cheese
in your knapsack. Design an algorithm to maximise the value of cheese in your knapsack. (You can submit
your solution [GeeksForGeeks FractionalKnapsack]).

The solution is to sort the cheese by value per weight and include as much of the cheese at the highest value
as their is available and �ts in the knapsack, then continue with the second and so on. This takes O (n log n)
time.
To prove this is correct assume that we included x > 0 units of weight from cheese i, when there existed some
cheese j with higher value to weight ratio than i, that we did not fully use (say y left). Then by replacing these
z = min(x, y) > 0 units of cheese i with z units of cheese j we increase the value that can be added to the
knapsack.

/*

class Item {

int value , weight;

Item(int x, int y){

this.value = x;

this.weight = y;

}

}

*/

class Solution {

// Function to get the maximum total value in the knapsack.

double fractionalKnapsack(int W, Item arr[], int n) {

Arrays.sort(arr , new Comparator <Item >() {

public int compare(Item o1, Item o2) {

return Double.compare(o2.value / (( double) o2.weight), o1.value /

(( double) o1.weight));

}

});

double value = 0.0;

for (Item it : arr) {

if (W >= it.weight) {

W -= it.weight;

value += it.value;

} else {

value += it.value * W / ( (double) it.weight);

break;

}

}

return value;

}

}

Further reading: It is possible to implement this in O (n) expected time using a modi�cation of Quickselect
for computing the weighted median.

Exercise 2.P.16 Attempt [2015P1Q8].
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Exercise 2.P.17 [Supervision scheduling] I have n supervisions to schedule. Supervision i starts at
time ai and ends at time bi.
(a) Help me �nd the minimum number of supervisions that I will have to reschedule so that I do not

have any overlapping ones.

[Source: Hayk Saribekyan]

(b) (I) Implement your approach. You may test your implementation on [LeetCode 435].

(c) What if the tasks were not supervisions and they were meetings; and each meeting has a di�erent
weight of importance. How do you maximise the total weight of the meetings you attend?

(d) (I) Implement your approach. You may test your implementation on [LeetCode 1235].

(a) A key observation is that we can always include the supervision that ends soonest (smallest ending time).
Consider an optimal subset of intervals and assume that it does not use the interval that ends soonest,
then by replacing the leftmost interval with the interval that ends soonest, we give room for more intervals.

⟹

Still optimal and we also have some more spare space

Now, this generalises to an arbitrary position. Assume that we have found the optimal subset of intervals
up to position x, then the next interval to be added is going to be the interval that starts after x and
ends soonest. The proof for why this works is similar to case of the earliest ending interval. Consider all
intervals that start after x and assume that we had chosen a di�erent interval, then by swapping it with
the one ending soonest we obtain a valid solution:

⟹

Still optimal and we also have some more spare space

Hence, we can formalise this as a proof by induction: The n intervals produced by the algorithm are part
of an optimal solution. The base case follows from the �rst observation and the inductive step follows
from the argument above.

This hints to the following algorithm:

1. Sort the intervals by ending position.

2. As iterating through the sorted intervals keep the ending r of the last interval (which is the rightmost
ending). If the current interval begins after r then add it to the solution and update r.

This gives an O (n log n) algorithm.

Question 1: Why are we saying that this produces an optimal solution? Because there could be multiple
solutions with the same cardinality,

Question 2: What time would you suggest to a supervisor that is allocating slots using this algorithm?
The earliest possible (maybe a minute earlier than that).

(b) Here is one possible implementation:

class Solution {

public int eraseOverlapIntervals(int [][] intervals) {

Arrays.sort(intervals , new Comparator <int[]>(){
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@Override

public int compare(int[] a, int[] b) {

return Integer.compare(a[1], b[1]);

}

});

// we should always take the interval that ends soonest.

int recent_end = intervals [0][1];

int total = 1;

for (int i = 1; i < intervals.length; ++i) {

if (intervals[i][0] >= recent_end) {

recent_end = intervals[i][1];

++total;

}

}

return intervals.length - total;

}

}

Note: If the coordinates are integers and the range is small (for example the supervision times are at
:00, :15, :30, :45 of an hour), then we could use counting sort.

(c) If each meeting has a weighting then we can see that the above algorithm does not work. For example,
consider the following con�guration:

vs
1 1

5

Score: 2
1 1

5

Score: 5

Instead, we formulate a recurrence relation, that we solve using DP. Let dp[x] be the maximum pro�t
until time x. Then, if s0 is the starting time, si and ej is the starting and ending time of the i-th interval
and pi is the weight,

dp[x] =

{
0 if x = s0,

max(dp[x],maxj:ej=x dp[sj ] + pj) otherwise.

This requires O (n log n) time for sorting (and mapping the coordinates in [0, 2n− 1]) and O (n) space.

(d) Here is a sample implementation:

class Solution {

static class Event {

int x;

int intervalId;

boolean isStart;

Event(int x, int intervalId , boolean isStart) {

this.x = x;

this.intervalId = intervalId;

this.isStart = isStart;

}

};

public int jobScheduling(int[] startTime , int[] endTime , int[] profit) {

Event events [] = new Event[2 * startTime.length ];

for (int i = 0; i < startTime.length; ++i) {

events [2 * i] = new Event(startTime[i], i, true);

events [2 * i + 1] = new Event(endTime[i], i, false);

}

// Make timestamps unique.

Arrays.sort(events , new Comparator <Event >() {

@Override

public int compare(Event a, Event b) {

if (a.x == b.x) return a.isStart ? 1 : -1;

return Integer.compare(a.x, b.x);

15



}

});

int prev = -1, cur_x = -1;

for (int i = 0; i < events.length; ++i) {

if (prev != events[i].x) {

++cur_x;

prev = events[i].x;

}

events[i].x = cur_x;

if (events[i]. isStart) startTime[events[i]. intervalId] = cur_x;

}

// Solve the DP recurrence.

int dp[] = new int[cur_x + 1];

for (int i = 0; i < events.length; ++i) {

int x = events[i].x;

if (x > 0) dp[x] = Math.max(dp[x], dp[x - 1]);

if (! events[i]. isStart) {

int id = events[i]. intervalId;

dp[x] = Math.max(dp[x], dp[startTime[id]] + profit[id]);

}

// System.out.println(x + " : " + dp[x]);

}

return dp[cur_x];

}

}

Exercise 2.P.18 [Invigilator scheduling]We want to �nd invigilators to cover the time interval [S, T ].
We have received several o�ers from person i to invigilate in the interval [ai, bi]. Find the minimum
number of invigilators needed to cover the time interval [S, T ].
If you implement your algorithm, you can test your implementation on [LeetCode 1326].

The solution is greedy. Assume we have covered the interval [S, x], then the next interval to choose should be
the interval i with si ≤ x and ending point ei as large as possible. Assuming at some point the optimal solution
has a di�erent interval, then by replacing this interval with the one that ends farthest, we can cover at least as
much time as the other interval, hence, it produces a solution that is at least as good.
Hence, to �nd the number of intervals needed to cover [S, T ] we sort the intervals and then apply this procedure
in O (n log n) time and O (n) space.
The following implementation solves the problem:

class Solution {

static class Interval {

int s, e;

Interval(int s, int e) {

this.s = s;

this.e = e;

}

};

public int minTaps(int n, int[] ranges) {

Interval intervals [] = new Interval[ranges.length ];

for (int i = 0; i < ranges.length; ++i) {

intervals[i] = new Interval(i - ranges[i], i + ranges[i]);

}

Arrays.sort(intervals , new Comparator <Interval >() {

@Override

public int compare (Interval a, Interval b) {

return Integer.compare(a.s, b.s);

}

});

int covered_up_to = 0, cur_rightmost = 0, total = 0;

for (int i = 0; i < intervals.length && covered_up_to < n; ++i) {
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// System.out.println ("(" + intervals[i].s + ", " + intervals[i].e + ")");

// System.out.println (" Rightmost: " + cur_rightmost);

if (intervals[i].s > cur_rightmost) break;

if (intervals[i].s > covered_up_to) {

covered_up_to = cur_rightmost;

// System.out.println ("New interval up to : " + cur_rightmost);

++total;

}

if (intervals[i].e > cur_rightmost) {

cur_rightmost = intervals[i].e;

if (cur_rightmost >= n) {

covered_up_to = cur_rightmost;

++total;

}

}

}

if (covered_up_to < n) return -1;

return total;

}

}

Exercise 2.P.19 [Necklace] You have a necklace with n beads b1, . . . , bn. There are k types of beads
(for convenience we number these between 0 and k− 1). We want to �nd the smallest (continuous) part
of the necklace that contains all k di�erent types (if such exists). (Aim for an O(n) algorithm)
If you want you can test your implementation on [LeetCode 76].

We can use a hash table to keep track of the beads that we have already encountered. By looping through
positions 0, . . . , x, we can determine when we have encountered all k beads by keeping a counter cnt that is
incremented each time we see a bead with 0 count in the hash table. Hence, after this loop we have the smallest
position x such that [0, x] contains all beads, or know that there does not exist such position.
Now assuming that we know the smallest interval [`, j] ending at j (which must be ≥ x) that contains all bead
types. Then to �nd the smallest interval ending at j + 1 containing all bead types, we add bj+1 to the hash
table and start removing beads from the left, i.e. remove b` as long as the count in the hash table is at least 2.

class Solution {

public:

int norm(int c) {

return c + 128;

}

vector <int > countChars(const string& s) {

vector <int > count (256, 0);

for (char c : s) {

++count[norm(c)];

}

return count;

}

string minWindow(string s, string t) {

std::vector <int > target = countChars(t);

std::vector <int > found (256, 0);

int en = 0;

int count = 0;

int min_idx = -1;

int min_len = -1;

for (int k = 0; k < s.size(); ++k) {

// Remove the previous value.

if (k != 0) {

int prev = norm(s[k-1]);

if (found[prev] <= target[prev]) {
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--count;

}

--found[prev];

}

// Reach the best place for the current value.

while (count != t.size() && en < s.size()) {

int cur = norm(s[en]);

++found[cur];

if (found[cur] <= target[cur]) {

++count;

}

++en;

}

// If no such value exist , then break.

if (en == s.size() && count != t.size()) {

break;

}

// Else: update the current best.

int cur_len = en - k;

if (min_idx == -1 || min_len > cur_len) {

min_len = cur_len;

min_idx = k;

}

}

if (min_idx == -1) {

return "";

}

return s.substr(min_idx , min_len);

}

};

Exercise 2.P.20 [Facility location in 1D] Given n points on the x-axis with coordinates xi, �nd the
optimal position x∗ so as to minimise

f(x∗) =

n∑
i=1

|x∗ − xi|.

[Hint: How does f(x∗) change as we move x∗ from −∞ to ∞?]

Exercise 2.P.21 [Bring your own problem II] Find at least one problem solvable using a greedy
approach and attempt to solve it (or just bring it to the supervision and be ready to discuss it).

Divide and conquer

Exercise 2.P.22 [Counting inversions] Modify merge sort to count the number of pairs i < j such
that A[i] > A[j] in O(n log n) time. How does this help us count the number of swaps performed by
insertion sort?
If you want you can test your implementation on [GeeksForGeeks Count Inversions].

(Solution 1) We can use a modi�cation of mergesort. We count the number of inversions in each half of the
array recursively. Then we need to count the number of inversions between the two halves. For each element
j of the upper half, we will count the number of elements in the �rst half that are larger that A[j]. At the
moment we insert j in the merged array, there are n1− i1 remaining elements in the �rst array and all of these
will be larger than A[j]. Since we are counting the number of inversions for the smaller item, we do not need
to count the number of inversions for the larger elements (otherwise, we would double count).
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Note: We need to take special care when dealing with equal elements, so that we do not count them as
inversions. In the implementation below, in case of equality we insert the element from the �rst part of the
array, so that it is not counted in the second branch.

class Solution {

// arr[]: Input Array

// N : Size of the Array arr[]

// Function to count inversions in the array.

static long inversionCount(long arr[], long N) {

return mergeCount(arr , 0, (int) N - 1);

}

static long mergeCount(long arr[], int i, int j) {

if (i == j) return 0;

int mid = (i + j) / 2;

long cnt1 = mergeCount(arr , i, mid);

long cnt2 = mergeCount(arr , mid + 1, j);

long cntMerge = 0;

long tmp[] = new long[j - i + 1];

int out = 0, i1 = i, i2 = mid + 1;

while (i1 <= mid || i2 <= j) {

if (i2 == j + 1 || (i1 <= mid && arr[i1] <= arr[i2])) {

tmp[out] = arr[i1];

++i1;

} else {

tmp[out] = arr[i2];

++i2;

cntMerge += (mid - i1 + 1);

}

++out;

}

for (int k = 0; k < tmp.length; ++k) {

arr[i + k] = tmp[k];

}

return cnt1 + cnt2 + cntMerge;

}

}

(Solution 2) Another way to do this is to count for each (�xed) i the number of items j < i such that
A[i] < A[j]. This can be done by iterating trough the numbers from 0, . . . , i−1 and storing them inside a RBT
(with subtree sizes). Then we can count the number of items larger than A[i]. Each query takes O (log n) time,
hence it gives a total of O (n log n) time.

Exercise 2.P.23 [Closest pair of points] (+) In the closest-pair-of-points problem you are given a
collection of N points {(xi, yi)}Ni=1 on the 2D (Euclidean plane). The goal is to �nd two points with the
smallest distance. This exercise guides you through the analysis of the algorithm presented here. It will
probably not be clear why scanning �nds the smallest distance.
(a) Argue that you can implement the time complexities shown on the right of the algorithm.

(b) Argue that the time complexity of the algorithm is O
(
n log2 n

)
.

(c) In the scanning step, why do we consider only points within a distance of δ from the median?

(d) Argue that two points in a square of side length δ/2 have distance less than δ.

(e) (+) By considering a point P within a distance of δ from the median, use the following diagram
(or otherwise) to argue that we need to check at most the next 8 points from the other side (in the
y-sorted sequence of the points in the strip).
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P
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(f) Argue that you can implement sorting by y coordinates in O (n) time (in each recursive call). Show
that the new algorithm takes O (n log n) time.

The slides contain the solution for the analysis of the algorithm.
Note 1: We are assuming that distances can be computed in O (1) time, while in practice this is not realistic.
Note 2: This is actually the optimal time complexity in the comparison-based model.

Exercise 2.P.24 [Range sum queries (I)] In the range sum query problem, we are given an array
with n elements and operations of the form:

1. Update index i to value v.

2. Query the sum of the entries from index i to index j.

(a) Give a simple algorithm that solves the problem in O (1) per update and O (n) per query.

(b) Give an algorithm that solves the problem in O (n) per update and O (1) per query.

(c) (+) Split the array into sub-arrays of size roughly
√
n. By keeping the sum for each sub-array

separately, argue (in detail) that you can support both operations in O (
√
n) time.

Exercise 2.P.25 [Range sum queries (II)] In this exercise, we will examine a slightly di�erent
approach to the range sum query problem than the one we took in Exercise 24. We will store a binary
tree whose root maintains the sum of elements in [1, n]. This root will have two children the left one
storing the sum of elements in [1, n/2] and the right one storing the sum for [n/2 + 1, n]. The following
diagram shows the case for n = 16.

[1, 16]

[1, 8]

[1, 4]

[1, 2] [3, 4] [5, 6]

[5, 8]

[7, 8]

[9, 16]

[9, 12] [13, 16]

[9, 10] [11, 12] [13, 14] [15, 16]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

(a) How many nodes are there in this binary tree? What is the height of the tree?

(b) Think how you would implement the update operation.

(c) (+) In order to update element i we start from the root and follow the sub-interval containing i.
What is the worst-case time complexity of this operation? (See �gure below for updating index 6)
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[1, 16]

[1, 8]

[1, 4]

[1, 2] [3, 4] [5, 6]

[5, 8]

[7, 8]

[9, 16]

[9, 12] [13, 16]

[9, 10] [11, 12] [13, 14] [15, 16]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

(d) Think how you would implement the query operation.

(e) (++) In order to query the sum from elements [i, j], we start from the root and we recursively
consider the following cases (assuming [u, v] is the interval of the current node):

� If [u, v] ⊂ [i, j], then return the sum of the node without exploring its children.

� If [u, v] ∩ [i, j] = ∅, then return 0.

� Otherwise, recursively call both children and sum their answers.

What is the time complexity for this operation? (See �gure below for querying the sum in [4, 14])

[1, 16]

[1, 8]

[1, 4]

[1, 2] [3, 4] [5, 6]

[5, 8]

[7, 8]

[9, 16]

[9, 12] [13, 16]

[9, 10] [11, 12] [13, 14] [15, 16]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

Visited

Contained
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