
Algorithms Example Sheet 2: Core

Questions

Solution Notes
These notes have not be fully proofread. So if you �nd any typos/mistakes or have any suggestions (even if very
small), please do let me know.

1 Dynamic programming

Recommended reading/useful links:

� CLRS Chapter 15 (except for 15.5)

� LCS visualisation

� Collection of videos explaining some DP problems

� Various DP visualisations

� Je� Erickson's Algorithms Chapter 3

� Algorithms' Illuminated: Part 3

� An article on knapsack problems.

Exercise 2.C.1 [Fibonacci Numbers]
(a) Explain how dynamic programming can be used to e�ciently compute the Fibonacci numbers.

(b) Write pseudocode and explain the di�erence between the bottom-up and top-down approach.

(c) What is the time and space complexity of each approach?

(d) (optional) Implement one of the two DP algorithms.

(a) The recurrence relation for the Fibonacci numbers is given by F (n) = F (n− 1) +F (n− 2) with F (0) = 0
and F (1) = 1. Dynamic programming suggests memorising F (n) instead of calling F (n− 1) + F (n− 2).

(b) See implementation below.

(c) The DP algorithms lead to an improvement from exponential to O (n) time. The direct direct implemen-
tation requires O (n) time. By noticing that we only need the last two values we can get an iterative
implementation with O (1) space.

(d) Here is the recursive (top-down implementation):

/* Iterative with O(1) space. */

class Solution {

public int fib(int n) {

if (n <= 1) return n;

int prev = 1, prev_prev = 0;

for (int i = 2; i <= n; ++i) {

int tmp = prev + prev_prev;

prev_prev = prev;

prev = tmp;

}

return prev;

}

}

1

http://lcs-demo.sourceforge.net/
https://www.youtube.com/watch?v=YTGSM5BLOxM&list=PLnJTqOTdBGPOvi8VTpCH1ZPCFr0ljiRM1
https://algorithm-visualizer.org/
https://jeffe.cs.illinois.edu/teaching/algorithms/book/03-dynprog.pdf
http://www.algonotes.com/en/knapsacks/

/* Iterative with O(n) space. */

class Solution {

public int fib(int n) {

int dp[] = new int[n+1];

dp[0] = 0;

if (n >= 1) dp[1] = 1;

for (int i = 2; i <= n; ++i) {

dp[i] = dp[i-1] + dp[i-2];

}

return dp[n];

}

}

Here is the iterative (bottom-up) implementations:

/* Recursive with O(n) space. */

class Solution {

int dp[];

public int fib(int n) {

dp = new int[n+1];

return get(n);

}

public int get(int n) {

if (n <= 1) return n;

if (dp[n] > 0) return dp[n];

int tmp = get(n-1) + get(n-2);

return dp[n] = tmp;

}

}

Exercise 2.C.2 [Rod cutting problem]
(a) Read section 15.1 from CLRS and de�ne the rod cutting problem.

(b) Design an algorithm to solve it.

(c) (optional) Implement the algorithm. You can test your implementation on [GeeksForGeeks Rod
Cutting].

(a) In the rod cutting problem a rod of length n is given and a matrix p giving the price p[`] for a rod of
length `. You have to �nd the optimal splitting of the rod (with smallest subdivision of 1, such that the
price is maximised.

(b) We de�ne dp[i] to be the optimal splitting of a rod of length i.

dp[i] =

{
0 if i = 0

max1≤j≤i(p[j] + dp[i− j]) otherwise

(c) class GFG {

public int cutRod(int price[], int n) {

int dp[] = new int[n+1];

for (int i = 1; i <= n; ++i) {

for (int j = 1; j <= i; ++j) {

dp[i] = Math.max(dp[i], price[j-1] + dp[i-j]);

}

}

return dp[n];

}

}

Note: This is the (max,+) convolution, which we encountered in 0/1 knapsack.

2

https://practice.geeksforgeeks.org/problems/rod-cutting0840/1
https://practice.geeksforgeeks.org/problems/rod-cutting0840/1

Exercise 2.C.3 [0/1 Knapsack]
(a) De�ne the 0/1-knapsack problem.

(b) Provide a small counterexample that proves that the greedy strategy of choosing the item with the
highest ¿/kg ratio is not guaranteed to yield the optimal solution.

(c) Describe a DP algorithm to solve 0/1 knapsack.

(d) What is the time and space complexity of the algorithm?

(e) (optional) Implement the DP algorithm. You can test your implementation on [GeeksForGeeks
0/1 Knapsack].

(f) Explain how you could retrieve an optimal solution.

(a) We are given a knapsack of capacity C and a collection of n items where the i-th item has weight wi and
value vi. The 0/1 knapsack problem is about �nding the subset of items of maximum total value such
that their total weight is ≤ C.

(b) If the items have weights w1 = 100, w2 = 60, w3 = 50, value 1 and C = 120, then the greedy algorithm
chooses w1 = 100 ≤ C, but the optimal algorithm chooses w2 + w3 = 60 + 50 = 110 ≤ C.

(c) Let dp[i][w] be the maximum value for choosing a subset of w1, . . . , wi with total capacity w. Then,

dp[i][w] =


0 if i = 0 ∧ w = 0

−∞ if i = 0 ∧ w > 0

max(dp[i− 1][w], vi + dp[i− 1][w − wi]) otherwise

The answer is the largest value in dp[n][·].
(d) There are n · C states and computing the recurrence relation takes constant time. Hence, this takes

Θ(n · C) time. By noticing that when computing dp[i][·] we are using only values in dp[i − 1][·], the
algorithm can be implemented with Θ(C) memory.

(e) The following implementation uses Θ(C) memory and actually only one array. By iterating through the
weights in decreasing order, it is guaranteed that a particular item is used at most once.

class Solution {

// Returns the maximum value that can be put in a knapsack of capacity W

static int knapSack(int W, int wt[], int val[], int n) {

int dp[] = new int[W + 1];

for (int i = 1; i <= W; ++i) dp[i] = Integer.MIN_VALUE;

int mx = 0;

for (int i = 0; i < n; ++i) {

for (int j = W; j >= wt[i]; --j) {

if (dp[j - wt[i]] != Integer.MIN_VALUE)

dp[j] = Math.max(dp[j], val[i] + dp[j - wt[i]]);

mx = Math.max(mx , dp[j]);

}

}

return mx;

}

}

(f) We could retrieve the optimal solution, by keeping for each dp[i][n] whether we used the i-th item to the
optimal value or not. The following code implements this:

package sort2;

public class Knapsack01 {

// Returns the maximum value that can be put in a knapsack of capacity W

static int knapSack(int W, int wt[], int val[], int n) {

int dp[][] = new int[n+1][W + 1];

boolean used [][] = new boolean[n+1][W + 1];

for (int i = 1; i <= W; ++i) dp[0][i] = Integer.MIN_VALUE;

3

https://practice.geeksforgeeks.org/problems/0-1-knapsack-problem0945/1

int mx = 0, mxWeight = 0;

for (int i = 0; i < n; ++i) {

for (int j = W; j >= wt[i]; --j) {

if (dp[i][j - wt[i]] != Integer.MIN_VALUE && val[i] + dp[i][j -

wt[i]] > dp[i][j]) {

dp[i+1][j] = val[i] + dp[i][j - wt[i]];

used[i+1][j] = true;

} else {

dp[i+1][j] = dp[i][j];

// used[i+1][j] = false;

}

if (mx < dp[i+1][j]) {

mx = dp[i+1][j];

mxWeight = j;

}

}

for (int j = 0; j < wt[i] && j < W; ++j) dp[i+1][j] = dp[i][j];

}

int curWeight = mxWeight , sm = 0;

for (int i = n - 1; i >= 0; --i) {

if (used[i+1][curWeight]) {

System.out.println("(" + wt[i] + ", " + val[i] + ")");

curWeight -= wt[i];

}

}

return mx;

}

}

Note: It is possible to use a variant of Hirschberg's algorithm to �nd the optimal subset using O (C)
space and O (n · C) time.

Note 1:The structure found in the 0/1 knapsack problem is called a (max,+) convolution (which is equivalent
to a (min,+) convolution if we negate the values). It is an open problem if this convolution can be computed
in O

(
n2−ε

)
for constant ε > 0. Several problems reduce to this as was proven in [?] (see here).

Note 2: This solution is not truly polynomial in the input size, since C could be very large (and we only need
around Θ(log2 C) bits to represent it. Actually, as you will probably see in Part IB Complexity Theory, the
knapsack problem is NP-Complete, so it is unknown whether it is solvable in truly polynomial time. In Part II
Algorithms, you will approximations to the knapsack problem.

Exercise 2.C.4 [Matrix Chain Multiplication]
(a) De�ne the matrix chain multiplication problem.

(b) Why can we choose the order of the multiplications?

(c) Why may we want to choose the order of the multiplications? Demonstrate this with an example.

(d) Explain how dynamic programming can be used to solve this problem.

(e) What is the time complexity for this approach?

(f) (optional) Attempt [LeetCode 312].

(a) In the matrix multiplication problem, we are given a sequence of k matrices M1,M2, . . . ,Mk to be mul-
tiplied and we want to choose the order to perform the matrix multiplications, so that it takes the least
time.

(b) We can choose the order because matrix multiplication is associative, i.e. A(BC) = (AB)C for every
matrix A,B,C (with the appropriate dimensions). This means (see Discrete Maths for a more rigorous
proof) that we can choose any of the possible bracketings and they will give the same result.

(c) We can dramatically reduce the number of arithmetic operations required. A simple example to see this
is consider having three matrices A : Rn×n, B : Rn×n and C : Rn×1. Then to compute (AB)C we need
n · n · n for R1 = A ·B : Rn×n and n · n · 1 for R1 · C. This gives a total of n3 + n2 operations.

4

https://en.wikipedia.org/wiki/Hirschberg%27s_algorithm
https://arxiv.org/pdf/1702.07669.pdf
https://leetcode.com/problems/burst-balloons/

Then to compute A(BC) we need n · n · 1 for R1 = B ·C : Rn×1 and n · n · 1 for A ·R1. This gives a total
of n2 + n2 operations.

Comparing the two we see an asymptotic decrease from Θ(n3) to Θ(n2).

Question: Is it the case that the best reduction is by a multiplicative factor of N , where N is the largest
dimension of one of the matrices? (It might be easier to consider the case where k, the number of matrices
is �xed.)

(d) Let dp[i][j] be the minimum number of operations to multiply matrices Mi, . . . ,Mj . Then, given a
sequence Mi, . . . ,Mj , we can search over all possible �last matrix multiplications�. In the last matrix
multiplication, a continuous sequence of matrices on the left will have been multiplied and a continuous
sequence on the right will have been multiplied. So, we can search for all possible ways to splitMi, . . . ,Mj

into Mi, . . . ,Mk and Mk+1, . . . ,Mj , by iterating over all k ∈ [i, j]. This gives rise to the following
recurrence relation:

dp[i][j] =

{
0 if i = j

mink∈[i,j) dp[i][k] + dp[k + 1][j] otherwise
.

The time complexity for calculating dp[i][j] is roughly j − i+ 1. So there will be n− `+ 1 pairs (i, i+ `),
which gives a total of

n∑
`=1

(n−`+1)·` =

n∑
`=1

(n+1)·`−`2 = (n+1)·
n∑
`=1

`−
n∑
`=1

`2 =
1

2
(n+1)·n·(n+1)− 1

6
·n(n+1)(2n+1) = Θ(n3).

(e) We can transform the problem into matrix chain multiplication by constructing the dimensions
(1, x1), (x1, x2), . . . , (xn−1, xn), (xn, 1). The following code implements the algorithm:

class Solution {

public int maxCoins(int[] nums2) {

// Convert to a matrix chain multiplication problem.

int nums [][] = new int[nums2.length + 1][2];

for (int i = 0; i < nums2.length; ++i) {

nums[i][1] = nums2[i];

if (i + 1 < nums.length) nums[i+1][0] = nums2[i];

}

nums [0][0] = nums[nums.length - 1][1] = 1;

int [][] dp = new int[nums.length][nums.length];

for (int len = 1; len < nums.length; ++len) {

// dp[i][i] = 0;

for (int i = 0; i + len < nums.length; ++i) {

// dp[i][j] = 0

int j = i + len;

for (int k = i; k < j; ++k) {

dp[i][j] = Math.max(dp[i][j],

dp[i][k] + dp[k+1][j] + nums[i][0] * nums[k][1] *

nums[j][1]);

}

}

}

return dp[0][nums.length - 1];

}

}

Further reading: There is an algorithm by Hu and Shing that reduces the matrix chain multiplication
problem into that of triangulating the a weighted convex polygon, which is then solved in O (n log n) time
(Warning: I have not veri�ed the proof of the algorithm). In case you are interested, the algorithm was
introduced in [?] and [?], and a correction to the core Lemma was suggested in [?].

Exercise 2.C.5 [Longest Common Subsequence]
(a) De�ne the longest common subsequence problem.

5

(b) Formulate the recurrence relation and explain how dynamic programming helps to solve it.

(c) Show the DP table for input sequences BDCABA and ABCBDAB.

(d) (optional) Implement the LCS algorithm (either bottom up or top-down). (You may want to submit
your solution to [LeetCode 1143])

(e) What is the time complexity of your implementation? How does it compare with the brute force
approach?

(f) What is the space complexity of your implementation? How can you reduce this?

(g) Explain how you can recover a longest common subsequence. Draw the corresponding table for the
example above. What is the time complexity of this algorithm?

(h) Demonstrate a pair of sequences that have more than one LCSs.

(a) A subsequence of a string s is s′ = si1si2 . . . sik , where 0 < i1 < i2 < . . . < ik−1 < ik ≤ |S| are indices
in the string. A common subsequence between strings a and b is a subsequence s′ of a that is also a
subsequence of b. The longest common subsequence is that with the most characters (breaking ties, e.g.
lexicographically).

(b) Let dp[i][j] be the longest subsequence ending at i in string a and ending at j in string b.

� The base case dp[i][0] = 0 for every i, since the empty string has no subsequences.

� Similarly, the base case dp[0][i] = 0.

� If a[i] = b[j], it means that we can

(c) The following table corresponds to the above recursive de�nition.

∅ A B C B D A B
∅ 0 0 0 0 0 0 0 0
B 0 0 1 1 1 1 1 1
D 0 0 1 1 1 2 2 2
C 0 0 1 2 2 2 2 2
A 0 1 1 2 2 2 3 3
B 0 1 2 2 3 3 3 4
A 0 1 2 2 3 3 4 4

(d) Here is the recursive implementation:

class Solution {

private int dp [][];

public int longestCommonSubsequence(String A, String B) {

dp = new int[A.length () + 1][B.length () + 1];

for (int i = 0; i < A.length () + 1; ++i) {

for (int j = 0; j < B.length () + 1; ++j) {

dp[i][j] = -1;

}

}

return lcs(A, B, A.length (), B.length ());

}

public int lcs(String A, String B, int i, int j) {

if (dp[i][j] != -1) return dp[i][j];

if (i == 0 || j == 0) return 0;

dp[i][j] = Math.max(lcs(A, B, i-1, j), lcs(A, B, i, j-1));

if (A.charAt(i-1) == B.charAt(j-1))

dp[i][j] = Math.max(lcs(A, B, i, j), lcs(A, B, i-1, j-1) + 1);

return dp[i][j];

}

}

6

https://leetcode.com/problems/longest-common-subsequence/

Question: Why do we have to initialise to −1? Can we not just check if an entry is 0? If we recomputed
an entry every time it is 0, then for the case where the strings have all characters di�erent, we would need
exponential running time, since all entries will be zero.

Here is the iterative implementation that uses memoisation (leading to linear memory).

class Solution {

public int longestCommonSubsequence(String A, String B) {

if (B.length () > A.length ()) { String tmp = A; A = B; B = tmp; }

int dp[][] = new int[B.length () + 1][2];

int cur = 0, prev;

for (int i = 0; i < A.length (); ++i) {

prev = 1 - cur;

for (int j = 0; j < B.length (); ++j) {

// Skip either character.

dp[j+1][cur] = Math.max(dp[j+1][prev], dp[j][cur]);

// If they are equal , then extend previous matching.

if (A.charAt(i) == B.charAt(j)) dp[j+1][cur] =

Math.max(dp[j+1][cur], 1 + dp[j][prev]);

}

cur = 1 - cur;

}

return dp[B.length ()][1 - cur];

}

}

(e) Both the recursive and the iterative implementation take O (n ·m) time where n and m are the lengths
of the two strings. The iterative implementation using memoisation requires O (min(n,m)) memory.

(f) At each (i, j) we can keep a pointer to the (i′, j′) which lead to the minimum value. When traversing a
direction (i − 1, j − 1) → (i, j) we should append character A[i] to the subsequence. The following code
implements this (giving an encoding 0, 1, 2 to each of the 3 possible arrows):

public class LCS {

private final int dp[][];

private final int par [][];

private final String A, B;

public LCS(String A, String B) {

this.A = A;

this.B = B;

dp = new int[A.length () + 1][B.length () + 1];

par = new int[A.length () + 1][B.length () + 1];

}

public int longestCommonSubsequence () {

for (int i = 0; i < A.length (); ++i) {

for (int j = 0; j < B.length (); ++j) {

// Skip either character.

if (dp[i][j+1] < dp[i+1][j]) {

dp[i+1][j+1] = dp[i+1][j];

par[i+1][j+1] = 0;

} else {

dp[i+1][j+1] = dp[i][j+1];

par[i+1][j+1] = 1;

}

// If they are equal , then extend previous matching.

if (A.charAt(i) == B.charAt(j) && dp[i+1][j+1] < 1 + dp[i][j]) {

dp[i+1][j+1] = 1 + dp[i][j];

par[i+1][j+1] = 2;

}

}

}

int cur_i = A.length (), cur_j = B.length ();

StringBuilder builder = new StringBuilder ();

7

while (cur_i > 0 && cur_j > 0) {

if (par[cur_i][cur_j] == 0) --cur_j;

else if (par[cur_i][cur_j] == 1) --cur_i;

else {

--cur_i; --cur_j;

builder.append(A.charAt(cur_i));

}

}

builder.reverse ();

System.out.println(builder.toString ());

return dp[A.length ()][B.length ()];

}

public static void main(String [] args) {

LCS lcs = new LCS("BDCABA", "ABCBDAB");

System.out.println(lcs.longestCommonSubsequence ());

}

}

The parent table for the two example strings is given below and one possible path to obtain the LCS is
shown in red:

∅ A B C B D A B
∅ ← ← ← ← ← ← ← ←
B ← ↑ ↖ ← ← ← ← ←
D ← ↑ ↑ ↑ ↑ ↖ ← ←
C ← ↑ ↑ ↖ ← ↑ ↑ ↑
A ← ↖ ↑ ↑ ↑ ↑ ↖ ←
B ← ↑ ↖ ↑ ↖ ← ↑ ↖
A ← ↑ ↑ ↑ ↑ ↑ ↖ ↑

Further reading: See Project ?? for how to recover the LCS in O (min(n,m)) space.

(g) Consider the sequences ABC and ACB, these have two LCSs, namely AB and AC of length 2.

2 Greedy algorithms

Recommended reading/useful links:

� CLRS Chapter 16

� Je� Erickson's Algorithms Chapter 4

Exercise 2.C.6 [Hu�man encoding]
(a) What problem does Hu�man encoding solve?

(b) Describe Hu�man's encoding algorithm.

(c) Show the steps of the algorithm on Figure 3.1 of the lecture notes.

(d) Describe how you would implement this algorithm. What is the time complexity of your imple-
mentation? (Hint: You may �nd it bene�cial to use min-heap)

(e) (optional) Implement the Hu�man encoding algorithm.

(f) (++) Prove that Hu�man's algorithm solves the problem you described in (a).

(g) (optional) How can you implement Hu�man's encoding algorithm in O(n) time if you are given the
frequencies in sorted order?

(a) You are given N items and each one has a frequency of occurrence fi. Assign 0/1 codewords (which are
pre�x-free) such that the expected length of an encoded word (where the probability of picking the i-th

word is pi = fi/
∑N
j=1 fj) is minimised.

8

https://jeffe.cs.illinois.edu/teaching/algorithms/book/04-greedy.pdf

(b) In Hu�man's algorithm, every item is a group on its own with weight fi. Then the smallest two values fi
and fj are merged and create a group with weight fi + fj . Then repeat until there is a single element (of
weight 1). This process of merging creates a binary tree. By assigning a value of 0 to the edges between
the parent and the left child and a value of 1 to the edges between the parent and the right child, we
de�ne the codeword of each leaf and hence of each original item, by the path from the root to the leaf.

(c) Here is one possible execution and codeword mapping;

3 6 A7 A8 A20 A56

A7 A8 A20 A563 6

9 7 8 A20 A56

3 6

9

A20 A56

3 6

97 8

15

A20 A56

3 6

9

7 8

15 A20 A56

3 6

9

7 8

15

24

20 A56

3 6

9

7 8

15

24 20 A56

3 6

9

7 8

15

24

44

20

A56

3 6

9

7 8

15

24

44

100

0

0

0

0 01 1

1

1

1

(d) Store the candidate items inside a min priority queue. While there are more than two elements in the
data structure pick the two with the smallest weight and merge them, i.e. insert a new item with weight
equal to their sum. Alongside with the weight it is helpful to keep a pointer to the root of the partial
binary tree that is being formed.

(e) Here is an implementation in C++.

#include <algorithm >

#include <iostream >

#include <queue >

#include <string >

#include <vector >

namespace sorting {

struct HuffmanTreeNode {

virtual void print(const std:: string &) = 0;

virtual void generateTable(std::vector <std::string >& table , const

std:: string& pref = "") = 0;

};

struct HuffmanLeafNode : public HuffmanTreeNode {

size_t word_id;

HuffmanLeafNode(size_t word_id) : word_id(word_id) {}

void print(const std:: string& s) override {

std::cout << s << " : " << word_id << std::endl;

}

void generateTable(std::vector <std::string >& table , const std:: string& pref =

"") override {

if (table.size() <= word_id) table.resize(word_id + 1);

9

table[word_id] = pref;

}

};

struct HuffmanTreeInternalNode : public HuffmanTreeNode {

HuffmanTreeNode* left , *right;

HuffmanTreeInternalNode(HuffmanTreeNode* left , HuffmanTreeNode* right) :

left(left), right(right) {}

void print(const std:: string& s) override {

left ->print(s + "0");

right ->print(s + "1");

}

void generateTable(std::vector <std::string >& table , const std:: string& pref =

"") override {

left ->generateTable(table , pref + "0");

right ->generateTable(table , pref + "1");

}

~HuffmanTreeInternalNode () {

delete left;

delete right;

}

};

template <class T>

using min_priority_queue = std:: priority_queue <T, std::vector <T>,

std::greater <T>>;

HuffmanTreeNode* generateHuffmanTree(const std::vector <size_t >&

frequency_table) {

min_priority_queue <std::pair <size_t , HuffmanTreeNode*>> pq;

for (size_t i = 0; i < frequency_table.size(); ++i) {

pq.push({ frequency_table[i], new HuffmanLeafNode(i) });

}

while (pq.size() != 1) {

auto tp1 = pq.top(); pq.pop();

auto tp2 = pq.top(); pq.pop();

std::cout << "Merging : " << tp1.first << " + " << tp2.first << std::endl;

pq.push({ tp1.first + tp2.first , new HuffmanTreeInternalNode(tp1.second ,

tp2.second) });

}

return pq.top().second;

}

}

int main() {

std::vector <size_t > freqs({ 20, 3, 6, 7, 8, 56 });

sorting :: HuffmanTreeNode* tree = sorting :: generateHuffmanTree(freqs);

std::vector <std::string > table;

tree ->generateTable(table);

// std::vector <std::string > expected ({ "00", "0100" , "0101" , "0110" , "0111" ,

"1" });

// EXPECT_EQ(table , expected);

delete tree;

10

return 0;

}

(f) We will prove by contradiction that the Hu�man algorithm produces an encoding that minimises the
expected length. We will do this in the following steps:

1. Consider the smallest (in terms of elements) instance where Hu�man encoding does not produce the
optimum.

2. Show that either x1 x2 is matched to a di�erent element (xis are assumed to be sorted)

3. Show that changing the mapping to (x1, x2) leads to an at least as good encoding.

Step 1: Consider the smallest (in terms of elements) instance x1, x2, . . . , xn, where Hu�man encoding
does not produce the optimum.

Step 2: If x1 is matched to x2, then it means that the resulting set (x1 + x2), x3, . . . , xn has a di�erent
matching than the optimum. But this has n− 1 elements, so it contradicts the assumption of it being the
smallest counterexample (step 1).

Step 3: So we can now assume that x1 or x2 is matched to a di�erent element. The analysis below works
for assuming either of these is mapped to a di�erent value. So, let's assume that x2 is matched to xj
(j > 2). Then there are two cases for x1:

a it is matched to some ancestor of (x2, xj)

b it is matched to some other node y

𝑥2 𝑥𝑗𝑥1

Direct
connection

Potentially many
connections

Step 3 (a): x1 is matched to some ancestor of (x2, xj).
The path to the root for xj (and x2) is at least as long as that of x1. Hence, if
we swap node x1 with node xj , then we get a encoding with smaller penalty
(same reasoning as in re-arrangement inequality).

𝑥2 𝑥𝑗𝑥1 𝑦

𝐴 𝐵

Step 3 (b): x1 is matched to some node y
By assumption we know that x1 ≤ xj and x2 ≤ y. We consider three cases
based on the path lengths:

� If A > B: swap y with x2 and total decreases

� If B > A: swap x1 with xj and total decreases

� If A = B: swap x1 with x2 and Hu�man encoding still leads to the
same value

In either of these cases the matching (x1, x2) produces an at least as good
solution

11

	Dynamic programming
	Greedy algorithms

