Balanced Allocations: A Refined Drift Theorem

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$, John Sylvester ${ }^{2}$
${ }^{1}$ University of Cambridge, UK, ${ }^{2}$ University of Liverpool, UK

Based on: "An Improved Drift Theorem for Balanced Allocations" (arXiv) \&
"Balanced Allocations with Heterogeneous Bins: The Power of Memory" (arXiv)

Outline

- Balanced allocations (background and some highlights)

The exponential and hyperbolic cosine potential functions

The proof of the drift theorem

- The refinement and its applications

Open problems

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Connections to

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Connections to occupancy problems,

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Connections to occupancy problems, urn processes

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Connections to occupancy problems, urn processes and queuing theory.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Connections to occupancy problems, urn processes and queuing theory. Applications in hashing,

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Connections to occupancy problems, urn processes and queuing theory. Applications in hashing, load balancing

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

- Connections to occupancy problems, urn processes and queuing theory. Applications in hashing, load balancing and routing.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}} \div \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in
the least loaded of the two.

i
In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

Is this a good process/model in practice?

Is this a good process/model in practice?

The practical significance of the "power of two choices" was recognised in the 2020 ACM Theory and Practice Award $\left[\mathrm{ABK}^{+} 20\right]$:

Is this a good process/model in practice?

The practical significance of the "power of two choices" was recognised in the 2020 ACM Theory and Practice Award $\left[\mathrm{ABK}^{+} 20\right]$:
"[..] it is not surprising that the power of two choices that requires only a local decision rather than global coordination has led to a wide range of practical applications. These include i-Google's web index, Akamai's overlay routing network, and highly reliable distributed data storage systems used by Microsoft and Dropbox, which are all based on variants of the power of two choices paradigm."

Is this a good process/model in practice?

The practical significance of the "power of two choices" was recognised in the 2020 ACM Theory and Practice Award $\left[\mathrm{ABK}^{+} 20\right]$:
"[..] it is not surprising that the power of two choices that requires only a local decision rather than global coordination has led to a wide range of practical applications. These include i-Google's web index, Akamai's overlay routing network, and highly reliable distributed data storage systems used by Microsoft and Dropbox, which are all based on variants of the power of two choices paradigm."

Is this a good process/model in practice?

The practical significance of the "power of two choices" was recognised in the 2020 ACM Theory and Practice Award $\left[\mathrm{ABK}^{+} 20\right]$:
"[..] it is not surprising that the power of two choices that requires only a local decision rather than global coordination has led to a wide range of practical applications. These include i-Google's web index, Akamai's overlay routing network, and highly reliable distributed data storage systems used by Microsoft and Dropbox, which are all based on variants of the power of two choices paradigm."

Question: Why variants and not vanilla Two-Choice?

Motivation

Motivation

\square Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]).

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first, server queue length is a poor indicator of wait time, and second, due to messaging delays, multiple schedulers sampling in parallel may experience race conditions.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first, server queue length is a poor indicator of wait time, and second, due to messaging delays, multiple schedulers sampling in parallel may experience race conditions.

- As noted in $\left[\mathrm{LXK}^{+} 11\right]$, communication is a shortcoming of Two-Choice in some real-word load balancers:

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first, server queue length is a poor indicator of wait time, and second, due to messaging delays, multiple schedulers sampling in parallel may experience race conditions.

- As noted in $\left[\mathrm{LXK}^{+} 11\right]$, communication is a shortcoming of Two-Choice in some real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between dispatchers and processors at the time of job assignment. The communication time is on the critical path, hence contributes to the increase in response time.

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first, server queue length is a poor indicator of wait time, and second, due to messaging delays, multiple schedulers sampling in parallel may experience race conditions.

- As noted in $\left[\mathrm{LXK}^{+} 11\right]$, communication is a shortcoming of Two-Choice in some real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between dispatchers and processors at the time of job assignment. The communication time is on the critical path, hence contributes to the increase in response time.

- In the queuing setting, Whitt [Whi86] remarks:

Motivation

- Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice does not perform well with outdated information. \rightsquigarrow herd phenomenon
- Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16], Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first, server queue length is a poor indicator of wait time, and second, due to messaging delays, multiple schedulers sampling in parallel may experience race conditions.

- As noted in $\left[\mathrm{LXK}^{+} 11\right]$, communication is a shortcoming of Two-Choice in some real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between dispatchers and processors at the time of job assignment. The communication time is on the critical path, hence contributes to the increase in response time.

- In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various situations, but we have not identified any optimal rules. Identifying optimal rules in these situations would obviously be interesting, but appears to be difficult.

An example of a variant of Two-Choice

$(1+\beta)$-Process

Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

$(1+\beta)$-Process

Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
- In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.

- It has been used to analyze

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.

- It has been used to analyze population protocols [AAG18, AGR21],

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.

- It has been used to analyze population protocols [AAG18, AGR21], distributed data structures $\left[\mathrm{ABK}^{+} 18\right.$, AKLN17, Nad21]

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.

- It has been used to analyze population protocols [AAG18, AGR21], distributed data structures $\left[\mathrm{ABK}^{+} 18\right.$, AKLN17, Nad21] and online carpooling [GKKS20].

$(1+\beta)$-Process

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
- In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ for any $\beta \in(0,1]$.
- It has been used to analyze population protocols [AAG18, AGR21], distributed data structures $\left[\mathrm{ABK}^{+} 18\right.$, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a $\beta<1$?

b-Batched Setting

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [$\left.\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [$\left.\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

- For $b \geq n \log n$, we show that Two-Choice has w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{b}{n}\right)$.

b-Batched Setting

\square Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

- For $b \geq n \log n$, we show that Two-Choice has w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{b}{n}\right)$.In constast to the case $b \ll n \log n$, where it is asymptotically optimal.

b-Batched Setting

Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice where balls are allocated in batches of size b (b-BATCHED setting).

- For $b \geq n \log n$, we show that Two-Choice has w.h.p. $\operatorname{Gap}(m)=\Theta\left(\frac{b}{n}\right)$.
- In constast to the case $b \ll n \log n$, where it is asymptotically optimal.

For $b \geq n \log n$, we show that the $(1+\beta)$-process has

$$
\text { w.h.p. } \operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{b}{n} \cdot \log n}\right) \text {, for } \beta=\Theta(\sqrt{(n / b) \cdot \log n}) \text {. }
$$

Probability allocation vectors

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

- For Two-Choice,

$$
p_{\text {Two-Cholce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) \text {. }
$$

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) .
$$

- For Two-Choice,

$$
p_{\text {TWO-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
$$

For $(1+\beta)$-process,

$$
p_{(1+\beta)}=\left(\ldots, \beta \cdot \frac{2 i-1}{n^{2}}+(1-\beta) \cdot \frac{1}{n}, \ldots\right) .
$$

A closer look at a single batch

A closer look at a single batch

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

A closer look at a single batch

$(1+\beta)$-Process

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

$$
p_{i}=\beta \cdot \frac{2 i-1}{n^{2}}+(1-\beta) \cdot \frac{1}{n}
$$

A closer look at a single batch

$(1+\beta)$-Process

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

$$
p_{i}=\beta \cdot \frac{2 i-1}{n^{2}}+(1-\beta) \cdot \frac{1}{n}
$$

Empirical results for different processes

Empirical results for different processes

The gaps are decreasingly ordered by $p_{n}: \approx \frac{3}{n}$ (for Three-Choice),

Empirical results for different processes

- The gaps are decreasingly ordered by $p_{n}: \approx \frac{3}{n}$ (for Three-Choice), $\approx \frac{2}{n}$ (for Two-Choice)

Empirical results for different processes

- The gaps are decreasingly ordered by $p_{n}: \approx \frac{3}{n}$ (for Three-Choice), $\approx \frac{2}{n}$ (for Two-Choice) and $\approx \frac{1+\beta}{n}$ (for the ($1+\beta$)-processes).

Potential functions

Techniques for analyzing balanced allocations

Layered induction

Two-Choice, Memory

Poissonisation

$$
X_{i} \sim \operatorname{Poi}\left(\frac{m}{n}\right)
$$

Unweighted, time-independent

Witness trees

Two-Choice, parallel allocations

Markov chains

Some weights, b-Batched, heterogeneous sampling

Graphical processes

Two-Choice

Potential functions

weights, b-Batched, outdated info, noise graphical, heterogeneous sampling

Processes

Processes

Following [PTW15] we will study ϵ-biased processes that:

Processes

Following [PTW15] we will study ϵ-biased processes that:

- Have p is non-decreasing,

Processes

Following [PTW15] we will study ϵ-biased processes that:
\Rightarrow Have p is non-decreasing,

- For some constant $\delta \in(0,1)$, satisfy

$$
p_{\delta n} \leq \frac{1-\epsilon}{n}
$$

Processes

Following [PTW15] we will study ϵ-biased processes that:
\Rightarrow Have p is non-decreasing,

- For some constant $\delta \in(0,1)$, satisfy

$$
p_{\delta n} \leq \frac{1-\epsilon}{n}
$$

Key Observation 1: We can assume the following worst-case allocation vector

Processes

Following [PTW15] we will study ϵ-biased processes that:

- Have p is non-decreasing,
- For some constant $\delta \in(0,1)$, satisfy

$$
p_{\delta n} \leq \frac{1-\epsilon}{n}
$$

Key Observation 1: We can assume the following worst-case allocation vector

\square Our main aim will be to derive the w.h.p. $\mathcal{O}((\log n) / \epsilon)$ gap, for any $\epsilon \in(0,1)$.

The exponential potential

The exponential potential

At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}
$$

The exponential potential

At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$,

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

- Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$, as it implies that

$$
y_{i}^{t} \leq \frac{1}{\alpha} \cdot \log \Phi^{t}
$$

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

- Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$, as it implies that

$$
y_{i}^{t} \leq \frac{1}{\alpha} \cdot \log \Phi^{t}=\mathcal{O}\left(\frac{1}{\alpha} \cdot \log n\right)
$$

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

\square Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$, as it implies that

$$
y_{i}^{t} \leq \frac{1}{\alpha} \cdot \log \Phi^{t}=\mathcal{O}\left(\frac{1}{\alpha} \cdot \log n\right)
$$

Even better, if we show that $\Phi^{t}=\mathcal{O}(n)$,

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

\square Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$, as it implies that

$$
y_{i}^{t} \leq \frac{1}{\alpha} \cdot \log \Phi^{t}=\mathcal{O}\left(\frac{1}{\alpha} \cdot \log n\right)
$$

\square Even better, if we show that $\Phi^{t}=\mathcal{O}(n)$, then the bins with load $\geq t / n+z$ is at most $\mathcal{O}\left(n \cdot e^{-\alpha z}\right)$.

The exponential potential

- At step $t \geq 0$, the exponential potential with smoothing parameter $\alpha>0$ is defined as

$$
\Phi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}
$$

Our goal is to show that $\Phi^{t}=\mathcal{O}(\operatorname{poly}(n))$, as it implies that

$$
y_{i}^{t} \leq \frac{1}{\alpha} \cdot \log \Phi^{t}=\mathcal{O}\left(\frac{1}{\alpha} \cdot \log n\right)
$$

\square Even better, if we show that $\Phi^{t}=\mathcal{O}(n)$, then the bins with load $\geq t / n+z$ is at most $\mathcal{O}\left(n \cdot e^{-\alpha z}\right)$.

Question: How can we prove this?

What is a drift theorem?

What is a drift theorem?

A drift theorem (or drift inequality) has the form

What is a drift theorem?

A drift theorem (or drift inequality) has the form$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).

What is a drift theorem?

- A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

What is a drift theorem?

- A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

\square It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$,

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

\square It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$, since by induction,

$$
\mathbf{E}\left[\Phi^{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[\Phi^{t+1} \mid \Phi^{t}\right]\right]
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$, since by induction,

$$
\mathbf{E}\left[\Phi^{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[\Phi^{t+1} \mid \Phi^{t}\right]\right] \leq \mathbf{E}\left[\Phi^{t}\right] \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).

- When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

\square It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$, since by induction,

$$
\mathbf{E}\left[\Phi^{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[\Phi^{t+1} \mid \Phi^{t}\right]\right] \leq \mathbf{E}\left[\Phi^{t}\right] \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2} \leq \frac{c_{2}}{c_{1}} \cdot n-c_{2}+c_{2}
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).

- When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

\square It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$, since by induction,

$$
\mathbf{E}\left[\Phi^{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[\Phi^{t+1} \mid \Phi^{t}\right]\right] \leq \mathbf{E}\left[\Phi^{t}\right] \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2} \leq \frac{c_{2}}{c_{1}} \cdot n-c_{2}+c_{2}=\frac{c_{2}}{c_{1}} \cdot n .
$$

What is a drift theorem?

A drift theorem (or drift inequality) has the form

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2},
$$

for any possible history of the process \mathfrak{F}^{t} (or filtration).
When Φ^{t} is large (i.e., $\Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n$), then it drops in expectation by a multiplicative factor,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}, \Phi^{t} \geq 2 \cdot \frac{c_{2}}{c_{1}} \cdot n\right] \leq \Phi^{t} \cdot\left(1-\frac{c_{1}}{2 n}\right)
$$

It also implies that $\mathbf{E}\left[\Phi^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$, since by induction,

$$
\mathbf{E}\left[\Phi^{t+1}\right]=\mathbf{E}\left[\mathbf{E}\left[\Phi^{t+1} \mid \Phi^{t}\right]\right] \leq \mathbf{E}\left[\Phi^{t}\right] \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2} \leq \frac{c_{2}}{c_{1}} \cdot n-c_{2}+c_{2}=\frac{c_{2}}{c_{1}} \cdot n .
$$

- Then, applying Markov's inequality we get that w.h.p. $\mathbf{E}\left[\Phi^{t}\right]=\operatorname{poly}(n)$.

Deriving a drift theorem

Deriving a drift theorem

Let us fix a bin $i \in[n]$.

Deriving a drift theorem

Let us fix a bin $i \in[n]$. Then,

$$
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right]=p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)}
$$

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.

Deriving a drift theorem

Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.

> Applies also to weights \mathcal{W} with unit expectation and finite MGF, i.e., $e^{\alpha \mathcal{W}} \leq 1+\alpha+\alpha^{2} \cdot S$.

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right),
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.

Deriving a drift theorem

Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
For bins with $p_{i}=\frac{1-\epsilon}{n}$,

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
\square For bins with $p_{i}=\frac{1-\epsilon}{n}$, we have that $\left(\Delta \Phi_{i}^{t+1}:=\Phi_{i}^{t+1}-\Phi_{i}^{t}\right)$

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(-\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right)
$$

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
\square For bins with $p_{i}=\frac{1-\epsilon}{n}$, we have that $\left(\Delta \Phi_{i}^{t+1}:=\Phi_{i}^{t+1}-\Phi_{i}^{t}\right)$

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(-\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
\square For bins with $p_{i}=\frac{1-\epsilon}{n}$, we have that $\left(\Delta \Phi_{i}^{t+1}:=\Phi_{i}^{t+1}-\Phi_{i}^{t}\right)$

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(-\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

Otherwise, for bins with $p_{i}=\frac{1+\tilde{\epsilon}}{n}$,

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
\square For bins with $p_{i}=\frac{1-\epsilon}{n}$, we have that $\left(\Delta \Phi_{i}^{t+1}:=\Phi_{i}^{t+1}-\Phi_{i}^{t}\right)$

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(-\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

\square Otherwise, for bins with $p_{i}=\frac{1+\widetilde{\epsilon}}{n}$,

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(+\frac{\alpha \widetilde{\epsilon}}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right)
$$

Deriving a drift theorem

- Let us fix a bin $i \in[n]$. Then,

$$
\begin{aligned}
\mathbf{E}\left[\Phi_{i}^{t+1} \mid \Phi_{i}^{t}\right] & =p_{i} \cdot e^{\alpha \cdot\left(y_{i}^{t}+1-1 / n\right)}+\left(1-p_{i}\right) \cdot e^{\alpha \cdot\left(y_{i}^{t}-1 / n\right)} \\
& \leq \Phi_{i}^{t} \cdot\left(p_{i} \cdot\left(1+\alpha \cdot(1-1 / n)+\alpha^{2}\right)+\left(1-p_{i}\right) \cdot\left(1-\alpha / n+\alpha^{2} / n^{2}\right)\right) \\
& =\Phi_{i}^{t} \cdot\left(1+\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+\alpha^{2} \cdot\left(p_{i}+\frac{1-p_{i}}{n}\right)\right)
\end{aligned}
$$

using the Taylor estimate $e^{z} \leq 1+z+z^{2}$ for sufficiently small z.
\square For bins with $p_{i}=\frac{1-\epsilon}{n}$, we have that $\left(\Delta \Phi_{i}^{t+1}:=\Phi_{i}^{t+1}-\Phi_{i}^{t}\right)$

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(-\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

\square Otherwise, for bins with $p_{i}=\frac{1+\widetilde{\epsilon}}{n}$,

$$
\mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(+\frac{\alpha \widetilde{\epsilon}}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \operatorname{Bad} \text { bin. }
$$

What could go wrong?

What could go wrong?

There could be too many overloaded bins.

What could go wrong?

- There could be too many overloaded bins.

Consider a step $t \geq 0$, where all but one bins have the same load:

What could go wrong?

- There could be too many overloaded bins.
\square Consider a step $t \geq 0$, where all but one bins have the same load:

What could go wrong?

- There could be too many overloaded bins.
\square Consider a step $t \geq 0$, where all but one bins have the same load:

What could go wrong?

- There could be too many overloaded bins.
\square Consider a step $t \geq 0$, where all but one bins have the same load:

What could go wrong?

- There could be too many overloaded bins.
\square Consider a step $t \geq 0$, where all but one bins have the same load:

What could go wrong?

- There could be too many overloaded bins.

Consider a step $t \geq 0$, where all but one bins have the same load:

- We could get only a very small decrease.

What could go wrong?

- There could be too many overloaded bins.

Consider a step $t \geq 0$, where all but one bins have the same load:

\square We could get only a very small decrease. \rightsquigarrow Gives $\mathcal{O}(n \log n / \epsilon)$ bound on the gap.

The hyperbolic cosine potential

The hyperbolic cosine potential

The hyperbolic cosine potential [PTW15, Spe77] is defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}+e^{-\alpha \cdot\left(x_{i}^{t}-t / n\right)}
$$

The hyperbolic cosine potential

The hyperbolic cosine potential [PTW15, Spe77] is defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}+e^{-\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}+e^{-\alpha \cdot y_{i}^{t}}
$$

The hyperbolic cosine potential

- The hyperbolic cosine potential [PTW15, Spe77] is defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}+e^{-\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}+e^{-\alpha \cdot y_{i}^{t}}
$$

Question: Why does the second term help?

The hyperbolic cosine potential

- The hyperbolic cosine potential [PTW15, Spe77] is defined as

$$
\Gamma^{t}:=\Phi^{t}+\Psi^{t}:=\sum_{i=1}^{n} e^{\alpha \cdot\left(x_{i}^{t}-t / n\right)}+e^{-\alpha \cdot\left(x_{i}^{t}-t / n\right)}=\sum_{i=1}^{n} e^{\alpha \cdot y_{i}^{t}}+e^{-\alpha \cdot y_{i}^{t}}
$$

Question: Why does the second term help?

The underload potential Ψ

The underload potential Ψ

For any bin $i \in[n]$, the underload potential satisfies the following drift inequality,

The underload potential Ψ

For any bin $i \in[n]$, the underload potential satisfies the following drift inequality,

$$
\mathbf{E}\left[\Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+\alpha^{2} \cdot\left(p_{i}+\left(1-p_{i}\right) \cdot \frac{1}{n^{2}}\right)\right)
$$

The underload potential Ψ

For any bin $i \in[n]$, the underload potential satisfies the following drift inequality,

$$
\mathbf{E}\left[\Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+\alpha^{2} \cdot\left(p_{i}+\left(1-p_{i}\right) \cdot \frac{1}{n^{2}}\right)\right) .
$$

\square So, the dominant term is the negative of that in Φ.

The underload potential Ψ

For any bin $i \in[n]$, the underload potential satisfies the following drift inequality,

$$
\mathbf{E}\left[\Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+\alpha^{2} \cdot\left(p_{i}+\left(1-p_{i}\right) \cdot \frac{1}{n^{2}}\right)\right) .
$$

\square So, the dominant term is the negative of that in Φ.
More specifically, if $p_{i}=\frac{1+\tilde{\epsilon}}{n}$, then

$$
\mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\frac{\alpha \widetilde{\epsilon}}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

The underload potential Ψ

- For any bin $i \in[n]$, the underload potential satisfies the following drift inequality,

$$
\mathbf{E}\left[\Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+\alpha^{2} \cdot\left(p_{i}+\left(1-p_{i}\right) \cdot \frac{1}{n^{2}}\right)\right) .
$$

\square So, the dominant term is the negative of that in Φ.

- More specifically, if $p_{i}=\frac{1+\widetilde{\epsilon}}{n}$, then

$$
\mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\frac{\alpha \widetilde{\epsilon}}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Good bin. }
$$

- Otherwise, if $p_{i}=\frac{1-\epsilon}{n}$

$$
\mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(+\frac{\alpha \epsilon}{n}+\mathcal{O}\left(\frac{\alpha^{2}}{n}\right)\right) \rightsquigarrow \text { Bad bin. }
$$

Drift Theorem

Theorem ([PTW15, Section 2])

Consider any process with non-decreasing allocation vector p which is ϵ-biased for some $\epsilon \in(0,1)$ and some constant δ, in the setting with weights sampled from a distribution with finite MGF. Then, for $\Gamma:=\Gamma(\alpha)$ with $\alpha:=\Theta(\epsilon)$, for any step $t \geq 0$,

$$
\mathbf{E}\left[\Delta \Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq-\Gamma^{t} \cdot \frac{\alpha \epsilon}{4 n}+\operatorname{poly}(1 / \epsilon)
$$

and

$$
\mathbf{E}\left[\Gamma^{t}\right] \leq n \cdot \operatorname{poly}(1 / \epsilon)
$$

Refined Drift Theorem

Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some $\epsilon \in(0,1)$ and some constant δ. Further assume that it satisfies for some $K>0$ and for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot \alpha+K \cdot \frac{\alpha^{2}}{n}\right),
$$

and

$$
\mathbf{E}\left[\Psi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot \alpha+K \cdot \frac{\alpha^{2}}{n}\right) .
$$

Then, there exists a constant $c:=c(\delta)>0$, such that for $\alpha \in\left(0, \min \left\{1, \frac{\epsilon \delta}{8 K}\right\}\right)$

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{\alpha \epsilon \delta}{8 n}\right)+c \alpha \epsilon,
$$

and

$$
\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{8 c}{\delta} \cdot n
$$

Refined Drift Theorem

Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some $\epsilon \in(0,1)$ and some constant δ. Further assume that it satisfies for some $K>0$ and some $R>0$, for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot R \cdot \alpha+K \cdot R \cdot \frac{\alpha^{2}}{n}\right)
$$

and

$$
\mathbf{E}\left[\Psi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot R \cdot \alpha+K \cdot R \cdot \frac{\alpha^{2}}{n}\right) .
$$

Then, there exists a constant $c:=c(\delta)>0$, such that for $\alpha \in\left(0, \min \left\{1, \frac{\epsilon \delta}{8 K}\right\}\right)$

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot R \cdot\left(1-\frac{\alpha \epsilon \delta}{8 n}\right)+R \cdot c \alpha \epsilon,
$$

and

$$
\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{8 c}{\delta} \cdot n
$$

Recap

Recap

- Our goal is to show that:

$$
\sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+K \cdot \frac{\alpha^{2}}{n}\right)+\Psi_{i}^{t} \cdot\left(\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+K \cdot \frac{\alpha^{2}}{n}\right)
$$

Recap

- Our goal is to show that:

$$
\begin{aligned}
& \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+K \cdot \frac{\alpha^{2}}{n}\right)+\Psi_{i}^{t} \cdot\left(\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+K \cdot \frac{\alpha^{2}}{n}\right) \\
& \quad \leq-\frac{\alpha \epsilon}{4 n} \cdot \Gamma^{t}+K \cdot \frac{\alpha^{2}}{n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon)
\end{aligned}
$$

Recap

- Our goal is to show that:

$$
\begin{aligned}
& \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+K \cdot \frac{\alpha^{2}}{n}\right)+\Psi_{i}^{t} \cdot\left(\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+K \cdot \frac{\alpha^{2}}{n}\right) \\
& \quad \leq-\frac{\alpha \epsilon}{4 n} \cdot \Gamma^{t}+K \cdot \frac{\alpha^{2}}{n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon) \\
& \quad \leq-\frac{\alpha \epsilon}{8 n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon)
\end{aligned}
$$

for any $\alpha \leq \frac{\epsilon}{8 K}$. (Key Observation 2)

Recap

- Our goal is to show that:

$$
\begin{aligned}
& \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+K \cdot \frac{\alpha^{2}}{n}\right)+\Psi_{i}^{t} \cdot\left(\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+K \cdot \frac{\alpha^{2}}{n}\right) \\
& \quad \leq-\frac{\alpha \epsilon}{4 n} \cdot \Gamma^{t}+K \cdot \frac{\alpha^{2}}{n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon) \\
& \quad \leq-\frac{\alpha \epsilon}{8 n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon)
\end{aligned}
$$

for any $\alpha \leq \frac{\epsilon}{8 K}$. (Key Observation 2)
We have the following types of bins

Set	Load	Index	r_{i}	Dominant Contribution
Good overloaded \mathcal{G}_{+}	$y_{i} \geq 0$	$i \leq \delta n$	$\frac{1-\epsilon}{n}$	$-\Phi_{i} \cdot \frac{\alpha \epsilon}{n}+\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Bad overloaded \mathcal{B}_{+}	$y_{i} \geq 0$	$i>\delta n$	$\frac{1+\widetilde{\epsilon}}{n}$	$+\Phi_{i} \cdot \frac{\alpha \epsilon}{n}-\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Good underloaded \mathcal{G}_{-}	$y_{i}<0$	$i>\delta n$	$\frac{1+\epsilon}{n}$	$+\Phi_{i} \cdot \frac{\alpha \epsilon}{n}-\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Bad overloaded \mathcal{B}_{-}	$y_{i}<0$	$i \leq \delta n$	$\frac{1-\epsilon}{n}$	$-\Phi_{i} \cdot \frac{\alpha \epsilon}{n}+\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$

Recap

- Our goal is to show that:

$$
\begin{aligned}
& \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\alpha \cdot\left(p_{i}-\frac{1}{n}\right)+K \cdot \frac{\alpha^{2}}{n}\right)+\Psi_{i}^{t} \cdot\left(\alpha \cdot\left(\frac{1}{n}-p_{i}\right)+K \cdot \frac{\alpha^{2}}{n}\right) \\
& \quad \leq-\frac{\alpha \epsilon}{4 n} \cdot \Gamma^{t}+K \cdot \frac{\alpha^{2}}{n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon) \\
& \quad \leq-\frac{\alpha \epsilon}{8 n} \cdot \Gamma^{t}+\mathcal{O}(\alpha \epsilon)
\end{aligned}
$$

for any $\alpha \leq \frac{\epsilon}{8 K}$. (Key Observation 2)

- We have the following types of bins

Set	Load	Index	r_{i}	Dominant Contribution
Good overloaded \mathcal{G}_{+}	$y_{i} \geq 0$	$i \leq \delta n$	$\frac{1-\epsilon}{n}$	$-\Phi_{i} \cdot \frac{\alpha \epsilon}{n}+\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Bad overloaded \mathcal{B}_{+}	$y_{i} \geq 0$	$i>\delta n$	$\frac{1+\widetilde{\epsilon}}{n}$	$+\Phi_{i} \cdot \frac{\alpha \epsilon}{n}-\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Good underloaded \mathcal{G}_{-}	$y_{i}<0$	$i>\delta n$	$\frac{1+\widetilde{\epsilon}}{n}$	$+\Phi_{i} \cdot \frac{\alpha \epsilon}{n}-\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$
Bad overloaded \mathcal{B}_{-}	$y_{i}<0$	$i \leq \delta n$	$\frac{1-\epsilon}{n}$	$-\Phi_{i} \cdot \frac{\alpha \epsilon}{n}+\Psi_{i} \cdot \frac{\alpha \epsilon}{n}$

Key Observation 3: For overloaded bins $\Psi_{i}^{t} \leq 1$ and for underloaded bins $\Phi_{i}^{t} \leq 1$, $\rightsquigarrow \quad$ their contribution is $\mathcal{O}(\alpha \epsilon)$.

The two general cases of bad bins

The two general cases of bad bins

There can either be overloaded bad bins

The two general cases of bad bins

There can either be overloaded bad bins or underloaded bad bins.

The two general cases of bad bins

- There can either be overloaded bad bins or underloaded bad bins.

Key Observation 4: The second case is symmetric to the first: $\delta^{\prime}=1-\delta, \Phi^{\prime}=\Psi$, $\Psi^{\prime}=\Phi$ and $y^{\prime}=-y$.

The two general cases of bad bins

There can either be overloaded bad bins or underloaded bad bins.

Key Observation 4: The second case is symmetric to the first: $\delta^{\prime}=1-\delta, \Phi^{\prime}=\Psi$, $\Psi^{\prime}=\Phi$ and $y^{\prime}=-y$.
\square So we only consider Case A.

Case A.1: Not too many overloaded bins

Case A.1: Not too many overloaded bins

Case A.1: Not too many overloaded bins

As with the exponential potential, we counteract the bad bins with a fraction of the decrease of the overloaded good bins. All underloaded bins are good.

Case A.2: Too many overloaded bins

Case A.2: Too many overloaded bins

$\frac{1}{4} \cdot \prod\left(1-\frac{1}{4}\right) \cdot \square+乌 \leq \frac{1}{4} \cdot \square \quad \mathcal{O}(\alpha \epsilon)$

Case A.2: Too many overloaded bins

Case A.2: Too many overloaded bins

Case A.2: Too many overloaded bins

Recap: Proof

We used the following techniques:

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).
2. Consider only the coefficients of α (Key observation 2).

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).
2. Consider only the coefficients of α (Key observation 2).
3. Consider only Φ_{i} for overloaded bins (and Ψ_{i} otherwise) (Key observation 3).

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).
2. Consider only the coefficients of α (Key observation 2).
3. Consider only Φ_{i} for overloaded bins (and Ψ_{i} otherwise) (Key observation 3).
4. Consider only Case A by symmetry (Key observation 4).

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).
2. Consider only the coefficients of α (Key observation 2).
3. Consider only Φ_{i} for overloaded bins (and Ψ_{i} otherwise) (Key observation 3).
4. Consider only Case A by symmetry (Key observation 4).
5. Use the decrease of the underload potential to counteract the increase of bad bins.

The drift theorem

Theorem ([LS22, Corollary 3.2])

Consider any allocation process and a probability vector p being ϵ-biased for some $\epsilon \in(0,1)$ and some constant δ. Further assume that it satisfies for some $K>0$ and some $R>0$, for any $t \geq 0$,

$$
\mathbf{E}\left[\Phi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot R \cdot \alpha+K \cdot R \cdot \frac{\alpha^{2}}{n}\right)
$$

and

$$
\mathbf{E}\left[\Psi^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot R \cdot \alpha+K \cdot R \cdot \frac{\alpha^{2}}{n}\right) .
$$

Then, there exists a constant $c:=c(\delta)>0$, such that for $\alpha \in\left(0, \min \left\{1, \frac{\epsilon \delta}{8 K}\right\}\right)$

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot R \cdot\left(1-\frac{\alpha \epsilon \delta}{8 n}\right)+R \cdot c \alpha \epsilon
$$

and

$$
\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{8 c}{\delta} \cdot n
$$

Applications

Example 1: The Graphical Setting

Example 1: The Graphical Setting

Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ,

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ, p^{t} is majorized by an ϵ-biased probability vector.

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ, p^{t} is majorized by an ϵ-biased probability vector. \rightsquigarrow gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\epsilon}\right)$ [PTW15].

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ, p^{t} is majorized by an ϵ-biased probability vector. \rightsquigarrow gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\epsilon}\right)$ [PTW15].

- Majorization does not apply for weights.

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ, p^{t} is majorized by an ϵ-biased probability vector. \rightsquigarrow gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\epsilon}\right)$ [PTW15].
Majorization does not apply for weights. But the refined drift theorem applies for the majorized vector.

Example 1: The Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball [KP06]:
- Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

For any d-regular graph with conductance ϵ, p^{t} is majorized by an ϵ-biased probability vector. \rightsquigarrow gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\epsilon}\right)$ [PTW15].

- Majorization does not apply for weights. But the refined drift theorem applies for the majorized vector. \rightsquigarrow Resolves [PTW15, Open problem 1]

Example 2: The Twinning process

Example 2: The Twinning process

The Twinning process at quantile δ, samples one bin i u.a.r. and:

Example 2: The Twinning process

The Twinning process at quantile δ, samples one bin i u.a.r. and:
$>$ If i is among the heaviest $n \cdot \delta$ bins, it allocates one ball there.

Example 2: The Twinning process

The Twinning process at quantile δ, samples one bin i u.a.r. and:
\Rightarrow If i is among the heaviest $n \cdot \delta$ bins, it allocates one ball there.

- Otherwise, it allocates two balls.

Example 2: The Twinning process

- The Twinning process at quantile δ, samples one bin i u.a.r. and:
$>$ If i is among the heaviest $n \cdot \delta$ bins, it allocates one ball there.
\Rightarrow Otherwise, it allocates two balls.

Example 2: The Twinning process

The Twinning process at quantile δ, samples one bin i u.a.r. and:
$>$ If i is among the heaviest $n \cdot \delta$ bins, it allocates one ball there.

- Otherwise, it allocates two balls.

Example 2: The Twinning process

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array} \begin{array}{c}
\text { Allocate two balls } \\
\text { to any light bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}
$$

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}_{\begin{array}{c}
\text { Allocate two balls } \\
\text { to any light bin }
\end{array}}=\frac{\delta}{n}-\frac{1}{n}
$$

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}_{\substack{\text { Allocate two balls } \\
\text { to any light bin }}}=\frac{\delta}{n}-\frac{1}{n} . \\
& \text { Similarly for a light bin } i>n \cdot \delta:
\end{aligned}
$$

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\frac{\delta}{n}
$$

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}_{\substack{\text { Allocate two balls } \\
\text { to any light bin }}}=\frac{\delta}{n}-\frac{1}{n} .
\end{aligned} \text { Similarly for a light bin } i>n \cdot \delta: \quad .
$$

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\frac{\delta}{n}
$$

- So, we can apply the drift theorem with probability vector

$$
p= \begin{cases}\frac{\delta}{n} & \text { for } i \leq n \cdot \delta \\ \frac{1+\delta}{n} & \text { otherwise }\end{cases}
$$

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}_{\substack{\text { Allocate two balls } \\
\text { to any light bin }}}=\frac{\delta}{n}-\frac{1}{n} .
\end{aligned} \text { Similarly for a light bin } i>n \cdot \delta: \quad .
$$

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\frac{\delta}{n}
$$

- So, we can apply the drift theorem with probability vector

$$
p= \begin{cases}\frac{\delta}{n} & \text { for } i \leq n \cdot \delta \\ \frac{1+\delta}{n} & \text { otherwise }\end{cases}
$$

which is ϵ-biased with $\epsilon=1-\delta$.

Example 2: The Twinning process

- For processes allocating more than one balls we have that:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right) \\
& \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(-\alpha \cdot \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]+\alpha^{2} \cdot \mathbf{E}\left[\left(\Delta y_{i}^{t+1}\right)^{2} \mid \mathfrak{F}^{t}\right]\right)
\end{aligned}
$$

- For Twinning, for any heavy bin $i \leq n \cdot \delta$:

$$
\begin{aligned}
& \mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\underbrace{\left(1-\frac{1}{n}\right) \cdot \frac{1}{n}}_{\text {Allocate one ball to bin } i}+\underbrace{\left(-\frac{1}{n}\right) \cdot\left(\delta-\frac{1}{n}\right)}_{\begin{array}{c}
\text { Allocate one ball } \\
\text { to any other heavy bin }
\end{array}}+\underbrace{\left(-\frac{2}{n}\right) \cdot(1-\delta)}_{\substack{\text { Allocate two balls } \\
\text { to any light bin }}}=\frac{\delta}{n}-\frac{1}{n} .
\end{aligned} \text { Similarly for a light bin } i>n \cdot \delta: \quad .
$$

$$
\mathbf{E}\left[\Delta y_{i}^{t+1} \mid \mathfrak{F}^{t}\right]=\frac{\delta}{n}
$$

- So, we can apply the drift theorem with probability vector

$$
p= \begin{cases}\frac{\delta}{n} & \text { for } i \leq n \cdot \delta \\ \frac{1+\delta}{n} & \text { otherwise }\end{cases}
$$

which is ϵ-biased with $\epsilon=1-\delta$. So, by the drift theorem, we get an $\mathcal{O}\left(\frac{\log n}{1-\delta}\right)$ gap.

Example 3: Memory with resets

Example 3: Memory with resets

- Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which is allowed to store a bin in a cache.

Example 3: Memory with resets

- Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which is allowed to store a bin in a cache. In each step, it can either allocate to the cache or to a random bin.

Example 3: Memory with resets

- Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which is allowed to store a bin in a cache. In each step, it can either allocate to the cache or to a random bin.
- In Memory with resets the cache is emptied every r steps.

Example 3: MEmory with resets

- Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which is allowed to store a bin in a cache. In each step, it can either allocate to the cache or to a random bin.
- In Memory with resets the cache is emptied every r steps.

For $r=2$, a similar analysis to that of the Twinning process, gives rise to the probability vector p of the Two-Choice process, i.e., $p_{i}=\frac{2 i-1}{n^{2}}$.

Example 3: Memory with resets

- Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which is allowed to store a bin in a cache. In each step, it can either allocate to the cache or to a random bin.
- In Memory with resets the cache is emptied every r steps.
\square For $r=2$, a similar analysis to that of the Twinning process, gives rise to the probability vector p of the Two-Choice process, i.e., $p_{i}=\frac{2 i-1}{n^{2}}$.
- Again, applying the drift theorem gives w.h.p. an $\mathcal{O}(\log n)$ upper bound on the gap.

Example 4: The b-Batched setting

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

- Consider a process with an ϵ-biased allocation vector p which further satisfies $\max _{i \in[n]} p_{i} \leq \frac{C}{n}$.

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

- Consider a process with an ϵ-biased allocation vector p which further satisfies $\max _{i \in[n]} p_{i} \leq \frac{C}{n}$.
- With a few Taylor estimates, we get

$$
\mathbf{E}\left[\Phi_{i}^{t+b} \mid \Phi_{i}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right),
$$

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

- Consider a process with an ϵ-biased allocation vector p which further satisfies $\max _{i \in[n]} p_{i} \leq \frac{C}{n}$.
- With a few Taylor estimates, we get

$$
\mathbf{E}\left[\Phi_{i}^{t+b} \mid \Phi_{i}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right),
$$

and similarly,

$$
\mathbf{E}\left[\Psi_{i}^{t+b} \mid \Psi_{i}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right) .
$$

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

- Consider a process with an ϵ-biased allocation vector p which further satisfies $\max _{i \in[n]} p_{i} \leq \frac{C}{n}$.
- With a few Taylor estimates, we get

$$
\mathbf{E}\left[\Phi_{i}^{t+b} \mid \Phi_{i}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right),
$$

and similarly,

$$
\mathbf{E}\left[\Psi_{i}^{t+b} \mid \Psi_{i}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right) .
$$

- Therefore, by the drift theorem over b steps, we get w.h.p. an $\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$ gap.

Example 4: The b-Batched setting

Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using the allocation vector at the start of the batch.

- Consider a process with an ϵ-biased allocation vector p which further satisfies $\max _{i \in[n]} p_{i} \leq \frac{C}{n}$.
- With a few Taylor estimates, we get

$$
\mathbf{E}\left[\Phi_{i}^{t+b} \mid \Phi_{i}^{t}\right] \leq \Phi_{i}^{t} \cdot\left(1+\left(p_{i}-\frac{1}{n}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right),
$$

and similarly,

$$
\mathbf{E}\left[\Psi_{i}^{t+b} \mid \Psi_{i}^{t}\right] \leq \Psi_{i}^{t} \cdot\left(1+\left(\frac{1}{n}-p_{i}\right) \cdot b \cdot \alpha+\frac{5 C^{2} b}{n} \cdot b \cdot \frac{\alpha^{2}}{n}\right) .
$$

- Therefore, by the drift theorem over b steps, we get w.h.p. an $\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$ gap.
- This is tight up to a $\log n$ factor for constant $C>1$.

Conclusions

Summary

Summary

The drift theorem in [PTW15] can be used to:

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

- Analyze graphical allocations via majorization (without weights).

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

- Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

- Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:

- Analyze processes allocating to more than one bins in each step.

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
\square Analyze processes allocating to more than one bins in each step.

- Provide tighter bounds on $\mathbf{E}\left[\Gamma^{t}\right]$ (and so tighter characterization of the load vector).

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

- Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
\square Analyze processes allocating to more than one bins in each step.

- Provide tighter bounds on $\mathbf{E}\left[\Gamma^{t}\right]$ (and so tighter characterization of the load vector).
- Analyze a wider range of settings (including outdated information, noise, etc.).

Summary

The drift theorem in [PTW15] can be used to:
Analyze processes with an ϵ-biased allocation vector with weights.

- Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
\square Analyze processes allocating to more than one bins in each step.

- Provide tighter bounds on $\mathbf{E}\left[\Gamma^{t}\right]$ (and so tighter characterization of the load vector).
- Analyze a wider range of settings (including outdated information, noise, etc.).
\square It is agnostic of the balanced allocations setting.

Open problems

Open problems

Still many open problems, including:

Open problems

Still many open problems, including:
Proving sublogarithmic bounds for the weighted graphical setting.

Open problems

Still many open problems, including:
Proving sublogarithmic bounds for the weighted graphical setting.
Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.

Open problems

Still many open problems, including:
Proving sublogarithmic bounds for the weighted graphical setting.

- Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.
- Analyse various load balancing algorithms used in practice (cf. envoy, nginx).

Open problems

Still many open problems, including:
\square Proving sublogarithmic bounds for the weighted graphical setting.

- Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.
- Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
\square Analyse balls-into-bins with deletions.

Open problems

Still many open problems, including:
\square Proving sublogarithmic bounds for the weighted graphical setting.

- Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.
- Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
- Analyse balls-into-bins with deletions.
\square Apply the drift theorem to other dynamic processes.

Open problems

Still many open problems, including:
\square Proving sublogarithmic bounds for the weighted graphical setting.

- Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.
- Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
- Analyse balls-into-bins with deletions.

Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:

Open problems

Still many open problems, including:
\square Proving sublogarithmic bounds for the weighted graphical setting.
Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.
Analyse various load balancing algorithms used in practice (cf. envoy, nginx).

- Analyse balls-into-bins with deletions.

Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
Is there a simpler way to argue that ϵ-biased processes have $\Theta(n)$ bins above the average load?

Open problems

Still many open problems, including:
\square Proving sublogarithmic bounds for the weighted graphical setting.
Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.

- Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
- Analyse balls-into-bins with deletions.
\square Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
Is there a simpler way to argue that ϵ-biased processes have $\Theta(n)$ bins above the average load?
\square Is there a way to adapt the drift theorem to work for processes with thresholds?

Open problems

Still many open problems, including:

- Proving sublogarithmic bounds for the weighted graphical setting.
- Gaps between $\log \log n$ and $\log n$ for the Memory process with resets.

Analyse various load balancing algorithms used in practice (cf. envoy, nginx).

- Analyse balls-into-bins with deletions.

Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
Is there a simpler way to argue that ϵ-biased processes have $\Theta(n)$ bins above the average load?
\square Is there a way to adapt the drift theorem to work for processes with thresholds?

- Can we use a single potential to prove sublogarithmic bounds (e.g., the $\log _{2} \log n+\Theta(1)$ bound for Two-Choice)?

Questions?

More visualisations: dimitrioslos.com/wand-disc23

Bibliography I

- D. Alistarh, J. Aspnes, and R. Gelashvili, Space-optimal majority in population protocols, 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'18), SIAM, 2018, pp. 2221-2239.
- D. Alistarh, t. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'18), ACM, 2018, pp. 133-142.
- Y. Azar, A. Z. Broder, A. R. Karlin, M. Mitzenmacher, and E. Upfal, The ACM Paris Kanellakis Theory and Practice Award, 2020, https://www.acm.org/media-center/2021/may/technical-awards-2020.
- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200. MR 1710347
- D. Alistarh, R. Gelashvili, and J. Rybicki, Fast graphical population protocols, 25th International Conference on Principles of Distributed Systems (OPODIS'21), vol. 217, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 14:1-14:18.

Bibliography II

- D. Alistarh, J. Kopinsky, J. Li, and g. Nadiradze, The power of choice in priority scheduling, 36th Annual ACM-SIGOPT Principles of Distributed Computing (PODC'17), ACM, 2017, pp. 283-292.
- P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice balanced allocation in (almost) parallel, 16th International Workshop on Randomization and Computation (RANDOM'12), Springer-Verlag, 2012, pp. 411-422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150
- M. Dahlin, Interpreting stale load information, IEEE Trans. Parallel Distributed Syst. 11 (2000), no. 10, 1033-1047.
- P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, Job-aware scheduling in eagle: Divide and stick to your probes, 7th ACM Symposium on Cloud Computing (SoCC'16), ACM, 2016, pp. 497-509.

Bibliography III

- P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel, Hawk: Hybrid datacenter scheduling, 2015 USENIX Annual Technical Conference (USENIX'15), USENIX, 2015, pp. 499-510.
- A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla, Online carpooling using expander decompositions, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'20), vol. 182, Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2020, pp. 23:1-23:14.
- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082
- M. Khelghatdoust and V. Gramoli, Peacock: Probe-based scheduling of jobs by rotating between elastic queues, 24th International Conference on Parallel and Distributed Computing (Euro-Par'18), vol. 11014, Springer, 2018, pp. 178-191.
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587

Bibliography IV

- K. Kenthapadi and R. Panigrahy, Balanced allocation on graphs, 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'06), ACM, 2006, pp. 434-443. MR 2368840
- D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized, 34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'22), ACM, 2022, p. 389-399.
- Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. G. Greenberg, Join-idle-queue: A novel load balancing algorithm for dynamically scalable web services, Perform. Evaluation 68 (2011), no. 11, 1056-1071.
- M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis, University of California at Berkeley, 1996.
- ___ How useful is old information?, IEEE Trans. Parallel Distributed Syst. 11 (2000), no. 1, 6-20.

Bibliography V

- M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., IEEE, 2002, pp. 799-808.
- G. Nadiradze, On achieving scalability through relaxation, Ph.D. thesis, IST Austria, 2021.
- K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, Sparrow: distributed, low latency scheduling, 24th ACM SIGOPS Symposium on Operating Systems Principles (SOSP'13), ACM, 2013, pp. 69-84.
- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures \& Algorithms 47 (2015), no. 4, 760-775. MR 3418914
- M. Raab and A. Steger, "Balls into bins"-a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170. MR 1729169

Bibliography VI

- J. Spencer, Balancing games, J. Combinatorial Theory Ser. B 23 (1977), no. 1, 68-74. MR 526057
- W. Whitt, Deciding which queue to join: Some counterexamples, Oper. Res. 34 (1986), no. 1, 55-62.

Temporary page!

${ }^{\mathrm{L}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has bee added to receive it.
If you rerun the document (without altering it) this surplus page will go away, because LATEX now knows how many pages to expect for this document.

