
Balanced Allocations: A Refined Drift Theorem

Dimitrios Los1, Thomas Sauerwald1, John Sylvester2

1University of Cambridge, UK, 2University of Liverpool, UK

Based on: “An Improved Drift Theorem for Balanced Allocations” (arXiv) &
“Balanced Allocations with Heterogeneous Bins: The Power of Memory” (arXiv)

1

https://arxiv.org/abs/2308.11083
https://arxiv.org/abs/2301.09810

Outline

■ Balanced allocations (background and some highlights)

■ The exponential and hyperbolic cosine potential functions

■ The proof of the drift theorem

■ The refinement and its applications

■ Open problems

2

Balanced allocations: Background

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to

occupancy problems, urn processes and queuing theory. Applications
in hashing, load balancing and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems,

urn processes and queuing theory. Applications
in hashing, load balancing and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems, urn processes

and queuing theory. Applications
in hashing, load balancing and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems, urn processes and queuing theory.

Applications
in hashing, load balancing and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems, urn processes and queuing theory. Applications
in hashing,

load balancing and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems, urn processes and queuing theory. Applications
in hashing, load balancing

and routing.

Balanced allocations: Background 4

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Connections to occupancy problems, urn processes and queuing theory. Applications
in hashing, load balancing and routing.

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?

Balanced allocations: Background 6

Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?

Balanced allocations: Background 6

Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on variants of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?

Balanced allocations: Background 6

Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on variants of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?

Balanced allocations: Background 6

Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on variants of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?

Balanced allocations: Background 6

Motivation

■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice
does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]).

For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:

We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

Motivation
■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice

does not perform well with outdated information. ⇝ herd phenomenon
■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],

Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark
The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7

An example of a variant of Two-Choice

An example of a variant of Two-Choice 8

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
(log n

β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].

■ It has been used to analyze population protocols [AAG18, AGR21], distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze

population protocols [AAG18, AGR21], distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21],

distributed data
structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21]

and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

(log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?

An example of a variant of Two-Choice 9

b-Batched Setting

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice
where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b
n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b

n).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b

n).
■ In constast to the case b ≪ n log n, where it is asymptotically optimal.

■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

b-Batched Setting
■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice

where balls are allocated in batches of size b (b-Batched setting).
■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ(b

n).
■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).

An example of a variant of Two-Choice 10

Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice,
pOne-Choice =

(1
n

,
1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11

A closer look at a single batch

Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html

Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice) and ≈ 1+β

n (for the (1 + β)-processes).

An example of a variant of Two-Choice 13

Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice),

≈ 2
n (for

Two-Choice) and ≈ 1+β
n (for the (1 + β)-processes).

An example of a variant of Two-Choice 13

Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice)

and ≈ 1+β
n (for the (1 + β)-processes).

An example of a variant of Two-Choice 13

Empirical results for different processes

0 10 20 30 40 50
0

20

40

60

Normalized batch size b/n

Three-Choice
Two-Choice

(1 + β), β = 0.5

(1 + β), β =
√

(n/b) · log n
(1 + β), β = 0.7 ·

√
(n/b) · log n

■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice) and ≈ 1+β

n (for the (1 + β)-processes).

An example of a variant of Two-Choice 13

Potential functions

Potential functions 14

Techniques for analyzing balanced allocations
Layered induction Witness trees Graphical processes

… …

… … …

Two-Choice, Memory Two-Choice, parallel allocations Two-Choice

Poissonisation Markov chains Potential functions

Xi ∼ Poi(m
n)

0.3

0.8

0.7

0.2

0.4 0.6

𝛿2𝛿1

Unweighted, time-independent Some weights, b-Batched,
heterogeneous sampling

weights, b-Batched, outdated info, noise
graphical, heterogeneous sampling

Potential functions 15

Processes

■ Following [PTW15] we will study ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

Processes
■ Following [PTW15] we will study ϵ-biased processes that:

▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

Processes
■ Following [PTW15] we will study ϵ-biased processes that:

▶ Have p is non-decreasing,

▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

Processes
■ Following [PTW15] we will study ϵ-biased processes that:

▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

Processes
■ Following [PTW15] we will study ϵ-biased processes that:

▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

Processes
■ Following [PTW15] we will study ϵ-biased processes that:

▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).

Potential functions 16

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n)

=
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)),

as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt

= O
(

1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n),

then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?

Potential functions 17

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).

■ When Φt is large (i.e., Φt ≥ 2 · c2
c1

· n), then it drops in expectation by a multiplicative
factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n,

since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]

≤ E
[

Φt
]

·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2

≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2

= c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [Φt] ≤ c2
c1

· n, since by induction,

E
[

Φt+1]
= E

[
E

[
Φt+1 | Φt

]]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [Φt] = poly(n).

Potential functions 18

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,

E
[

Φt+1
i | Φt

i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n].

Then,

E
[

Φt+1
i | Φt

i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.

■ For bins with pi = 1−ϵ
n , we have that (∆Φt+1

i := Φt+1
i − Φt

i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.

■ For bins with pi = 1−ϵ
n , we have that (∆Φt+1

i := Φt+1
i − Φt

i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.

■ For bins with pi = 1−ϵ
n , we have that (∆Φt+1

i := Φt+1
i − Φt

i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n ,

we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))

⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))

⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,
E

[
Φt+1

i | Φt
i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ

n , we have that (∆Φt+1
i := Φt+1

i − Φt
i)

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

−αϵ

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, for bins with pi = 1+ϵ̃
n ,

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(

+αϵ̃

n
+ O

(
α2

n

))
⇝ Bad bin.

Applies also to weights W with unit
expectation and finite MGF, i.e.,
eαW ≤ 1 + α + α2 · S.

Potential functions 19

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.

■ Consider a step t ≥ 0, where all but one bins have the same load:

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

𝛿𝑛

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

𝛿𝑛

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖

−𝛼𝜖𝛿 ⋅ Φ𝑖 +𝛼𝜖𝛿 ⋅ Φ𝑖 −
𝛼𝜖

𝑛
⋅ Φ𝑖 ǁ𝜖 = 𝜖 ⋅

𝛿

1 − 𝛿

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

𝛿𝑛

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖

−𝛼𝜖𝛿 ⋅ Φ𝑖 +𝛼𝜖𝛿 ⋅ Φ𝑖 −
𝛼𝜖

𝑛
⋅ Φ𝑖

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

𝛿𝑛

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖

−𝛼𝜖𝛿 ⋅ Φ𝑖 +𝛼𝜖𝛿 ⋅ Φ𝑖 −
𝛼𝜖

𝑛
⋅ Φ𝑖

■ We could get only a very small decrease.

⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

𝑦

𝑧

𝛿𝑛

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖

−𝛼𝜖𝛿 ⋅ Φ𝑖 +𝛼𝜖𝛿 ⋅ Φ𝑖 −
𝛼𝜖

𝑛
⋅ Φ𝑖

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.

Potential functions 20

The hyperbolic cosine potential

■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n) =

n∑
i=1

eα·yt
i + e−α·yt

i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0

Potential functions 21

The hyperbolic cosine potential
■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n)

=
n∑

i=1
eα·yt

i + e−α·yt
i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0

Potential functions 21

The hyperbolic cosine potential
■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n) =

n∑
i=1

eα·yt
i + e−α·yt

i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0

Potential functions 21

The hyperbolic cosine potential
■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n) =

n∑
i=1

eα·yt
i + e−α·yt

i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0

Potential functions 21

The hyperbolic cosine potential
■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n) =

n∑
i=1

eα·yt
i + e−α·yt

i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0

Potential functions 21

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.

■ More specifically, if pi = 1+ϵ̃
n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.

Potential functions 22

Drift Theorem

Theorem ([PTW15, Section 2])

Consider any process with non-decreasing allocation vector p which is ϵ-biased for some
ϵ ∈ (0, 1) and some constant δ, in the setting with weights sampled from a distribution
with finite MGF. Then, for Γ := Γ(α) with α := Θ(ϵ), for any step t ≥ 0,

E
[

∆Γt+1 ∣∣ Ft
]

≤ −Γt · αϵ

4n
+ poly(1/ϵ),

and
E

[
Γt

]
≤ n · poly(1/ϵ).

Potential functions 23

Refined Drift Theorem

Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some ϵ ∈ (0, 1) and some
constant δ. Further assume that it satisfies for some K > 0 and for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· α + K · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
(1

n
− pi

)
· α + K · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt ·

(
1 − αϵδ

8n

)
+ cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Potential functions 24

Refined Drift Theorem

Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some ϵ ∈ (0, 1) and some
constant δ. Further assume that it satisfies for some K > 0 and some R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · α + K · R · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
(1

n
− pi

)
· R · α + K · R · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − αϵδ

8n

)
+ R · cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Potential functions 24

Recap

■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).

Potential functions 25

Recap
■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)

≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,

⇝ their contribution is O(αϵ).

Potential functions 25

Recap
■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).

Potential functions 25

Recap
■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).

Potential functions 25

Recap
■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).

Potential functions 25

Recap
■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).

Potential functions 25

The two general cases of bad bins

■ There can either be overloaded bad bins

or underloaded bad bins

.

𝑦

𝛿𝑛

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.

Potential functions 26

The two general cases of bad bins

■ There can either be overloaded bad bins

or underloaded bad bins

.

𝑦

𝛿𝑛

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first

: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.

Potential functions 26

The two general cases of bad bins

■ There can either be overloaded bad bins or underloaded bad bins.

𝑦

𝛿𝑛

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.

Potential functions 26

The two general cases of bad bins

■ There can either be overloaded bad bins or underloaded bad bins.

𝑦

𝛿𝑛

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.

Potential functions 26

The two general cases of bad bins

■ There can either be overloaded bad bins or underloaded bad bins.

𝑦

𝛿𝑛

Good overloaded
bins 𝒢+

Bad overloaded
bins ℬ+

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good
overloaded bins 𝒢+

Bad underloaded
bins ℬ−

Good underloaded
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.

Potential functions 26

Case A.1: Not too many overloaded bins

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

𝒢+ ℬ+

■ As with the exponential potential, we counteract the bad bins with a fraction of the
decrease of the overloaded good bins. All underloaded bins are good.

Potential functions 27

Case A.1: Not too many overloaded bins

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

𝒢+ ℬ+

■ As with the exponential potential, we counteract the bad bins with a fraction of the
decrease of the overloaded good bins. All underloaded bins are good.

Potential functions 27

Case A.1: Not too many overloaded bins

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

𝒢+ ℬ+

■ As with the exponential potential, we counteract the bad bins with a fraction of the
decrease of the overloaded good bins. All underloaded bins are good.

Potential functions 27

Case A.2: Too many overloaded bins

𝑦

𝛿𝑛

𝑧1

𝑧3

𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

𝒢+ 𝒢−

Potential functions 28

Case A.2: Too many overloaded bins

𝑦

𝛿𝑛

𝑧1
𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

𝒢+ 𝒢−

If 𝑧2 ≤
1

𝛼
⋅
1−𝛿

2𝛿
⋅ log 3

𝒪(𝛼𝜖)

Potential functions 28

Case A.2: Too many overloaded bins

𝑦

𝛿𝑛

𝑧1
𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

𝒢+ 𝒢−

If 𝑧2 >
1

𝛼
⋅
1−𝛿

2𝛿
⋅ log 3

Potential functions 28

Case A.2: Too many overloaded bins

𝑦

𝛿𝑛

𝑧1
𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

𝒢+ 𝒢−

If 𝑧2 >
1

𝛼
⋅
1−𝛿

2𝛿
⋅ log 3

Potential functions 28

Case A.2: Too many overloaded bins

𝑦

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

1 −
1

4
⋅+

1

4
⋅≤

1

4
⋅

𝑧1

𝑧3

𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

𝒢+ 𝒢−

Potential functions 28

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.

Potential functions 29

The drift theorem
Theorem ([LS22, Corollary 3.2])

Consider any allocation process and a probability vector p being ϵ-biased for some
ϵ ∈ (0, 1) and some constant δ. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · α + K · R · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
(1

n
− pi

)
· R · α + K · R · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − αϵδ

8n

)
+ R · cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.

Potential functions 30

Applications

Applications 31

Example 1: The Graphical Setting

■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:
▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.

▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ,

pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector.

⇝ gap is w.h.p. O
(log n

ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights.

But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector.

⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 1: The Graphical Setting
■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:

▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

(log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]

Applications 32

Example 2: The Twinning process

■ The Twinning process at quantile δ, samples one bin i u.a.r. and:
▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

Applications 33

Example 2: The Twinning process
■ The Twinning process at quantile δ, samples one bin i u.a.r. and:

▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

Applications 33

Example 2: The Twinning process
■ The Twinning process at quantile δ, samples one bin i u.a.r. and:

▶ If i is among the heaviest n · δ bins, it allocates one ball there.

▶ Otherwise, it allocates two balls.

Applications 33

Example 2: The Twinning process
■ The Twinning process at quantile δ, samples one bin i u.a.r. and:

▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

Applications 33

Example 2: The Twinning process
■ The Twinning process at quantile δ, samples one bin i u.a.r. and:

▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

δi

Applications 33

Example 2: The Twinning process
■ The Twinning process at quantile δ, samples one bin i u.a.r. and:

▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

δi iδ

Applications 33

Example 2: The Twinning process

■ For processes allocating more than one balls we have that:
E

[
∆Φt+1

i | Ft
]

≤ Φt
i ·

(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ.

So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 2: The Twinning process
■ For processes allocating more than one balls we have that:

E
[

∆Φt+1
i | Ft

]
≤ Φt

i ·
(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i)2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O(log n
1−δ) gap.

Applications 34

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache.

In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .

■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get

E
[

Φt+b
i | Φt

i

]
≤ Φt

i ·
(

1 +
(

pi − 1
n

)
· b · α + 5C2b

n
· b · α2

n

)
,

and similarly,

E
[

Ψt+b
i | Ψt

i

]
≤ Ψt

i ·
(

1 +
(

1
n

− pi

)
· b · α + 5C2b

n
· b · α2

n

)
.

■ Therefore, by the drift theorem over b steps, we get w.h.p. an O(b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.

Applications 36

Conclusions

Conclusions 37

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:

■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.

■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:

■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.

■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).

■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).

■ It is agnostic of the balanced allocations setting.

Conclusions 38

Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [Γt] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.

Conclusions 38

Open problems

Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:

■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.

■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.

■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).

■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.

■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:

■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the
average load?

■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?

■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?

■ Can we use a single potential to prove sublogarithmic bounds (e.g., the
log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Open problems
Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?

Conclusions 39

Questions?

More visualisations: dimitrioslos.com/wand-disc23
Conclusions 40

https://dimitrioslos.com/wand-disc23

Bibliography I
▶ D. Alistarh, J. Aspnes, and R. Gelashvili, Space-optimal majority in population

protocols, 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18),
SIAM, 2018, pp. 2221–2239.

▶ D. Alistarh, t. Brown, J. Kopinsky, J. Z. Li, and G. Nadiradze, Distributionally
linearizable data structures, 30th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA’18), ACM, 2018, pp. 133–142.

▶ Y. Azar, A. Z. Broder, A. R. Karlin, M. Mitzenmacher, and E. Upfal, The ACM Paris
Kanellakis Theory and Practice Award, 2020,
https://www.acm.org/media-center/2021/may/technical-awards-2020.

▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.
Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ D. Alistarh, R. Gelashvili, and J. Rybicki, Fast graphical population protocols, 25th
International Conference on Principles of Distributed Systems (OPODIS’21), vol. 217,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 14:1–14:18.

41

https://www.acm.org/media-center/2021/may/technical-awards-2020

Bibliography II
▶ D. Alistarh, J. Kopinsky, J. Li, and g. Nadiradze, The power of choice in priority

scheduling, 36th Annual ACM-SIGOPT Principles of Distributed Computing
(PODC’17), ACM, 2017, pp. 283–292.

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ M. Dahlin, Interpreting stale load information, IEEE Trans. Parallel Distributed Syst.11
(2000), no. 10, 1033–1047.

▶ P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, Job-aware scheduling in eagle:
Divide and stick to your probes, 7th ACM Symposium on Cloud Computing (SoCC’16),
ACM, 2016, pp. 497–509.

42

Bibliography III
▶ P. Delgado, F. Dinu, A. M. Kermarrec, and W. Zwaenepoel, Hawk: Hybrid datacenter

scheduling, 2015 USENIX Annual Technical Conference (USENIX’15), USENIX, 2015,
pp. 499–510.

▶ A. Gupta, R. Krishnaswamy, A. Kumar, and S. Singla, Online carpooling using expander
decompositions, 40th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’20), vol. 182, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, pp. 23:1–23:14.

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082

▶ M. Khelghatdoust and V. Gramoli, Peacock: Probe-based scheduling of jobs by rotating
between elastic queues, 24th International Conference on Parallel and Distributed
Computing (Euro-Par’18), vol. 11014, Springer, 2018, pp. 178–191.

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

43

Bibliography IV
▶ K. Kenthapadi and R. Panigrahy, Balanced allocation on graphs, 17th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA’06), ACM, 2006, pp. 434–443.
MR 2368840

▶ D. Los and T. Sauerwald, Balanced allocations in batches: Simplified and generalized,
34th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’22),
ACM, 2022, p. 389–399.

▶ Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. G. Greenberg, Join-idle-queue:
A novel load balancing algorithm for dynamically scalable web services, Perform.
Evaluation 68 (2011), no. 11, 1056–1071.

▶ M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis,
University of California at Berkeley, 1996.

▶ , How useful is old information?, IEEE Trans. Parallel Distributed Syst. 11
(2000), no. 1, 6–20.

44

Bibliography V
▶ M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, The 43rd

Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
IEEE, 2002, pp. 799–808.

▶ G. Nadiradze, On achieving scalability through relaxation, Ph.D. thesis, IST Austria,
2021.

▶ K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, Sparrow: distributed, low latency
scheduling, 24th ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’13), ACM, 2013, pp. 69–84.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures & Algorithms 47 (2015), no. 4, 760–775. MR
3418914

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170. MR 1729169

45

Bibliography VI
▶ J. Spencer, Balancing games, J. Combinatorial Theory Ser. B 23 (1977), no. 1, 68–74.

MR 526057
▶ W. Whitt, Deciding which queue to join: Some counterexamples, Oper. Res. 34 (1986),

no. 1, 55–62.

46

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some
unprocessed data that should have been added to the final page this extra page has been
added to receive it.
If you rerun the document (without altering it) this surplus page will go away, because
LATEX now knows how many pages to expect for this document.

	Balanced allocations: Background
	An example of a variant of Two-Choice
	Potential functions
	Applications
	Conclusions
	Appendix

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

