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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Is this a good process/model in practice?

The practical significance of the “power of two choices” was recognised in the 2020 ACM
Theory and Practice Award [ABK+20]:

“[...] it is not surprising that the power of two choices that requires only a local
decision rather than global coordination has led to a wide range of practical ap-
plications. These include i-Google’s web index, Akamai’s overlay routing network,
and highly reliable distributed data storage systems used by Microsoft and Dropbox,
which are all based on of the power of two choices paradigm.”

Question: Why variants and not vanilla Two-Choice?
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Motivation

■ Mitzenmacher [Mit00] and Dahlin [Dah00] empirically observed that Two-Choice
does not perform well with outdated information.

⇝ herd phenomenon

i1 i2

load? load?3 5

Allocate

■ Several low-latency schedulers use variants of Two-Choice (Eagle [DDDZ16],
Hawk [DDKZ15], Peacock [KG18]). For Sparrow [OWZS13], they remark

The power of two choices suffers from two remaining performance problems: first,
server queue length is a poor indicator of wait time, and second, due to messaging
delays, multiple schedulers sampling in parallel may experience race conditions.

■ As noted in [LXK+11], communication is a shortcoming of Two-Choice in some
real-word load balancers:

More importantly, the [Two-Choice] algorithm requires communication between
dispatchers and processors at the time of job assignment. The communication time
is on the critical path, hence contributes to the increase in response time.

■ In the queuing setting, Whitt [Whi86] remarks:
We have shown that several natural selection rules are not optimal in various sit-
uations, but we have not identified any optimal rules. Identifying optimal rules in
these situations would obviously be interesting, but appears to be difficult.

Balanced allocations: Background 7
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An example of a variant of Two-Choice
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(1 + β)-Process

(1 + β)-Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O

( log n
β

)
for any

β ∈ (0, 1].
■ It has been used to analyze population protocols [AAG18, AGR21], distributed data

structures [ABK+18, AKLN17, Nad21] and online carpooling [GKKS20].

Question: Why choose a β < 1?
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b-Batched Setting

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] studied Two-Choice
where balls are allocated in batches of size b (b-Batched setting).

■ For b ≥ n log n, we show that Two-Choice has w.h.p. Gap(m) = Θ( b
n ).

■ In constast to the case b ≪ n log n, where it is asymptotically optimal.
■ For b ≥ n log n, we show that the (1 + β)-process has

w.h.p. Gap(m) = Θ
(√

b
n · log n

)
, for β = Θ(

√
(n/b) · log n).
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Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ For (1 + β)-process,

p(1+β) =
(

. . . , β · 2i − 1
n2 + (1 − β) · 1

n
, . . .

)
.

An example of a variant of Two-Choice 11
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A closer look at a single batch

Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


A closer look at a single batch
Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.

An example of a variant of Two-Choice 12

https://dimitrioslos.com/phdthesis/phenomena/tower_of_two_choices/tower_of_two_choices.html


Empirical results for different processes
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√
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■ The gaps are decreasingly ordered by pn: ≈ 3
n (for Three-Choice), ≈ 2

n (for
Two-Choice) and ≈ 1+β

n (for the (1 + β)-processes).
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Processes

■ Following [PTW15] we will study ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ Key Observation 1: We can assume the following worst-case allocation vector

1 − 𝜖

𝑛

𝛿𝑛

1 + ǁ𝜖

𝑛

ǁ𝜖 = 𝜖 ⋅
𝛿

1 − 𝛿

■ Our main aim will be to derive the w.h.p. O((log n)/ϵ) gap, for any ϵ ∈ (0, 1).
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The exponential potential

■ At step t ≥ 0, the exponential potential with smoothing parameter α > 0 is defined as

Φt :=
n∑

i=1
eα·(xt

i−t/n) =
n∑

i=1
eα·yt

i .

■ Our goal is to show that Φt = O(poly(n)), as it implies that

yt
i ≤ 1

α
· log Φt = O

(
1
α

· log n

)
.

■ Even better, if we show that Φt = O(n), then the bins with load ≥ t/n + z is at most
O(n · e−αz).

Question: How can we prove this?
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What is a drift theorem?

■ A drift theorem (or drift inequality) has the form

E
[

Φt+1 | Ft
]

≤ Φt ·
(

1 − c1

n

)
+ c2,

for any possible history of the process Ft (or filtration).
■ When Φt is large (i.e., Φt ≥ 2 · c2

c1
· n), then it drops in expectation by a multiplicative

factor,

E
[

Φt+1
∣∣∣∣Ft, Φt ≥ 2 · c2

c1
· n

]
≤ Φt ·

(
1 − c1

2n

)
,

■ It also implies that E [ Φt ] ≤ c2
c1

· n, since by induction,

E
[

Φt+1 ]
= E

[
E

[
Φt+1 | Φt

] ]
≤ E

[
Φt

]
·
(

1 − c1

n

)
+ c2 ≤ c2

c1
· n − c2 + c2 = c2

c1
· n.

■ Then, applying Markov’s inequality we get that w.h.p. E [ Φt ] = poly(n).
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Deriving a drift theorem

■ Let us fix a bin i ∈ [n]. Then,

E
[

Φt+1
i | Φt

i

]
= pi · eα·(yt

i +1−1/n) + (1 − pi) · eα·(yt
i −1/n)

≤ Φt
i ·

(
pi ·

(
1 + α · (1 − 1/n) + α2)

+ (1 − pi) ·
(
1 − α/n + α2/n2))

= Φt
i ·

(
1 + α ·

(
pi − 1

n

)
+ α2 ·

(
pi + 1 − pi

n

))
,

using the Taylor estimate ez ≤ 1 + z + z2 for sufficiently small z.
■ For bins with pi = 1−ϵ
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What could go wrong?

■ There could be too many overloaded bins.
■ Consider a step t ≥ 0, where all but one bins have the same load:

■ We could get only a very small decrease. ⇝ Gives O(n log n/ϵ) bound on the gap.
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The hyperbolic cosine potential

■ The hyperbolic cosine potential [PTW15, Spe77] is defined as

Γt := Φt + Ψt :=
n∑

i=1
eα·(xt

i−t/n) + e−α·(xt
i−t/n) =

n∑
i=1

eα·yt
i + e−α·yt

i .

Question: Why does the second term help?

𝑦

𝑧

−𝑧 ⋅ 𝑛 − 1

0
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The underload potential Ψ

■ For any bin i ∈ [n], the underload potential satisfies the following drift inequality,

E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
■ More specifically, if pi = 1+ϵ̃

n , then

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

−αϵ̃

n
+ O

(
α2

n

))
⇝ Good bin.

■ Otherwise, if pi = 1−ϵ
n

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(

+αϵ

n
+ O

(
α2

n

))
⇝ Bad bin.
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E
[

Ψt+1
i | Ft

]
≤ Ψt

i ·
(

1 + α ·
(

1
n

− pi

)
+ α2 ·

(
pi + (1 − pi) · 1

n2

))
.

■ So, the dominant term is the negative of that in Φ.
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Drift Theorem

Theorem ([PTW15, Section 2])

Consider any process with non-decreasing allocation vector p which is ϵ-biased for some
ϵ ∈ (0, 1) and some constant δ, in the setting with weights sampled from a distribution
with finite MGF. Then, for Γ := Γ(α) with α := Θ(ϵ), for any step t ≥ 0,

E
[

∆Γt+1 ∣∣ Ft
]

≤ −Γt · αϵ

4n
+ poly(1/ϵ),

and
E

[
Γt

]
≤ n · poly(1/ϵ).
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Refined Drift Theorem

Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some ϵ ∈ (0, 1) and some
constant δ. Further assume that it satisfies for some K > 0 and for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· α + K · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· α + K · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt ·

(
1 − αϵδ

8n

)
+ cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.
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Theorem ([LS22, Corollary 3.2])

Consider any process and a probability vector p being ϵ-biased for some ϵ ∈ (0, 1) and some
constant δ. Further assume that it satisfies for some K > 0 and some R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · α + K · R · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· R · α + K · R · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − αϵδ

8n

)
+ R · cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.
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Recap

■ Our goal is to show that:

n∑
i=1

Φt
i ·

(
α ·

(
pi − 1

n

)
+ K · α2

n

)
+ Ψt

i ·
(

α ·
(

1
n

− pi

)
+ K · α2

n

)
≤ − αϵ

4n
· Γt + K · α2

n
· Γt + O(αϵ)

≤ − αϵ

8n
· Γt + O(αϵ),

for any α ≤ ϵ
8K . (Key Observation 2)

■ We have the following types of bins
Set Load Index ri Dominant Contribution

Good overloaded G+ yi ≥ 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n + Ψi · αϵ
n

Bad overloaded B+ yi ≥ 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n − Ψi · αϵ̃
n

Good underloaded G− yi < 0 i > δn 1+ϵ̃
n +Φi · αϵ̃

n −Ψi · αϵ̃
n

Bad overloaded B− yi < 0 i ≤ δn 1−ϵ
n −Φi · αϵ

n +Ψi · αϵ
n

■ Key Observation 3: For overloaded bins Ψt
i ≤ 1 and for underloaded bins Φt

i ≤ 1,
⇝ their contribution is O(αϵ).
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The two general cases of bad bins

■ There can either be overloaded bad bins

or underloaded bad bins

.

𝑦

𝛿𝑛

Good overloaded 
bins 𝒢+

Bad overloaded 
bins ℬ+

Good underloaded 
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼 ǁ𝜖

𝑛
⋅ Φ𝑖 −

𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝛿𝑛

Good 
overloaded bins 𝒢+

Bad underloaded 
bins ℬ−

Good underloaded 
bins 𝒢−

−
𝛼𝜖

𝑛
⋅ Φ𝑖 +

𝛼𝜖

𝑛
⋅ Ψ𝑖

−
𝛼 ǁ𝜖

𝑛
⋅ Ψ𝑖

■ Key Observation 4: The second case is symmetric to the first: δ′ = 1 − δ, Φ′ = Ψ,
Ψ′ = Φ and y′ = −y.

■ So we only consider Case A.
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Case A.1: Not too many overloaded bins

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝛿𝑛
𝑛

2
⋅ 1 + 𝛿

𝒢+ ℬ+

■ As with the exponential potential, we counteract the bad bins with a fraction of the
decrease of the overloaded good bins. All underloaded bins are good.
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Case A.2: Too many overloaded bins

𝑦

𝛿𝑛

𝑧1

𝑧3

𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
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1

4
⋅≤

𝒢+ 𝒢−
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Case A.2: Too many overloaded bins
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4
⋅
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4
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4
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If 𝑧2 ≤
1

𝛼
⋅
1−𝛿

2𝛿
⋅ log 3

𝒪(𝛼𝜖)
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Recap: Proof

We used the following techniques:

1. Consider only step probability vectors (Key observation 1).

2. Consider only the coefficients of α (Key observation 2).

3. Consider only Φi for overloaded bins (and Ψi otherwise) (Key observation 3).

4. Consider only Case A by symmetry (Key observation 4).

5. Use the decrease of the underload potential to counteract the increase of bad bins.
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The drift theorem
Theorem ([LS22, Corollary 3.2])

Consider any allocation process and a probability vector p being ϵ-biased for some
ϵ ∈ (0, 1) and some constant δ. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

E
[

Φt+1 ∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
(

1 +
(

pi − 1
n

)
· R · α + K · R · α2

n

)
,

and

E
[

Ψt+1 ∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(

1 +
( 1

n
− pi

)
· R · α + K · R · α2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for α ∈
(
0, min

{
1, ϵδ

8K

})
E

[
Γt+1 ∣∣ Ft

]
≤ Γt · R ·

(
1 − αϵδ

8n

)
+ R · cαϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.
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Example 1: The Graphical Setting

■ Given a graph G = (V, E), where the vertices are bins. For each ball [KP06]:
▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance ϵ, pt is majorized by an ϵ-biased probability
vector. ⇝ gap is w.h.p. O

( log n
ϵ

)
[PTW15].

■ Majorization does not apply for weights. But the refined drift theorem applies for the
majorized vector. ⇝ Resolves [PTW15, Open problem 1]
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Example 2: The Twinning process

■ The Twinning process at quantile δ, samples one bin i u.a.r. and:
▶ If i is among the heaviest n · δ bins, it allocates one ball there.
▶ Otherwise, it allocates two balls.

Applications 33
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Example 2: The Twinning process

■ For processes allocating more than one balls we have that:
E

[
∆Φt+1

i | Ft
]

≤ Φt
i ·

(
α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i )2 | Ft

])
,

E
[

∆Ψt+1
i | Ft

]
≤ Ψt

i ·
(
−α · E

[
∆yt+1

i | Ft
]

+ α2 · E
[

(∆yt+1
i )2 | Ft

])
.

■ For Twinning, for any heavy bin i ≤ n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

=
(

1 − 1
n

)
· 1

n︸ ︷︷ ︸
Allocate one ball to bin i

+
(

− 1
n

)
·
(

δ − 1
n

)
︸ ︷︷ ︸

Allocate one ball
to any other heavy bin

+
(

− 2
n

)
· (1 − δ)︸ ︷︷ ︸

Allocate two balls
to any light bin

= δ

n
− 1

n
.

■ Similarly for a light bin i > n · δ:

E
[

∆yt+1
i

∣∣ Ft
]

= δ

n
.

■ So, we can apply the drift theorem with probability vector

p =
{

δ
n for i ≤ n · δ,
1+δ

n otherwise,

which is ϵ-biased with ϵ = 1 − δ. So, by the drift theorem, we get an O( log n
1−δ ) gap.
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Example 3: Memory with resets

■ Mitzenmacher, Prabhakar and Shah [MPS02] introduced the Memory process which
is allowed to store a bin in a cache. In each step, it can either allocate to the cache or
to a random bin.

■ In Memory with resets the cache is emptied every r steps.

■ For r = 2, a similar analysis to that of the Twinning process, gives rise to the
probability vector p of the Two-Choice process, i.e., pi = 2i−1

n2 .

■ Again, applying the drift theorem gives w.h.p. an O(log n) upper bound on the gap.

Applications 35
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Example 4: The b-Batched setting

■ Recall that in the b-Batched setting, a batch of b balls is allocated in parallel, using
the allocation vector at the start of the batch.

■ Consider a process with an ϵ-biased allocation vector p which further satisfies
maxi∈[n] pi ≤ C

n .
■ With a few Taylor estimates, we get
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■ Therefore, by the drift theorem over b steps, we get w.h.p. an O( b
n · log n) gap.

■ This is tight up to a log n factor for constant C > 1.
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Summary

The drift theorem in [PTW15] can be used to:
■ Analyze processes with an ϵ-biased allocation vector with weights.
■ Analyze graphical allocations via majorization (without weights).

The refined drift theorem can be used to:
■ Analyze processes allocating to more than one bins in each step.
■ Provide tighter bounds on E [ Γt ] (and so tighter characterization of the load vector).
■ Analyze a wider range of settings (including outdated information, noise, etc.).
■ It is agnostic of the balanced allocations setting.
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Open problems

Still many open problems, including:
■ Proving sublogarithmic bounds for the weighted graphical setting.
■ Gaps between log log n and log n for the Memory process with resets.
■ Analyse various load balancing algorithms used in practice (cf. envoy, nginx).
■ Analyse balls-into-bins with deletions.
■ Apply the drift theorem to other dynamic processes.

Regarding techniques, there are also a few open questions:
■ Is there a simpler way to argue that ϵ-biased processes have Θ(n) bins above the

average load?
■ Is there a way to adapt the drift theorem to work for processes with thresholds?
■ Can we use a single potential to prove sublogarithmic bounds (e.g., the

log2 log n + Θ(1) bound for Two-Choice)?
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Questions?

More visualisations: dimitrioslos.com/wand-disc23
Conclusions 40
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