Brief Anouncement: Tight Bounds for Repeated Balls-into-Bins

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$

${ }^{1}$ University of Cambridge, UK

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

- (One-Choice) Allocating each ball uniformly at random for $m=\Omega(n \log n)$ gives w.h.p. a maximum load of: $\frac{m}{n}+\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$.

The Repeated Balls-into-Bins (RBB) setting

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$. We start with an arbitrary configuration with $m \geq n$ balls.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary configuration with $m \geq n$ balls.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary configuration with $m \geq n$ balls.
- In each round:

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary configuration with $m \geq n$ balls.
In each round:

- For each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary configuration with $m \geq n$ balls.
In each round:

- For each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary configuration with $m \geq n$ balls.

- In each round:
- For each non-empty bin, remove (arbitrarily) one ball.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

- We start with an arbitrary configuration with $m \geq n$ balls.

In each round:
$>$ For each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

We start with an arbitrary configuration with $m \geq n$ balls.

- In each round:
- For each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.

We start with an arbitrary configuration with $m \geq n$ balls.

- In each round:
- For each non-empty bin, remove (arbitrarily) one ball.
- Re-allocate these balls randomly to the n bins.

The Repeated Balls-into-Bins (RBB) setting

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [$\left.\mathrm{BCN}^{+} 15, \mathrm{BCN}^{+} 19\right]$.
We start with an arbitrary configuration with $m \geq n$ balls.

- In each round:
- For each non-empty bin, remove (arbitrarily) one ball.
\Rightarrow Re-allocate these balls randomly to the n bins.

Number of balls is always exactly m.

RBB in action

RBB in action

- Starting with an unbalanced configuration, the process eventually stabilises in a balanced configuration.

Questions of interest and Results

Questions of interest and Results

Does the process stabilize?

Questions of interest and Results

Does the process stabilize?

- For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?

- For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

What is the maximum load once stabilized (for poly(n) rounds)?

Questions of interest and Results

\square Does the process stabilize?
$>$ For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?

- For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
- What is the maximum load once stabilized (for poly(n) rounds)?
- For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.

Questions of interest and Results

Does the process stabilize?
$>$ For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- What is the maximum load once stabilized (for poly(n) rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- How many rounds for all balls to traverse all bins?

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- What is the maximum load once stabilized (for poly(n) rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.
For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.

- What is the maximum load once stabilized (for poly (n) rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $[\mathrm{B}$

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2}\right.$
- What is the maximum load once stabilized (for pol $>$ For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$
\Rightarrow Conjectured for $m=n$, the maximum load is ω (
- Conjectured for $m=n \log n$, the maximum load

- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- We show that:
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- We show that:
\downarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n)$.
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n) . \times$
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m ic $\mathcal{C}(n)$
- What is the maximum load once stabilized (for pol
\Rightarrow For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)$
\Rightarrow Conjectured for $m=n$, the maximum load is ω (
- Conjectured for $m=n \log n$, the maximum load
- We show that:
- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load

- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n) . \times$
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (quadratic and exponential potentials)How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n) . \times$
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.
\Rightarrow For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (quadratic and exponential potentials)
\rightsquigarrow Coupling with One-Choice

- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.

Questions of interest and Results

Does the process stabilize?
\Rightarrow For $m=n$, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds $\left[\mathrm{BCN}^{+} 19\right]$.

- For any $m=\operatorname{poly}(n)$, w.h.p. it stabilizes in $\mathcal{O}\left(m^{2} / n\right)$ rounds.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (using random walks),
\rightsquigarrow Exponential potential with smoothing factor n / m is $\mathcal{O}(\operatorname{poly}(n))$.
- What is the maximum load once stabilized (for $\operatorname{poly}(n)$ rounds)?
\triangleright For $m=n$, w.h.p. the maximum load is $\mathcal{O}(\log n)\left[\mathrm{BCN}^{+} 19\right]$.
- Conjectured for $m=n$, the maximum load is $\omega(\log n / \log \log n)$.
- Conjectured for $m=n \log n$, the maximum load is $\mathcal{O}(\log n) . \times$
- We show that:

For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is $\mathcal{O}\left(\frac{m}{n} \cdot \log n\right)$.

- For any $m=\operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega\left(\frac{m}{n} \cdot \log n\right)$.
\rightsquigarrow On average, $\Omega(n / m)$ fraction of empty bins (quadratic and exponential potentials)
\rightsquigarrow Coupling with One-Choice
- How many rounds for all balls to traverse all bins?
\Rightarrow For $m=n$, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}\left(n \log ^{2} n\right)\left[\mathrm{BCN}^{+} 19\right]$.
- For $m=\operatorname{poly}(n)$, w.h.p. traversal time is $\Theta(m \log n)$.

Future work

Future work

\square Explore the process in the graphical setting.

Future work

Explore the process in the graphical setting.

Explore versions of the process with continuous loads.

Questions?

More visualisations: dimitrioslos.com/spaa22ba

Bibliography I

$>$ L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and G. Posta, Self-stabilizing repeated balls-into-bins, 27th International Symposium on Theoretical Aspects of Computer Science (STACS'15), ACM, 2015, pp. 332-339.
$>\ldots$, Self-stabilizing repeated balls-into-bins, Distributed Comput. 32 (2019), no. 1, 59-68.

