Brief Anouncement: Tight Bounds for Repeated Balls-into-Bins

<u>Dimitrios Los</u>¹, Thomas Sauerwald¹

¹University of Cambridge, UK

Allocate m tasks (balls) sequentially into n machines (bins).

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

(ONE-CHOICE) Allocating each ball uniformly at random for $m = \Omega(n \log n)$ gives w.h.p. a maximum load of: $\frac{m}{n} + \Theta(\sqrt{\frac{m}{n} \cdot \log n})$.

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.

Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta $[BCN^+15, BCN^+19]$.
 - We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19]. We start with an arbitrary configuration with $m \ge n$ halls.
 - We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta [BCN⁺15, BCN⁺19].
 - We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.
 - \triangleright Re-allocate these balls randomly to the *n* bins.

Number of balls is always exactly m.

- Introduced by Becchetti, Clementi, Natale, Pasquale and Posta $[BCN^+15, BCN^+19]$.
 - We start with an arbitrary configuration with $m \ge n$ balls.
- In each round:
 - ▶ For each **non-empty bin**, remove (arbitrarily) one ball.
 - \blacktriangleright Re-allocate these balls randomly to the n bins.

RBB in action

RBB in action

Starting with an unbalanced configuration, the process eventually stabilises in a balanced configuration.

Does the process stabilize?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

Does the process *stabilize*?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

- ▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].
- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

How many rounds for all balls to traverse all bins?

- ▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BQ
- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2)$

What is the maximum load once stabilized (for pol

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$
 - ▶ Conjectured for m = n, the maximum load is ω (
 - ▶ Conjectured for $m = n \log n$, the maximum load

How many rounds for all balls to traverse all bins?

Does the process stabilize?

- ▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].
- ► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks),

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

For any m = poly(n), w.h.p. it stabilizes in O(m²/n) rounds.
→ On average, Ω(n/m) fraction of empty bins (using random walks),
→ Exponential potential with smoothing factor n/m is O(poly(n)).

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(poly(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

▶ We show that:

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(poly(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

▶ We show that:

▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(poly(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$.
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

▶ We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(poly(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$. ✓
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$.

▶ We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(poly(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$. ✓
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$. ×

▶ We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.

How many rounds for all balls to traverse all bins?

Does the process *stabilize*?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

- ▶ For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds.
 - \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks),
 - \rightarrow Exponential potential with smoothing factor n/m is O(poly(n))

What is the maximum load once stabilized (for pol

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$
 - ▶ Conjectured for m = n, the maximum load is ω (
 - Conjectured for $m = n \log n$, the maximum load We show that:
 - ▶ For any m = poly(n), w.h.p. the maximum load
 - ▶ For any m = poly(n), w.h.p. the maximum load

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

For any m = poly(n), w.h.p. it stabilizes in O(m²/n) rounds.
→ On average, Ω(n/m) fraction of empty bins (using random walks),
→ Exponential potential with smoothing factor n/m is O(poly(n)).

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$. ✓
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$. ×

 \blacktriangleright We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- ► For any $m = \operatorname{poly}(n)$, w.h.p. the maximum load is w.h.p. $\Omega(\underline{m} \cdot \log n)$. ~ On average, $\Omega(n/m)$ fraction of empty bins (quadratic and exponential potentials)

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(\text{poly}(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $O(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$. ✓
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$. ×

 \blacktriangleright We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.
 - \sim On average, $\Omega(n/m)$ fraction of empty bins (quadratic and exponential potentials) \sim Coupling with ONE-CHOICE

How many rounds for all balls to traverse all bins?

Does the process stabilize?

▶ For m = n, w.h.p. it stabilizes in $\mathcal{O}(n)$ rounds [BCN⁺19].

► For any m = poly(n), w.h.p. it stabilizes in $\mathcal{O}(m^2/n)$ rounds. \rightsquigarrow On average, $\Omega(n/m)$ fraction of empty bins (using random walks), \rightsquigarrow Exponential potential with smoothing factor n/m is $\mathcal{O}(\text{poly}(n))$.

What is the maximum load once stabilized (for poly(n) rounds)?

- ▶ For m = n, w.h.p. the maximum load is $\mathcal{O}(\log n)$ [BCN⁺19].
 - ▶ Conjectured for m = n, the maximum load is $\omega(\log n / \log \log n)$. ✓
 - ▶ Conjectured for $m = n \log n$, the maximum load is $O(\log n)$. ×

 \blacktriangleright We show that:

- ▶ For any m = poly(n), w.h.p. the maximum load is $O(\frac{m}{n} \cdot \log n)$.
- For any m = poly(n), w.h.p. the maximum load is w.h.p. $\Omega(\frac{m}{n} \cdot \log n)$.
 - \rightarrow On average, $\Omega(n/m)$ fraction of empty bins (quadratic and exponential potentials) \rightarrow Coupling with ONE-CHOICE

How many rounds for all balls to traverse all bins?

- ► For m = n, w.h.p. traversal time is $\Omega(n \log n)$ and $\mathcal{O}(n \log^2 n)$ [BCN⁺19].
- ▶ For m = poly(n), w.h.p. traversal time is $\Theta(m \log n)$.

Future work

Future work

Explore the process in the graphical setting.

Future work

Explore the process in the graphical setting.

Explore versions of the process with continuous loads.

Questions?

More visualisations: dimitrioslos.com/spaa22ba

Bibliography I

- L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and G. Posta, *Self-stabilizing repeated balls-into-bins*, 27th International Symposium on Theoretical Aspects of Computer Science (STACS'15), ACM, 2015, pp. 332–339.
- ▶ _____, Self-stabilizing repeated balls-into-bins, Distributed Comput. **32** (2019), no. 1, 59–68.