Balanced Allocations in Batches: Simplified and Generalized

<u>Dimitrios Los^1 </u>, Thomas Sauerwald¹

¹University of Cambridge, UK

Balanced allocations: Background

Allocate m tasks (balls) sequentially into n machines (bins).

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the **maximum load** $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the **gap**, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the **maximum load** $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the **gap**, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Allocate m tasks (balls) sequentially into n machines (bins).

<u>Goal</u>: minimise the maximum load $\max_{i \in [n]} x_i^m$, where x^t is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m) = \max_{i \in [n]} (x_i^m - m/n)$.

Applications in hashing, load balancing and routing.

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
Meaning with probability
at least $1 - n^{-c}$ for constant $c > 0$.

<u>ONE-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>TWO-CHOICE Process</u>: Iteration: For each $t \ge 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $Gap(n) = log_2 log n + \Theta(1)$ [KLMadH96, ABKU99].

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n}} \cdot \log n\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \log_2 \log n + \Theta(1)$ [KLMadH96, ABKU99].

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case
$$(m = n)$$
, w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

TWO-CHOICE Process:

Iteration: For each $t \ge 0$, sample **two** bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case (m = n), w.h.p. $Gap(n) = log_2 log n + \Theta(1)$ [KLMadH96, ABKU99].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].

Balanced allocations: Background

<u>ONE-CHOICE Process</u>: **Iteration**: For each $t \ge 0$, sample **one** bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81]. In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

<u>Two-Choice Process</u>: **Iteration**: For each $t \ge 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. $\operatorname{Gap}(n) = \log_2 \log n + \bigoplus(1)$ [KLMadH96, ABKU99].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m) = \log_2 \log n + \Theta(1)$ [BCSV06].

Balanced allocations: Background

Probability allocation vector p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

For TWO-CHOICE,

$$p_{\text{Two-Choice}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

[PTW15] studied ϵ -biased processes that:

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

- [PTW15] studied ϵ -biased processes that:
 - \blacktriangleright Have p is non-decreasing,

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

- [PTW15] studied ϵ -biased processes that:
 - \blacktriangleright Have p is non-decreasing,
 - ▶ For some constant $\delta \in (0, 1)$, satisfy

$$p_{\delta n} \leq \frac{1-\epsilon}{n}.$$

- **Probability allocation vector** p^t , where p_i^t is the prob. of allocating to *i*-th most loaded bin.
- For ONE-CHOICE,

$$p_{\text{ONE-CHOICE}} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right).$$

For Two-Choice,

$$p_{\text{TWO-CHOICE}} = \left(\frac{1}{n^2}, \frac{3}{n^2}, \dots, \frac{2i-1}{n^2}, \dots, \frac{2n-2}{n^2}\right).$$

- [PTW15] studied ϵ -biased processes that:
 - \triangleright Have p is non-decreasing,
 - ▶ For some constant $\delta \in (0, 1)$, satisfy

$$p_{\delta n} \leq \frac{1-\epsilon}{n}.$$

They showed such processes achieve w.h.p. an $\mathcal{O}(\log n)$ gap, for constant $\epsilon > 0$.

Balanced allocations: Background

 $\begin{array}{l} (1+\beta) \mbox{ Process:} \\ \hline \mbox{Parameter: A mixing factor } \beta \in (0,1]. \\ \hline \mbox{Iteration: For each } t \geq 0, \mbox{ with probability } \beta \mbox{ allocate one ball via the Two-CHOICE process, otherwise allocate one ball via the ONE-CHOICE process.} \end{array}$

 $\begin{array}{l} (1+\beta) \mbox{ Process:} \\ \hline \mbox{Parameter: A mixing factor } \beta \in (0,1]. \\ \hline \mbox{Iteration: For each } t \geq 0, \mbox{ with probability } \beta \mbox{ allocate one ball via the Two-CHOICE process, otherwise allocate one ball via the ONE-CHOICE process.} \end{array}$

Introduced by Mitzenmacher [Mit96] as a *faulty setting* for Two-CHOICE.

 $\begin{array}{l} (1+\beta) \mbox{ Process:} \\ \hline \mbox{Parameter: A mixing factor } \beta \in (0,1]. \\ \hline \mbox{Iteration: For each } t \geq 0, \mbox{ with probability } \beta \mbox{ allocate one ball via the Two-CHOICE } \\ \hline \mbox{process, otherwise allocate one ball via the ONE-CHOICE process.} \end{array}$

Introduced by Mitzenmacher [Mit96] as a *faulty setting* for Two-CHOICE.Its probability vector is given by,

 $p_{(1+\beta)} = \beta \cdot p_{\text{TWO-CHOICE}} + (1-\beta) \cdot p_{\text{ONE-CHOICE}}.$

 $\begin{array}{l} (1+\beta) \mbox{ Process:} \\ \hline \mbox{Parameter: A mixing factor } \beta \in (0,1]. \\ \hline \mbox{Iteration: For each } t \geq 0, \mbox{ with probability } \beta \mbox{ allocate one ball via the Two-CHOICE } \\ \hline \mbox{process, otherwise allocate one ball via the ONE-CHOICE process.} \end{array}$

Introduced by Mitzenmacher [Mit96] as a *faulty setting* for Two-CHOICE.Its probability vector is given by,

 $p_{(1+\beta)} = \beta \cdot p_{\text{TWO-CHOICE}} + (1-\beta) \cdot p_{\text{ONE-CHOICE}}.$

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta} + \frac{\log(1/\beta)}{\beta}\right)$ for any $\beta \in (0, 1]$.

Settings

Two-Choice assumes that the reported bin loads are *up-to-date*.

TWO-CHOICE assumes that the reported bin loads are *up-to-date*.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.

Two-CHOICE assumes that the reported bin loads are *up-to-date*.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.

TWO-CHOICE assumes that the reported bin loads are *up-to-date*.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.

I The authors [LS22b] showed that for b = n, the gap is w.h.p. $\Theta(\frac{\log n}{\log \log n})$

- **TWO-CHOICE** assumes that the reported bin loads are *up-to-date*.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.
 - The authors [LS22b] showed that for b = n, the gap is w.h.p. $\Theta(\frac{\log n}{\log \log n})$ and for $b \in [n, n \log n]$ that it follows the gap of ONE-CHOICE for b balls.

Batched Setting

TWO-CHOICE assumes that the reported bin loads are *up-to-date*.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for b = n, the gap is w.h.p. $\Theta(\frac{\log n}{\log \log n})$ and for $b \in [n, n \log n]$ that it follows the gap of ONE-CHOICE for b balls.

What happens for TWO-CHOICE when $b \ge n \log n$?

Batched Setting

TWO-CHOICE assumes that the reported bin loads are *up-to-date*.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for b = n, the gap is w.h.p. $\Theta(\frac{\log n}{\log \log n})$ and for $b \in [n, n \log n]$ that it follows the gap of ONE-CHOICE for b balls.

What happens for TWO-CHOICE when $b \ge n \log n$?

What happens for other processes (e.g., the ϵ -biased processes)?

Batched Setting

TWO-CHOICE assumes that the reported bin loads are *up-to-date*.

- Berenbrink, Czumaj, Englert, Friedetzky and Nagel $[BCE^+12]$ relaxed this assumption, by allocating *b* balls in parallel.
- They showed that for b = n, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for b = n, the gap is w.h.p. $\Theta(\frac{\log n}{\log \log n})$ and for $b \in [n, n \log n]$ that it follows the gap of ONE-CHOICE for b balls.

What happens for TWO-CHOICE when $b \ge n \log n$?

What happens for other processes (e.g., the ϵ -biased processes)?

 \blacksquare Balls have weights sampled from a distribution ${\mathcal W}$

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}] = 1$

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}] = 1$ and $\mathbf{E}[e^{\zeta \mathcal{W}}] < c$ for constants $\zeta, c > 0$.

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}] = 1$ and $\mathbf{E}[e^{\zeta \mathcal{W}}] < c$ for constants $\zeta, c > 0$.

[PTW15] showed that ϵ -biased processes achieve w.h.p. $\mathcal{O}(\log n)$ gap.

■■ Open in Visualiser.

Given a graph G = (V, E), where the vertices are bins. For each ball:

Given a graph G = (V, E), where the vertices are bins. For each ball: Sample an edge u.a.r.

- Given a graph G = (V, E), where the vertices are bins. For each ball:
 - Sample an edge u.a.r.
 - ▶ Allocate the ball to the least loaded of its *two* adjacent bins.

- Given a graph G = (V, E), where the vertices are bins. For each ball:
 - Sample an edge u.a.r.
 - ▶ Allocate the ball to the least loaded of its *two* adjacent bins.

For any *d*-regular graph with *conductance* Φ , the gap is w.h.p. $\mathcal{O}(\frac{\log n}{\Phi})$ [PTW15].

- Given a graph G = (V, E), where the vertices are bins. For each ball:
 - Sample an edge u.a.r.
 - ▶ Allocate the ball to the least loaded of its *two* adjacent bins.

For any *d*-regular graph with *conductance* Φ , the gap is w.h.p. $\mathcal{O}(\frac{\log n}{\Phi})$ [PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1, $[\rm PTW15])$

For $b \leq n \log n$,

▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.

$\blacksquare \text{ For } b \leq n \log n,$

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].

For $b \leq n \log n$,

▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.

► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].

For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

 $\blacksquare \text{ For } b \leq n \log n,$

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \leq n \log n$,

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \leq n \log n$,

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \leq n \log n$,

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \leq n \log n$,

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \leq n \log n$,

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \in [n \log n, n^3]$, for any process with $p_n \geq \frac{1+C'}{n}$ for constant C' > 0, we prove a lower bound of $\Omega(C' \cdot \frac{b}{n})$.

More choices **do not** always help.

 $\blacksquare \text{ For } b \leq n \log n,$

- ▶ $(1 + \beta)$, QUANTILE (δ) have w.h.p. $\Omega(\log n)$ gap.
- ► TWO-CHOICE "follows" ONE-CHOICE with *b* balls [LS22b].
- For any ϵ -biased process with $p_n \leq \frac{C}{n}$, for constant $\epsilon, C > 0$:
 - ▶ For any $b \ge n$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} \cdot \log n)$.
 - ▶ For any $b \in [n, n^3]$, w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.
 - ▶ Same bounds hold for weighted balls.

For $b \in [n \log n, n^3]$, for any process with $p_n \geq \frac{1+C'}{n}$ for constant C' > 0, we prove a lower bound of $\Omega(C' \cdot \frac{b}{n})$.

▶ More choices **do not** always help.

For some values of d, $(1 + \beta)$ has a better gap.

$$p_i = \frac{2i-1}{n^2}$$

$$p_i = \frac{2i-1}{n^2}$$

$$p_i = \beta \cdot \frac{2i-1}{n^2} + (1-\beta) \cdot \frac{1}{n}$$

$$p_i = \frac{2i-1}{n^2}$$

$$p_i = \beta \cdot \frac{2i-1}{n^2} + (1-\beta) \cdot \frac{1}{n}$$

Further Results

$$\Gamma^t := \Gamma(\gamma) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

■ [PTW15] used the hyperbolic cosine potential

$$\Gamma^t := \Gamma(\gamma) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

For the $(1 + \beta)$ -process, $\gamma = \Theta(\beta)$.

$$\Gamma^t := \Gamma(\gamma) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}.$$

For the
$$(1 + \beta)$$
-process, $\gamma = \Theta(\beta)$.
[PTW15] show that $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2$.

$$\Gamma^t := \Gamma(\gamma) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}$$

For the
$$(1 + \beta)$$
-process, $\gamma = \Theta(\beta)$.

- $[PTW15] \text{ show that } \mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 \frac{c_1 \gamma}{n} \right) + c_2.$
- By *induction*, this implies $\mathbf{E}[\Gamma^t] \leq \frac{c_2}{c_1\gamma} \cdot n$ for any $t \geq 0$.

$$\Gamma^{t} := \Gamma(\gamma) := \underbrace{\sum_{i=1}^{n} e^{\gamma(x_{i}^{t} - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^{n} e^{-\gamma(x_{i}^{t} - t/n)}}_{\text{Underload potential}}$$

For the
$$(1 + \beta)$$
-process, $\gamma = \Theta(\beta)$.

- $[PTW15] \text{ show that } \mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 \frac{c_1 \gamma}{n} \right) + c_2.$
- By *induction*, this implies $\mathbf{E}[\Gamma^t] \leq \frac{c_2}{c_1\gamma} \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\mathbf{Pr}\left[\Gamma^m \leq \frac{c_2}{c_1\gamma}n^3\right] \geq 1 n^{-2}$,

$$\Gamma^t := \Gamma(\gamma) := \underbrace{\sum_{i=1}^n e^{\gamma(x_i^t - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^n e^{-\gamma(x_i^t - t/n)}}_{\text{Underload potential}}$$

For the
$$(1 + \beta)$$
-process, $\gamma = \Theta(\beta)$.

- $[PTW15] \text{ show that } \mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 \frac{c_1 \gamma}{n} \right) + c_2.$
- By *induction*, this implies $\mathbf{E}[\Gamma^t] \leq \frac{c_2}{c_1\gamma} \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\mathbf{Pr}\left[\Gamma^m \leq \frac{c_2}{c_1\gamma}n^3\right] \geq 1 n^{-2}$, which implies $\mathbf{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma}\left(3 \cdot \log n + \log\left(\frac{c_2}{c_1\gamma}\right)\right)\right] \geq 1 - n^{-2}.$

■ [PTW15] used the hyperbolic cosine potential

$$\Gamma^{t} := \Gamma(\gamma) := \underbrace{\sum_{i=1}^{n} e^{\gamma(x_{i}^{t} - t/n)}}_{\text{Overload potential}} + \underbrace{\sum_{i=1}^{n} e^{-\gamma(x_{i}^{t} - t/n)}}_{\text{Underload potential}}$$

For the
$$(1 + \beta)$$
-process, $\gamma = \Theta(\beta)$.

- $[PTW15] \text{ show that } \mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 \frac{c_1 \gamma}{n} \right) + c_2.$
- By *induction*, this implies $\mathbf{E}[\Gamma^t] \leq \frac{c_2}{c_1\gamma} \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\mathbf{Pr}\left[\Gamma^m \leq \frac{c_2}{c_1\gamma}n^3\right] \geq 1 n^{-2}$, which implies $\mathbf{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma}\left(3 \cdot \log n + \log\left(\frac{c_2}{c_1\gamma}\right)\right)\right] \geq 1 - n^{-2}.$

This gives the $\mathcal{O}(\frac{\log n}{\beta} + \frac{\log(1/\beta)}{\beta})$.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2.$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1\gamma}{n}\right) + c_2 \cdot \gamma.$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1\gamma}{n}\right) + c_2 \cdot \gamma.$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

▶ Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n.$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

Implies that E [Γ^t] ≤ ^{c₂}/_{c₁} · n.
 Implies w.h.p. an O(^{log n}/_β) gap for the (1 + β)-process.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{r}\right) + c_2 \cdot \gamma.$

Implies that $\mathbf{E} \left[\Gamma^{\iota} \right] \leq \frac{c_2}{c_1} \cdot n.$ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process. $\frac{\frac{1}{\gamma} \cdot \left(3 \log n + \log(\frac{c_2}{c_1}) \right)}{\frac{1}{\gamma} \cdot \left(3 \log n + \log(\frac{c_2}{c_1}) \right)}$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

Implies that E [Γ^t] ≤ c₂/c₁ · n.
 Implies w.h.p. an O(log β/β) gap for the (1 + β)-process.
 Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

$$\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n}\right) + c_2 \cdot \gamma.$$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

Implies that E [Γ^t] ≤ c₂/c₁ · n.
 Implies w.h.p. an O(log n/β) gap for the (1 + β)-process.
 Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

Implies that E [Γ^t] ≤ c₂/c₁ · n.
 Implies w.h.p. an O(log n/β) gap for the (1 + β)-process.
 Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n.$ ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

▶ Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n.$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E} \left[\Gamma^{t+1} \mid \mathfrak{F}^t \right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n} \right) + c_2 \cdot \gamma.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n.$ ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n}\right) + c_2 \cdot \boldsymbol{\gamma}.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n$. ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

- Implies that E [Γ^t] ≤ C₂/C₁ · n.
 So, TWO-CHOICE, (1 + β)-process, QUANTILE(δ), with batches (and weights): $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{a} \cdot \log n).$
- For $b \in [n, n^3]$, using that $\Gamma^t = \mathcal{O}(n)$, we can improve the bound to $\mathcal{O}(\frac{b}{n} + \log n)$.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{r}\right) + c_2 \cdot \boldsymbol{\gamma}.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n.$

▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

- Implies that E [Γ^t] ≤ c₁/c₁ · n.
 So, Two-CHOICE, (1 + β)-process, QUANTILE(δ), with batches (and weights): $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{a} \cdot \log n).$
- For $b \in [n, n^3]$, using that $\Gamma^t = \mathcal{O}(n)$, we can improve the bound to $\mathcal{O}(\frac{b}{n} + \log n)$.

Number of bins with load $\geq \frac{t}{n} + z$: at most $\mathcal{O}(n \cdot e^{-\gamma z})$.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{c_2}\right) + c_2 \cdot \gamma.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n$. ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

- Implies that E [Γ^t] ≤ C₂/C₁ · n.
 So, TWO-CHOICE, (1 + β)-process, QUANTILE(δ), with batches (and weights): $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{a} \cdot \log n).$
- For $b \in [n, n^3]$, using that $\Gamma^t = \mathcal{O}(n)$, we can improve the bound to $\mathcal{O}(\frac{b}{n} + \log n)$.

Extension 3: Analysis works for a *prefix sum condition* on *p*.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n}\right) + c_2 \cdot \boldsymbol{\gamma}.$

▶ Implies that $\mathbf{E} \left[\Gamma^t \right] \leq \frac{c_2}{c_1} \cdot n$. ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

- Implies that E [Γ^t] ≤ C₂/C₁ · n.
 So, TWO-CHOICE, (1 + β)-process, QUANTILE(δ), with batches (and weights): $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{a} \cdot \log n).$
- ▶ For $b \in [n, n^3]$, using that $\Gamma^t = \mathcal{O}(n)$, we can improve the bound to $\mathcal{O}(\frac{b}{n} + \log n)$.

Extension 3: Analysis works for a *prefix sum condition* on *p*.

▶ For *d*-regular expanders with weights and batches $b \in [n, n^3]$: Gap $(m) = O(\frac{b}{n} + \log n)$.

Extension 1: Improve the *additive term* in the recurrence inequality $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma}{n}\right) + c_2 \cdot \boldsymbol{\gamma}.$

▶ Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$. ▶ Implies w.h.p. an $\mathcal{O}(\frac{\log n}{\beta})$ gap for the $(1 + \beta)$ -process.

Extension 2: Extend to $b \ge n$ steps for $\gamma = \Theta(n/b)$,

$$\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^t\right] \leq \Gamma^t \cdot \left(1 - \frac{c_1 \gamma b}{n}\right) + c_2 \cdot \gamma \cdot b.$$

- Implies that E [Γ^t] ≤ C₂/C₁ · n.
 So, TWO-CHOICE, (1 + β)-process, QUANTILE(δ), with batches (and weights): $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{2} \cdot \log n).$
- ▶ For $b \in [n, n^3]$, using that $\Gamma^t = \mathcal{O}(n)$, we can improve the bound to $\mathcal{O}(\frac{b}{n} + \log n)$.

Extension 3: Analysis works for a *prefix sum condition* on *p*.

- ▶ For *d*-regular expanders with weights and batches $b \in [n, n^3]$: Gap $(m) = O(\frac{b}{n} + \log n)$.
- ▶ For *d*-regular graphs with conductance Φ and weights: $\operatorname{Gap}(m) = \mathcal{O}(\frac{\log n}{\Phi})$.

Apply the refined analysis to other processes.

Apply the refined analysis to other processes.

Relax the synchronization assumption for batching (as in τ -DELAY for Two-CHOICE [LS22b]).

- Apply the refined analysis to other processes.
- Relax the synchronization assumption for batching (as in τ -DELAY for TWO-CHOICE [LS22b]).
- Determine bounds that are tight up to *lower-order terms*.

- Apply the refined analysis to other processes.
- Relax the synchronization assumption for batching (as in τ -DELAY for TWO-CHOICE [LS22b]).
- Determine bounds that are tight up to *lower-order terms*.

Questions?

More visualisations: dimitrioslos.com/spaa22

Appendix A: Summary of Results

Process	Graphical	Batch Size	Weights	Gap Bound	Reference	
TWO-CHOICE	-	b = n	-	$\mathcal{O}(\log n)$	$[BCE^+12, Thm 1]$	
$\mathcal{C}_1,\mathcal{C}_2$	-	$b \ge n$	random	$\mathcal{O}(\frac{b}{n} \cdot \log n)$	Thm 4.2	
$\mathcal{C}_1,\mathcal{C}_2$	-	$b\in [n,n^3]$	random	$\mathcal{O}(\frac{b}{n} + \log n)$	Thm 5.1	
$(1+\beta), \ \beta \leq 1-\Omega(1)$	-	$b \ge 1$	-	$\Omega(\log n)$	Prop 7.3	
Two-Choice, $(1 + \beta), \beta = \Omega(1)$	-	$b \geq n \log n$	-	$\Omega(\frac{b}{n})$	Prop 7.4	
Two-Choice	$d\text{-}\mathrm{reg.},$ conduct. Φ	-	-	$\mathcal{O}(\frac{\log n}{\Phi})$	[PTW15, Thm 3.2]	
Two-Choice	$d\text{-}\mathrm{reg.},$ conduct. Φ	-	random	$\mathcal{O}(\frac{\log n}{\Phi})$	Thm 6.2	Improved on arxiv version:
Two-Choice	$d\text{-}\mathrm{reg.},$ conduct. Φ	$b \ge n$	random	$\mathcal{O}(\frac{b}{n} \cdot \frac{\log n}{\Phi})$	Thm 6.3	no dependence on d .
Two-Choice	d -reg., conduct. Φ $\Phi = \Theta(1)$	$b\in [n,n^3]$	random	$\mathcal{O}(\frac{b}{n} + \log n)$	Thm 6.3	
$(1+\beta), \ \beta \le 1-\Omega(1)$	-	-	-	$\Omega(\frac{\log n}{\beta})$	[PTW15, Sec 4]	-
$(1 + \beta)$	-	-	random	$\mathcal{O}(\frac{\log n}{\beta} + \frac{\log(1/\beta)}{\beta})$	[PTW15, Cor 2.12]	
$(1 + \beta)$	-	-	random	$\mathcal{O}(\frac{\log n}{\beta})$	Thm 6.4	

Appendix B: Outline for Tighter Bound

By the refined analysis, for $\gamma = \Theta(n/b)$, for any $t \ge 0$, $\mathbf{E} [\Gamma^t] \le cn$.

Using the techniques in [LS22a], w.h.p. $\Gamma^s \leq cn$ for all $s \in [m - bn \log^5 n, m]$.

Hence, the number of bins with normalized load $\Omega(b/n)$ is at most

$$cn \cdot e^{-\gamma \Omega(b/n)} \le \delta n$$

Hence, by looking at the potential for constant $\tilde{\gamma} > 0$ and with offset $\Omega(b/n)$,

$$\Lambda^t := \sum_{i: x_i^t \ge \frac{t}{n} + \Omega(b/n)} e^{\widetilde{\gamma} \cdot (x_i^t - \frac{t}{n} - \Omega(b/n))}$$

every bin *i* contributing to the potential has $p_i \leq \frac{1-\epsilon}{n}$, so

$$\mathbf{E}\left[\Lambda^{t+1} \mid \mathfrak{F}^t, \Gamma^t \le cn\right] \le \Lambda^t \cdot \left(1 - \frac{c_1 \widetilde{\gamma}}{n}\right) + c_2 \widetilde{\gamma}.$$

By induction, this implies that $\mathbf{E}[\Lambda^m] = \mathcal{O}(n)$.

And by Markov's inequality that w.h.p. $\operatorname{Gap}(m) = \mathcal{O}(\frac{b}{n} + \log n)$.

Appendix C: Drift Inequality Statement

Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition C_1 for constant $\delta \in (0, 1)$ and $\epsilon > 0$. Further assume that it satisfies for some K > 0 and some R > 0, for any $t \ge 0$,

$$\sum_{i=1}^{n} \mathbf{E} \left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t} \right] \leq \sum_{i=1}^{n} \Phi_{i}^{t} \cdot \left(\left(p_{i} - \frac{1}{n} \right) \cdot \kappa \cdot \gamma + K \cdot R \cdot \frac{\gamma^{2}}{n} \right)$$

and

$$\sum_{i=1}^{n} \mathbf{E} \left[\left| \Delta \Psi_{i}^{t+1} \right| \mathfrak{F}^{t} \right] \leq \sum_{i=1}^{n} \Psi_{i}^{t} \cdot \left(\left(\frac{1}{n} - p_{i} \right) \cdot \kappa \cdot \gamma + K \cdot \kappa \cdot \frac{\gamma^{2}}{n} \right).$$

Then, there exists a constant $c := c(\delta) > 0$, such that for $\gamma \in \left(0, \min\left\{1, \frac{\epsilon \delta}{8K}\right\}\right)$

$$\mathbf{E}\left[\left.\Delta\Gamma^{t+1}\right|\,\mathfrak{F}^{t}\right] \leq -\Gamma^{t}\cdot R\cdot\frac{\gamma\epsilon\delta}{8n} + R\cdot c\gamma\epsilon,$$

and

$$\mathbf{E}\left[\,\Gamma^t\,\right] \le \frac{8c}{\delta} \cdot n.$$

Appendix D: Proof Outline (I)

Figure: The two cases of bad bins in a configuration $(\mathcal{B}_+ \neq \emptyset \text{ or } \mathcal{B}_- \neq \emptyset)$ and their *dominating* terms in $\Delta \overline{\Gamma}$ for each of the set of bins.

Appendix D: Proof Outline (II)

Figure: Case A $[|\mathcal{B}_+| \leq \frac{n}{2} \cdot (1-\delta)]$: The positive (increase) dominant term in the contribution of bins in \mathcal{B}_+ is counteracted by a fraction of the negative (decrease) dominant term of the good bins \mathcal{G}_+ .

Appendix D: Proof Outline (III)

Figure: Case B $[|\mathcal{B}_+| > \frac{n}{2} \cdot (1-\delta)]$: The dominant increase of the bins in \mathcal{B}_1 is counteracted by a fraction of the decrease of the bins in \mathcal{G}_+ as in Case A. The dominant increase of the bins in \mathcal{B}_2 is counteracted by a fraction of the decrease of the bins in \mathcal{G}_- , when $z_2 = y_{n(1+\delta)/2}$ is sufficiently large.

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, *Balanced allocations*, SIAM J. Comput. **29** (1999), no. 1, 180–200. MR 1710347
- ▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, *Multiple-choice balanced allocation in (almost) parallel*, 16th International Workshop on Randomization and Computation (RANDOM'12), Springer-Verlag, 2012, pp. 411–422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150
- ▷ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

Bibliography II

- D. Los and T. Sauerwald, Balanced Allocations with Incomplete Information: The Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference (ITCS'22), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, pp. 103:1–103:23.
- ▶ _____, Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT Principles of Distributed Computing (PODC'22), ACM, 2022, p. 164–175.
- ▶ M. Mitzenmacher, *The power of two choices in randomized load balancing*, Ph.D. thesis, University of California at Berkeley, 1996.
- ▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1 + \beta)$ -choice process, Random Structures & Algorithms **47** (2015), no. 4, 760–775. MR 3418914
- M. Raab and A. Steger, "Balls into bins"—a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159–170. MR 1729169