Balanced Allocations in Batches: Simplified and Generalized

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$

${ }^{1}$ University of Cambridge, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Applications in hashing, load balancing and routing.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}} \div \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in the least loaded of the two.
i
In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

Probability allocation vectors

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

For Two-Choice,

$$
p_{\text {Two-Cholce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
$$

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

For Two-Choice,

$$
p_{\text {Two-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) .
$$

[PTW15] studied ϵ-biased processes that:

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) .
$$

For Two-Choice,

$$
p_{\text {Two-Cholce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) \text {. }
$$

[PTW15] studied ϵ-biased processes that:

- Have p is non-decreasing,

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) .
$$

For Two-Choice,

$$
p_{\text {Two-Cholce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) \text {. }
$$

[PTW15] studied ϵ-biased processes that:

- Have p is non-decreasing,
- For some constant $\delta \in(0,1)$, satisfy

$$
p_{\delta n} \leq \frac{1-\epsilon}{n} .
$$

Probability allocation vectors

- Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.
- For One-Choice,

$$
p_{\mathrm{ONe-Choice}}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)
$$

For Two-Choice,

$$
p_{\text {Two-Cholce }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right) \text {. }
$$

- [PTW15] studied ϵ-biased processes that:
- Have p is non-decreasing,
- For some constant $\delta \in(0,1)$, satisfy

$$
p_{\delta n} \leq \frac{1-\epsilon}{n} .
$$

- They showed such processes achieve w.h.p. an $\mathcal{O}(\log n)$ gap, for constant $\epsilon>0$.

$(1+\beta)$ process

$\frac{(1+\beta) \text { Process: }}{\text { Parameter: A mixing factor } \beta \in(0,1] \text {. }}$
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

$(1+\beta)$ process

$\frac{(1+\beta) \text { Process: }}{\text { Parameter: A mixing factor } \beta \in(0,1] \text {. }}$
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

$(1+\beta)$ process

$\frac{(1+\beta) \text { Process: }}{\text { Parameter: A mixing factor } \beta \in(0,1] \text {. }}$
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

Its probability vector is given by,

$$
p_{(1+\beta)}=\beta \cdot p_{\text {Two-Choice }}+(1-\beta) \cdot p_{\text {ONE-Choice }} .
$$

$(1+\beta)$ process

$(1+\beta)$ Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

- Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.

Its probability vector is given by,

$$
p_{(1+\beta)}=\beta \cdot p_{\text {Two-Choice }}+(1-\beta) \cdot p_{\text {ONE-Choice }} .
$$

In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\beta}+\frac{\log (1 / \beta)}{\beta}\right)$ for any $\beta \in(0,1]$.

Settings

Batched Setting

Two-Choice assumes that the reported bin loads are up-to-date.

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.
- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.
- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.
\square The authors [LS22b] showed that for $b=n$, the gap is w.h.p. $\Theta\left(\frac{\log n}{\log \log n}\right)$

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.
- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for $b=n$, the gap is w.h.p. $\Theta\left(\frac{\log n}{\log \log n}\right)$ and for $b \in[n, n \log n]$ that it follows the gap of One-Choice for b balls.

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.
- Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE $\left.{ }^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.
- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for $b=n$, the gap is w.h.p. $\Theta\left(\frac{\log n}{\log \log n}\right)$ and for $b \in[n, n \log n]$ that it follows the gap of One-Choice for b balls.

$$
\text { What happens for Two-Choice when } b \geq n \log n \text { ? }
$$

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.

- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for $b=n$, the gap is w.h.p. $\Theta\left(\frac{\log n}{\log \log n}\right)$ and for $b \in[n, n \log n]$ that it follows the gap of One-Choice for b balls.

$$
\text { What happens for Two-Choice when } b \geq n \log n ?
$$

What happens for other processes (e.g., the ϵ-biased processes)?

Batched Setting

- Two-Choice assumes that the reported bin loads are up-to-date.

Berenbrink, Czumaj, Englert, Friedetzky and Nagel $\left[\mathrm{BCE}^{+} 12\right]$ relaxed this assumption, by allocating b balls in parallel.

- They showed that for $b=n$, the gap is w.h.p. $\mathcal{O}(\log n)$.
- The authors [LS22b] showed that for $b=n$, the gap is w.h.p. $\Theta\left(\frac{\log n}{\log \log n}\right)$ and for $b \in[n, n \log n]$ that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when $b \geq n \log n$?

What happens for other processes (e.g., the ϵ-biased processes)?

صـ Open in Visualiser.

Weighted Setting

Weighted Setting

Balls have weights sampled from a distribution \mathcal{W}

Weighted Setting

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}]=1$

Weighted Setting

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}]=1$ and $\mathbf{E}\left[e^{\zeta \mathcal{W}}\right]<c$ for constants $\zeta, c>0$.

Weighted Setting

Balls have weights sampled from a distribution \mathcal{W} with $\mathbf{E}[\mathcal{W}]=1$ and $\mathbf{E}\left[e^{\zeta \mathcal{W}}\right]<c$ for constants $\zeta, c>0$.
[PTW15] showed that ϵ-biased processes achieve w.h.p. $\mathcal{O}(\log n)$ gap.

In Open in Visualiser.

Two-Choice in the Graphical Setting

Two-Choice in the Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball:

Two-Choice in the Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball:
\Rightarrow Sample an edge u.a.r.

Two-Choice in the Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball:
\Rightarrow Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

Two-Choice in the Graphical Setting

\square Given a graph $G=(V, E)$, where the vertices are bins. For each ball:
\Rightarrow Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

- For any d-regular graph with conductance Φ, the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\Phi}\right)$ [PTW15].

Two-Choice in the Graphical Setting

- Given a graph $G=(V, E)$, where the vertices are bins. For each ball:
\Rightarrow Sample an edge u.a.r.
$>$ Allocate the ball to the least loaded of its two adjacent bins.

- For any d-regular graph with conductance Φ, the gap is w.h.p. $\mathcal{O}\left(\frac{\log n}{\Phi}\right)$ [PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1, [PTW15])

Results for Batching

Results (I): Batching

Results (I): Batching

Results (I): Batching

- For $b \leq n \log n$,

Results (I): Batching

For $b \leq n \log n$,$\operatorname{Gap}(m), m=n^{2}$

$>(1+\beta)$, $\operatorname{QuANTILE}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.

Results (I): Batching

For $b \leq n \log n$,$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

$>(1+\beta)$, Quantile (δ) have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

$>(1+\beta)$, Quantile (δ) have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.

Results (I): Batching

For $b \leq n \log n$,$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].

For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Results (I): Batching

For $b \leq n \log n$,$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].

For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

- Same bounds hold for weighted balls.

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

> $(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
\Rightarrow Same bounds hold for weighted balls.
For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.

Results (I): Batching

- For $b \leq n \log n$,

$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
- Same bounds hold for weighted balls.
\square For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.
p_{n} is: $\approx \frac{3}{n}$

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

$>(1+\beta)$, Quantile (δ) have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
\Rightarrow Same bounds hold for weighted balls.
\square For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.
p_{n} is: $\approx \frac{3}{n}, \approx \frac{2}{n}$

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

p_{n} is: $\approx \frac{3}{n}, \approx \frac{2}{n}, \approx \frac{1+0.7}{n}$
$>(1+\beta)$, Quantile (δ) have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
\square For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
\Rightarrow Same bounds hold for weighted balls.
For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.

Results (I): Batching

- For $b \leq n \log n$,

$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
- Two-Choice "follows" One-Choice with b balls [LS22b].
For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
- Same bounds hold for weighted balls.
\square For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.
p_{n} is: $\approx \frac{3}{n}, \approx \frac{2}{n}, \approx \frac{1+0.7}{n}$ and $\approx \frac{1+0.5}{n}$.

Results (I): Batching

- For $b \leq n \log n$,

p_{n} is: $\approx \frac{3}{n}, \approx \frac{2}{n}, \approx \frac{1+0.7}{n}$ and $\approx \frac{1+0.5}{n}$.
$>(1+\beta)$, $\operatorname{QuANTile}(\delta)$ have w.h.p. $\Omega(\log n)$ gap.
- Two-Choice "follows" One-Choice with b balls [LS22b].
\square For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
\Rightarrow Same bounds hold for weighted balls.
\square For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.
- More choices do not always help.

Results (I): Batching

- For $b \leq n \log n$,
$\operatorname{Gap}(m), m=n^{2}$

p_{n} is: $\approx \frac{3}{n}, \approx \frac{2}{n}, \approx \frac{1+0.7}{n}$ and $\approx \frac{1+0.5}{n}$.
$>(1+\beta)$, Quantile (δ) have w.h.p. $\Omega(\log n)$ gap.
> Two-Choice "follows" One-Choice with b balls [LS22b].
\square For any ϵ-biased process with $p_{n} \leq \frac{C}{n}$, for constant $\epsilon, C>0$:
\Rightarrow For any $b \geq n$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
\Rightarrow For any $b \in\left[n, n^{3}\right]$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
\Rightarrow Same bounds hold for weighted balls.
For $b \in\left[n \log n, n^{3}\right]$, for any process with $p_{n} \geq \frac{1+C^{\prime}}{n}$ for constant $C^{\prime}>0$, we prove a lower bound of $\Omega\left(C^{\prime} \cdot \frac{b}{n}\right)$.
$>$ More choices do not always help.
$>$ For some values of $d,(1+\beta)$ has a better gap.

A closer look at a single batch

A closer look at a single batch

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

A closer look at a single batch

Two-Choice

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

$$
p_{i}=\beta \cdot \frac{2 i-1}{n^{2}}+(1-\beta) \cdot \frac{1}{n}
$$

A closer look at a single batch

$(1+\beta)$-Process

$$
p_{i}=\frac{2 i-1}{n^{2}}
$$

$$
p_{i}=\beta \cdot \frac{2 i-1}{n^{2}}+(1-\beta) \cdot \frac{1}{n}
$$

Further Results

Upper Bound Tools: Hyperbolic Cosine Potential

Upper Bound Tools: Hyperbolic Cosine Potential

[PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2}$.

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2}$.
\square By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1} \gamma} \cdot n$ for any $t \geq 0$.

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2}$.
\square By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1} \gamma} \cdot n$ for any $t \geq 0$.
By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{c_{2}}{c_{1} \gamma} n^{3}\right] \geq 1-n^{-2}$,

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2}$.

- By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1} \gamma} \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{c_{2}}{c_{1} \gamma} n^{3}\right] \geq 1-n^{-2}$, which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma}\left(3 \cdot \log n+\log \left(\frac{c_{2}}{c_{1} \gamma}\right)\right)\right] \geq 1-n^{-2} .
$$

Upper Bound Tools: Hyperbolic Cosine Potential

- [PTW15] used the hyperbolic cosine potential

$$
\Gamma^{t}:=\Gamma(\gamma):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2}$.

- By induction, this implies $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1} \gamma} \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq \frac{c_{2}}{c_{1} \gamma} n^{3}\right] \geq 1-n^{-2}$, which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma}\left(3 \cdot \log n+\log \left(\frac{c_{2}}{c_{1} \gamma}\right)\right)\right] \geq 1-n^{-2} .
$$

- This gives the $\mathcal{O}\left(\frac{\log n}{\beta}+\frac{\log (1 / \beta)}{\beta}\right)$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} .
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
\Rightarrow Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.

$$
\frac{1}{\gamma} \cdot\left(3 \log n+\log \left(\frac{c_{2}}{c_{1}}\right)\right)
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
\square Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
$>$ Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.

- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
\square Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
\square Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, ($1+\beta$)-process, Quantile (δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, $(1+\beta)$-process, Quantile(δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
- For $b \in\left[n, n^{3}\right]^{n}$, using that $\Gamma^{t}=\mathcal{O}(n)$, we can improve the bound to $\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
\Rightarrow Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.

- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, $(1+\beta)$-process, Quantile (δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
- For $b \in\left[n, n^{3}\right]$, using that $\Gamma^{t}=\mathcal{O}(n)$, we can improve the bound to $\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

$$
\text { Number of bins with load } \geq \frac{t}{n}+z \text { : }
$$ at most $\mathcal{O}\left(n \cdot e^{-\gamma z}\right)$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, ($1+\beta$)-process, Quantile(δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
- For $b \in\left[n, n^{3}\right]$, using that $\Gamma^{t}=\mathcal{O}(n)$, we can improve the bound to $\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Extension 3: Analysis works for a prefix sum condition on p.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma .
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, ($1+\beta$)-process, Quantile(δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
- For $b \in\left[n, n^{3}\right]$, using that $\Gamma^{t}=\mathcal{O}(n)$, we can improve the bound to $\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Extension 3: Analysis works for a prefix sum condition on p.

- For d-regular expanders with weights and batches $b \in\left[n, n^{3}\right]: \operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Results (II): Implications of the Upper Bound

Extension 1: Improve the additive term in the recurrence inequality

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma}{n}\right)+c_{2} \cdot \gamma
$$

\Rightarrow Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.

- Implies w.h.p. an $\mathcal{O}\left(\frac{\log n}{\beta}\right)$ gap for the $(1+\beta)$-process.
- Extension 2: Extend to $b \geq n$ steps for $\gamma=\Theta(n / b)$,

$$
\mathbf{E}\left[\Gamma^{t+b} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1} \gamma b}{n}\right)+c_{2} \cdot \gamma \cdot b .
$$

- Implies that $\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{c_{2}}{c_{1}} \cdot n$.
- So, Two-Choice, ($1+\beta$)-process, Quantile(δ), with batches (and weights): $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$.
- For $b \in\left[n, n^{3}\right]$, using that $\Gamma^{t}=\mathcal{O}(n)$, we can improve the bound to $\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Extension 3: Analysis works for a prefix sum condition on p.

- For d-regular expanders with weights and batches $b \in\left[n, n^{3}\right]: \operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.
- For d-regular graphs with conductance Φ and weights: $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{\log n}{\Phi}\right)$.

Future work

Future work

Apply the refined analysis to other processes.

Future work

Apply the refined analysis to other processes.
Relax the synchronization assumption for batching (as in τ-Delay for Two-Choice [LS22b]).

Future work

Apply the refined analysis to other processes.
Relax the synchronization assumption for batching (as in τ-Delay for Two-Choice [LS22b]).

- Determine bounds that are tight up to lower-order terms.

Future work

Apply the refined analysis to other processes.
Relax the synchronization assumption for batching (as in τ-Delay for Two-Choice [LS22b]).

- Determine bounds that are tight up to lower-order terms.

Questions?

More visualisations: dimitrioslos.com/spaa22

Appendix A: Summary of Results

Process	Graphical	Batch Size	Weights	Gap Bound	Reference	
Two-Choice	-	$b=n$	-	$\mathcal{O}(\log n)$	$\left[\mathrm{BCE}^{+} 12\right.$, Thm 1]	
$\mathcal{C}_{1}, \mathcal{C}_{2}$	-	$b \geq n$	random	$\mathcal{O}\left(\frac{b}{n} \cdot \log n\right)$	Thm 4.2	
$\mathcal{C}_{1}, \mathcal{C}_{2}$	-	$b \in\left[n, n^{3}\right]$	random	$\mathcal{O}\left(\frac{b}{n}+\log n\right)$	Thm 5.1	
$(1+\beta), \beta \leq 1-\Omega(1)$	-	$b \geq 1$	-	$\Omega(\log n)$	Prop 7.3	
Two-Choice, $(1+\beta), \beta=\Omega(1)$	-	$b \geq n \log n$	-	$\Omega\left(\frac{b}{n}\right)$	Prop 7.4	
Two-Choice	d-reg., conduct. Φ	-	-	$\mathcal{O}\left(\frac{\log n}{\Phi}\right)$	[PTW15, Thm 3.2]	
Two-Choice	d-reg., conduct. Φ	-	random	$\mathcal{O}\left(\frac{\log n}{\Phi}\right)$	Thm 6.2	Improved on arxiv version:
Two-Choice	d-reg., conduct. Φ	$b \geq n$	random	$\mathcal{O}\left(\frac{b}{n} \cdot \frac{\log n}{\Phi}\right)$	Thm 6.3	no dependence on d.
Two-Choice	$\begin{aligned} & d \text {-reg., conduct. } \Phi \\ & \Phi=\Theta(1) \end{aligned}$	$b \in\left[n, n^{3}\right]$	random	$\mathcal{O}\left(\frac{b}{n}+\log n\right)$	Thm 6.3	
$(1+\beta), \beta \leq 1-\Omega(1)$	-	-	-	$\Omega\left(\frac{\log n}{\beta}\right)$	[PTW15, Sec 4]	
$(1+\beta)$	-	-	random	$\mathcal{O}\left(\frac{\log n}{\beta}+\frac{\log (1 / \beta)}{\beta}\right)$	[PTW15, Cor 2.12]	
$(1+\beta)$	-	-	random	$\mathcal{O}\left(\frac{\log n}{\beta}\right)$	Thm 6.4	

Appendix B: Outline for Tighter Bound

By the refined analysis, for $\gamma=\Theta(n / b)$, for any $t \geq 0, \mathbf{E}\left[\Gamma^{t}\right] \leq c n$.
\square Using the techniques in [LS22a], w.h.p. $\Gamma^{s} \leq c n$ for all $s \in\left[m-b n \log ^{5} n, m\right.$].

- Hence, the number of bins with normalized load $\Omega(b / n)$ is at most

$$
c n \cdot e^{-\gamma \Omega(b / n)} \leq \delta n .
$$

- Hence, by looking at the potential for constant $\widetilde{\gamma}>0$ and with offset $\Omega(b / n)$,

$$
\Lambda^{t}:=\sum_{i: x_{i}^{t} \geq \frac{t}{n}+\Omega(b / n)} e^{\widetilde{\gamma} \cdot\left(x_{i}^{t}-\frac{t}{n}-\Omega(b / n)\right)},
$$

every bin i contributing to the potential has $p_{i} \leq \frac{1-\epsilon}{n}$, so

$$
\mathbf{E}\left[\Lambda^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \leq c n\right] \leq \Lambda^{t} \cdot\left(1-\frac{c_{1} \widetilde{\gamma}}{n}\right)+c_{2} \widetilde{\gamma} .
$$

- By induction, this implies that $\mathbf{E}\left[\Lambda^{m}\right]=\mathcal{O}(n)$.
- And by Markov's inequality that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(\frac{b}{n}+\log n\right)$.

Appendix C: Drift Inequality Statement

Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition \mathcal{C}_{1} for constant $\delta \in(0,1)$ and $\epsilon>0$. Further assume that it satisfies for some $K>0$ and some $R>0$, for any $t \geq 0$,

$$
\sum_{i=1}^{n} \mathbf{E}\left[\Delta \Phi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Phi_{i}^{t} \cdot\left(\left(p_{i}-\frac{1}{n}\right) \cdot \kappa \cdot \gamma+K \cdot R \cdot \frac{\gamma^{2}}{n}\right),
$$

and

$$
\sum_{i=1}^{n} \mathbf{E}\left[\Delta \Psi_{i}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \sum_{i=1}^{n} \Psi_{i}^{t} \cdot\left(\left(\frac{1}{n}-p_{i}\right) \cdot \kappa \cdot \gamma+K \cdot \kappa \cdot \frac{\gamma^{2}}{n}\right)
$$

Then, there exists a constant $c:=c(\delta)>0$, such that for $\gamma \in\left(0, \min \left\{1, \frac{\epsilon \delta}{8 K}\right\}\right)$

$$
\mathbf{E}\left[\Delta \Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq-\Gamma^{t} \cdot R \cdot \frac{\gamma \epsilon \delta}{8 n}+R \cdot c \gamma \epsilon
$$

and

$$
\mathbf{E}\left[\Gamma^{t}\right] \leq \frac{8 c}{\delta} \cdot n
$$

Appendix D: Proof Outline (I)

Figure: The two cases of bad bins in a configuration $\left(\mathcal{B}_{+} \neq \emptyset\right.$ or $\left.\mathcal{B}_{-} \neq \emptyset\right)$ and their dominating terms in $\Delta \bar{\Gamma}$ for each of the set of bins.

Appendix D: Proof Outline (II)

Figure: Case $\mathrm{A}\left[\left|\mathcal{B}_{+}\right| \leq \frac{n}{2} \cdot(1-\delta)\right]$: The positive (increase) dominant term in the contribution of bins in \mathcal{B}_{+}is counteracted by a fraction of the negative (decrease) dominant term of the good bins \mathcal{G}_{+}.

Appendix D: Proof Outline (III)

Figure: Case $\mathrm{B}\left[\left|\mathcal{B}_{+}\right|>\frac{n}{2} \cdot(1-\delta)\right]$: The dominant increase of the bins in \mathcal{B}_{1} is counteracted by a fraction of the decrease of the bins in \mathcal{G}_{+}as in Case A. The dominant increase of the bins in \mathcal{B}_{2} is counteracted by a fraction of the decrease of the bins in \mathcal{G}_{-}, when $z_{2}=y_{n(1+\delta) / 2}$ is sufficiently large.

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200. MR 1710347
- P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice balanced allocation in (almost) parallel, 16th International Workshop on Randomization and Computation (RANDOM'12), Springer-Verlag, 2012, pp. 411-422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150
- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587

Bibliography II

- D. Los and T. Sauerwald, Balanced Allocations with Incomplete Information: The Power of Two Queries, 13th Innovations in Theoretical Computer Science Conference (ITCS'22), vol. 215, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 103:1-103:23.
\qquad , Balanced allocations with the choice of noise, 41st Annual ACM-SIGOPT Principles of Distributed Computing (PODC'22), ACM, 2022, p. 164-175.
- M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis, University of California at Berkeley, 1996.
- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures \& Algorithms 47 (2015), no. 4, 760-775. MR 3418914
- M. Raab and A. Steger, "Balls into bins"-a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170. MR 1729169

