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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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■ Applications in hashing, load balancing and routing.
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th most

loaded bin.
■ For One-Choice,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
.

■ For Two-Choice,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ [PTW15] studied ϵ-biased processes that:
▶ Have p is non-decreasing,
▶ For some constant δ ∈ (0, 1), satisfy

pδn ≤ 1 − ϵ

n
.

■ They showed such processes achieve w.h.p. an O(log n) gap, for constant ϵ > 0.
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(1 + β) process

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ Introduced by Mitzenmacher [Mit96] as a faulty setting for Two-Choice.
■ Its probability vector is given by,

p(1+β) = β · pTwo-Choice + (1 − β) · pOne-Choice.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. O
( log n

β + log(1/β)
β

)
for any β ∈ (0, 1].
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Batched Setting
■ Two-Choice assumes that the reported bin loads are up-to-date.

■ Berenbrink, Czumaj, Englert, Friedetzky and Nagel [BCE+12] relaxed this
assumption, by allocating b balls in parallel.

■ They showed that for b = n, the gap is w.h.p. O(log n).
■ The authors [LS22b] showed that for b = n, the gap is w.h.p. Θ

( log n
log log n

)
and for

b ∈ [n, n log n] that it follows the gap of One-Choice for b balls.

What happens for Two-Choice when b ≥ n log n?

What happens for other processes (e.g., the ϵ-biased processes)?

Open in Visualiser.

Settings 8
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Weighted Setting

■ Balls have weights sampled from a distribution W with E [ W ] = 1 and E
[

eζW ]
< c

for constants ζ, c > 0.

■ [PTW15] showed that ϵ-biased processes achieve w.h.p. O(log n) gap.

Open in Visualiser.
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Two-Choice in the Graphical Setting

■ Given a graph G = (V, E), where the vertices are bins. For each ball:
▶ Sample an edge u.a.r.
▶ Allocate the ball to the least loaded of its two adjacent bins.

■ For any d-regular graph with conductance Φ, the gap is w.h.p. O
( log n

Φ
)

[PTW15].

Do similar bounds hold for the weighted graphical setting? (Open Question 1,
[PTW15])
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Results (I): Batching
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■ For b ≤ n log n,
▶ (1 + β), Quantile(δ) have w.h.p. Ω(log n) gap.
▶ Two-Choice “follows” One-Choice with b

balls [LS22b].
■ For any ϵ-biased process with pn ≤ C

n , for constant
ϵ, C > 0:
▶ For any b ≥ n, w.h.p. Gap(m) = O( b

n
· log n).

▶ For any b ∈ [n, n3], w.h.p. Gap(m) = O( b
n

+ log n).
▶ Same bounds hold for weighted balls.

■ For b ∈ [n log n, n3], for any process with pn ≥ 1+C′

n
for constant C ′ > 0, we prove a lower bound of
Ω(C ′ · b

n ).

▶ More choices do not always help.
▶ For some values of d, (1 + β) has a better gap.
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A closer look at a single batch

Two-Choice

pi = 2i − 1
n2

(1 + β)-Process

pi = β · 2i − 1
n2 + (1 − β) · 1

n

Open in Visualiser.
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Upper Bound Tools: Hyperbolic Cosine Potential

■ [PTW15] used the hyperbolic cosine potential

Γt := Γ(γ) :=
n∑

i=1
eγ(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β)-process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ
n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ c2
c1γ · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ c2
c1γ n3

]
≥ 1 − n−2, which implies

Pr
[

Gap(m) ≤ 1
γ

(
3 · log n + log

(
c2

c1γ

)) ]
≥ 1 − n−2.

■ This gives the O( log n
β + log(1/β)

β ).
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Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2.

▶ Implies that E
[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O( log n

β
) gap for the (1 + β)-process.

■ Extension 2: Extend to b ≥ n steps for γ = Θ(n/b),
▶ Implies that E

[
Γt

]
≤ c2

c1
· n.

▶ So, Two-Choice, (1 + β)-process, Quantile(δ), with batches (and weights):
Gap(m) = O( b

n
· log n).

▶ For b ∈ [n, n3], using that Γt = O(n), we can improve the bound to O( b
n

+ log n).
■ Extension 3: Analysis works for a prefix sum condition on p.

▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O( b
n

+ log n).
▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O( log n

Φ ).
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Number of bins with load ≥ t
n + z:

at most O(n · e−γz).
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■ Extension 3: Analysis works for a prefix sum condition on p.
▶ For d-regular expanders with weights and batches b ∈ [n, n3]: Gap(m) = O( b

n
+ log n).

▶ For d-regular graphs with conductance Φ and weights: Gap(m) = O( log n
Φ ).
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Results (II): Implications of the Upper Bound
■ Extension 1: Improve the additive term in the recurrence inequality

E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1γ

n

)
+ c2 · γ.
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[

Γt
]

≤ c2
c1

· n.
▶ Implies w.h.p. an O( log n

β
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Future work

■ Apply the refined analysis to other processes.
■ Relax the synchronization assumption for batching (as in τ -Delay for

Two-Choice [LS22b]).
■ Determine bounds that are tight up to lower-order terms.
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Questions?

More visualisations: dimitrioslos.com/spaa22
Further Results 18
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Appendix A: Summary of Results
Process Graphical Batch Size Weights Gap Bound Reference

Two-Choice – b = n – O(log n) [BCE+12, Thm 1]

C1, C2 – b ≥ n random O( b
n

· log n) Thm 4.2

C1, C2 – b ∈ [n, n3] random O( b
n

+ log n) Thm 5.1

(1 + β), β ≤ 1 − Ω(1) – b ≥ 1 – Ω(log n) Prop 7.3

Two-Choice,
(1 + β), β = Ω(1) – b ≥ n log n – Ω( b

n
) Prop 7.4

Two-Choice d-reg., conduct. Φ – – O( log n
Φ ) [PTW15, Thm 3.2]

Two-Choice d-reg., conduct. Φ – random O( log n
Φ ) Thm 6.2

Two-Choice d-reg., conduct. Φ b ≥ n random O( b
n

· log n
Φ ) Thm 6.3

Two-Choice d-reg., conduct. Φ
Φ = Θ(1) b ∈ [n, n3] random O( b

n
+ log n) Thm 6.3

(1 + β), β ≤ 1 − Ω(1) – – – Ω( log n
β

) [PTW15, Sec 4]

(1 + β) – – random O( log n
β

+ log(1/β)
β

) [PTW15, Cor 2.12]

(1 + β) – – random O( log n
β

) Thm 6.4

Improved on arxiv version:
no dependence on d.
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Appendix B: Outline for Tighter Bound
■ By the refined analysis, for γ = Θ(n/b), for any t ≥ 0, E [ Γt ] ≤ cn.
■ Using the techniques in [LS22a], w.h.p. Γs ≤ cn for all s ∈ [m − bn log5 n, m].
■ Hence, the number of bins with normalized load Ω(b/n) is at most

cn · e−γΩ(b/n) ≤ δn.

■ Hence, by looking at the potential for constant γ̃ > 0 and with offset Ω(b/n),

Λt :=
∑

i:xt
i
≥ t

n +Ω(b/n)

eγ̃·(xt
i− t

n −Ω(b/n)),

every bin i contributing to the potential has pi ≤ 1−ϵ
n , so

E
[

Λt+1 | Ft, Γt ≤ cn
]

≤ Λt ·
(

1 − c1γ̃

n

)
+ c2γ̃.

■ By induction, this implies that E [ Λm ] = O(n).
■ And by Markov’s inequality that w.h.p. Gap(m) = O( b

n + log n).
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Appendix C: Drift Inequality Statement
Theorem (Corollary 3.2)

Consider any allocation process and probability vector p satisfying condition C1 for
constant δ ∈ (0, 1) and ϵ > 0. Further assume that it satisfies for some K > 0 and some
R > 0, for any t ≥ 0,

n∑
i=1

E
[

∆Φt+1
i

∣∣ Ft
]

≤
n∑

i=1
Φt

i ·
((

pi − 1
n

)
· κ · γ + K · R · γ2

n

)
,

and
n∑

i=1
E

[
∆Ψt+1

i

∣∣ Ft
]

≤
n∑

i=1
Ψt

i ·
(( 1

n
− pi

)
· κ · γ + K · κ · γ2

n

)
.

Then, there exists a constant c := c(δ) > 0, such that for γ ∈
(
0, min

{
1, ϵδ

8K

})
E

[
∆Γt+1 ∣∣ Ft

]
≤ −Γt · R · γϵδ

8n
+ R · cγϵ,

and
E

[
Γt

]
≤ 8c

δ
· n.
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Appendix D: Proof Outline (I)

𝑦

𝑛 ⋅ 𝛿

Good overloaded 
bins 𝒢+

Bad overloaded 
bins ℬ+

Good underloaded 
bins 𝒢−

−
𝛾𝜖

𝑛
⋅ Φ𝑖 +

𝛾 ǁ𝜖

𝑛
⋅ Φ𝑖

−
𝛾 ǁ𝜖

𝑛
⋅ Ψ𝑖

𝑦

𝑛 ⋅ 𝛿

Good 
overloaded bins 𝒢+

Bad underloaded 
bins ℬ−

Good underloaded 
bins 𝒢−

−
𝛾𝜖

𝑛
⋅ Φ𝑖 +

𝛾𝜖

𝑛
⋅ Ψ𝑖

−
𝛾 ǁ𝜖

𝑛
⋅ Ψ𝑖

Figure: The two cases of bad bins in a configuration (B+ ̸= ∅ or B− ̸= ∅) and their dominating
terms in ∆Γ for each of the set of bins.
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Appendix D: Proof Outline (II)

𝑦

1 −
1

4
⋅ +

1

4
⋅≤

1

4
⋅

𝑧1

𝑛 ⋅ 𝛿
𝑛

2
⋅ 1 + 𝛿

Figure: Case A [|B+| ≤ n
2 · (1 − δ)]: The positive (increase) dominant term in the contribution of

bins in B+ is counteracted by a fraction of the negative (decrease) dominant term of the good bins
G+.

23



Appendix D: Proof Outline (III)

𝑦

𝑛 ⋅ 𝛿
𝑛

2
⋅ 1 + 𝛿

1 −
1

4
⋅+

1

4
⋅≤

1

4
⋅

𝑧1

𝑧3

𝑧2

ℬ1 ℬ2

1

4
⋅

1 −
1

4
⋅ +

1

4
⋅≤

Figure: Case B [|B+| > n
2 · (1 − δ)]: The dominant increase of the bins in B1 is counteracted by a

fraction of the decrease of the bins in G+ as in Case A. The dominant increase of the bins in B2 is
counteracted by a fraction of the decrease of the bins in G−, when z2 = yn(1+δ)/2 is sufficiently
large.
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