Balanced Allocations with Incomplete Information: The Power of Two Queries

Dimitrios Los ${ }^{1}$, Thomas Sauerwald ${ }^{1}$

${ }^{1}$ University of Cambridge, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Applications in hashing, load balancing and routing.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and allocate the ball to the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and allocate the ball to the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}!\log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' allocate the ball to the least loaded of the two.
!

$$
\dot{\prime}
$$

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and allocate the ball to the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and allocate the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and allocate the ball to the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

$(1+\beta)$-Process: Definition

Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

$(1+\beta)$-Process: Definition

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit99] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.

$(1+\beta)$-Process: Definition

$(1+\beta)$-Process:
Parameter: A mixing factor $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit99] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.

- In the heavily-loaded case, [PTW15] proved that w.h.p. $\operatorname{Gap}(m)=\Theta(\log n / \beta)$ for $1 / n \leq \beta<1-\epsilon$ for any constant $\epsilon>0$.
k-Threshold and k-Quantile

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:
Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:
Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:
Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:
Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving w.h.p. $\operatorname{Gap}(n)=\mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving w.h.p. $\operatorname{Gap}(n)=\mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.
- For the heavily-loaded case, [LSS22] proved for $f\left(x^{t}\right)=t / n$ that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Adaptive 1-Threshold

Adaptive Threshold (f) Process:

Parameter: A threshold function $f\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<f\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- For the lightly-loaded case, [FGG21] determined the optimal threshold, achieving w.h.p. $\operatorname{Gap}(n)=\mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$.
\square For the heavily-loaded case, [LSS22] proved for $f\left(x^{t}\right)=t / n$ that w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }
\end{array}\right.
$$

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }
\end{array}\right.
$$

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right), \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }
\end{array}\right.
$$

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right), \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise } .
\end{array}\right.
$$

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right), \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise } .
\end{array}\right.
$$

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- Adaptive Quantile (δ) processes can simulate any adaptive Threshold (f).

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:

Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- Adaptive Quantile (δ) processes can simulate any adaptive Threshold (f).
- Also, adaptive Threshold (f) process can simulate any adaptive QuANTILE (δ).

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:
Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- Adaptive Quantile (δ) processes can simulate any adaptive Threshold (f).
- Also, adaptive Threshold (f) process can simulate any adaptive Quantile (δ).
\square Both are special cases of Two-Thinning [FGG21].

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:
Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }\end{cases}
$$

- Adaptive Quantile (δ) processes can simulate any adaptive Threshold (f).
- Also, adaptive $\operatorname{Threshold}(f)$ process can simulate any adaptive $\operatorname{Quantile}(\delta)$.
- Both are special cases of Two-Thinning [FGG21].
[IK05, FL20] analyse d-Thinning in the lightly-loaded case.

Adaptive 1-Quantile

Adaptive Quantile (δ) Process:
Parameter: A quantile function $\delta\left(x^{t}\right)$.
Iteration: For $t \geq 0$, sample two bins i_{1} and i_{2} independently and u.a.r. Then, update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } \operatorname{Rank}^{t}\left(i_{1}\right)>n \cdot \delta\left(x^{t}\right) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

- Adaptive Quantile (δ) processes can simulate any adaptive Threshold (f).
- Also, adaptive Threshold (f) process can simulate any adaptive Quantile (δ).
- Both are special cases of Two-Thinning [FGG21].
- [IK05, FL20] analyse d-Thinning in the lightly-loaded case.

In Quantile: Open
in Visualiser.

1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

1-Threshold as Two-Choice with incomplete information

We can interpret 1-Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

1-Quantile as Two-Choice with incomplete information

Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are on different sides of the quantile δ^{t}.

1-Quantile as Two-Choice with incomplete information

Similarly, 1-Quantile is as Two-Choice but we can compare two bins only if these are on different sides of the quantile δ^{t}.

k-Threshold process

Under this interpretation, we can extend the 1-THRESHOLD process to k thresholds.

k-Threshold process

Under this interpretation, we can extend the 1-Threshold process to k thresholds.

- We can only distinguish two bins if they are in different regions.

k-Threshold process

Under this interpretation, we can extend the 1-Threshold process to k thresholds.

- We can only distinguish two bins if they are in different regions.

k-Threshold process

Under this interpretation, we can extend the 1-Threshold process to k thresholds.
\square We can only distinguish two bins if they are in different regions.
\square [IK05] analysed the lightly-loaded case for equidistant thresholds.

k-QuANTILE process

Similarly, we can extend 1-Quantile to obtain the k-Quantile process.

Our results

Our results

Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
\Rightarrow For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- For d-Thinning, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(d \cdot(\log n)^{2 / d}\right)$.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- For d-Thinning, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(d \cdot(\log n)^{2 / d}\right)$.
- For graphical allocations in dense expanders, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ (progress in [PTW15, Open Question 2]).

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- For d-Thinning, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(d \cdot(\log n)^{2 / d}\right)$.
- For graphical allocations in dense expanders, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ (progress in [PTW15, Open Question 2]).
- Use layered induction over super-exponential potential functions.

Our results

- Any adaptive1-Quantile/1-Threshold process has w.h.p. $\operatorname{Gap}(m)=\Omega(\log n / \log \log n)$ for some $m \in\left[1, n \log ^{2} n\right]$ (disproves [FGG21, Problem 1.3]).
- A k-Quantile process with uniform quantiles that achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Implications:
- For $k=\Theta(\log \log n)$, we recover for Two-Choice that $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- For d-Thinning, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(d \cdot(\log n)^{2 / d}\right)$.
- For graphical allocations in dense expanders, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ (progress in [PTW15, Open Question 2]).
- Use layered induction over super-exponential potential functions.
\rightsquigarrow Might be helpful in analyzing other processes.

Lower bound: Proof Outline

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof. We consider two cases:

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof. We consider two cases:
Case A: \mathcal{P} uses at most n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof. We consider two cases:
Case A: \mathcal{P} uses at most n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.
A small quantile means that the first sample is used often.

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof. We consider two cases:
Case A: \mathcal{P} uses at most n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- A small quantile means that the first sample is used often.
$\square \mathcal{P}$ disagrees with One-Choice w.h.p. in at most $n+\mathcal{O}\left(m / \log ^{2} n\right)=\mathcal{O}(n)$ allocations.

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof. We consider two cases:
Case A: \mathcal{P} uses at most n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.
\square A small quantile means that the first sample is used often.
$\square \mathcal{P}$ disagrees with One-Choice w.h.p. in at most $n+\mathcal{O}\left(m / \log ^{2} n\right)=\mathcal{O}(n)$ allocations.

- Using Poissonisation w.h.p. there are $\Omega(n)$ balls above $\frac{m}{n}+\Omega(\log n)$.

Lower bound proof (I)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof. We consider two cases:
Case A: \mathcal{P} uses at most n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.
\square A small quantile means that the first sample is used often.
$\square \mathcal{P}$ disagrees with One-Choice w.h.p. in at most $n+\mathcal{O}\left(m / \log ^{2} n\right)=\mathcal{O}(n)$ allocations.
Using Poissonisation w.h.p. there are $\Omega(n)$ balls above $\frac{m}{n}+\Omega(\log n)$.

- Hence, the $\operatorname{Gap}(m)=\Omega(\log n)$ remains.

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof (continued). We consider two cases:

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right)
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- Split m into intervals of n allocations:

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- Split m into intervals of n allocations:

\square One interval $[t, t+n)$ must have $\geq n / \log ^{2} n$ balls allocated with $\delta^{s} \geq \frac{1}{\log ^{2} n}$.

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- Split m into intervals of n allocations:

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- Split m into intervals of n allocations:

Lower bound proof (II)

Theorem

For any adaptive $\operatorname{Quantile}(\delta)$ (or Threshold (f)) process \mathcal{P},

$$
\operatorname{Pr}\left[\max _{t \in\left[0, n \log ^{2} n\right]} \operatorname{Gap}(t) \geq \frac{1}{8} \cdot \frac{\log n}{\log \log n}\right] \geq 1-o\left(n^{-2}\right) .
$$

Proof (continued). We consider two cases:
Case B: \mathcal{P} uses at least n quantiles with $\delta^{t} \geq \frac{1}{\log ^{2} n}$.

- Split m into intervals of n allocations:

- One interval $[t, t+n)$ must have $\geq n / \log ^{2} n$ balls allocated with $\delta^{s} \geq \frac{1}{\log ^{2} n}$.

Upper bound: Proof outline

k-Quantile process

Theorem

Consider the Quantile $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{k}\right)$ process with

$$
\delta_{j}:= \begin{cases}e^{-\frac{1}{4}(\log n)^{(k-j) / k}} & \text { if } j<k \\ \frac{1}{2} & \text { if } i=k .\end{cases}
$$

For any step $m \geq 0, \operatorname{Pr}\left[\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)\right] \geq 1-n^{-3}$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] showed that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.

The hyperbolic cosine potential function

\square [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.
\square [PTW15] showed that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.

- [PTW15] showed that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma} \cdot(3 \log n+\log c)\right] \geq 1-n^{-2}
$$

The hyperbolic cosine potential function

- [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.

- [PTW15] showed that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
- This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma} \cdot(3 \log n+\log c)\right] \geq 1-n^{-2}
$$

In [PTW15], $\gamma=\mathcal{O}(1)$ so the tightest gaps proved were $\mathcal{O}(\log n)$.

The hyperbolic cosine potential function

\square [PTW15] used the hyperbolic cosine potential,

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential: } \Phi_{0}^{t}}+\underbrace{\sum_{i=1}^{n} e^{-\gamma\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

For the $(1+\beta)$-process, $\gamma=\Theta(\beta)$.

- [PTW15] showed that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.

This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c n$ for any $t \geq 0$.

- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\gamma} \cdot(3 \log n+\log c)\right] \geq 1-n^{-2} .
$$

- In [PTW15], $\gamma=\mathcal{O}(1)$ so the tightest gaps proved were $\mathcal{O}(\log n)$.
[TW14] used this as a base case for Two-Choice in the heavily-loaded case.

Technique 1: Super-exponential potential functions

Technique 1: Super-exponential potential functions

- We define the following super-exponential potential functions for $0 \leq j<k$ and $t \geq 0$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n)^{j / k} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\gamma} j(\log n)^{1 / k}\right)^{+}\right)
$$

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for $0 \leq j<k$ and $t \geq 0$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n)^{j / k} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\gamma} j(\log n)^{1 / k}\right)^{+}\right),
$$

- We prove that when $y_{\delta_{k-j} \cdot n}^{t}<\frac{2}{\gamma} j(\log n)^{1 / k}\left(\right.$ good step $\left.\mathcal{G}_{j}^{t}\right)$, then

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathcal{G}_{j}^{t}\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2
$$

Technique 1: Super-exponential potential functions

We define the following super-exponential potential functions for $0 \leq j<k$ and $t \geq 0$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n)^{j / k} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\gamma} j(\log n)^{1 / k}\right)^{+}\right)
$$

- We prove that when $y_{\delta_{k-j} \cdot n}^{t}<\frac{2}{\gamma} j(\log n)^{1 / k}\left(\right.$ good step $\left.\mathcal{G}_{j}^{t}\right)$, then

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathcal{G}_{j}^{t}\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2
$$

\square So, after $s=n \cdot \operatorname{polylog}(n)$ steps we get $\mathbf{E}\left[\Phi_{j}^{t+s} \mid \Phi_{0}^{t}=\mathcal{O}(n), \cap_{\tau \in[t, t+s)} \mathcal{G}_{j}^{\tau}\right]=\mathcal{O}(n)$.

Technique 1: Super-exponential potential functions

- We define the following super-exponential potential functions for $0 \leq j<k$ and $t \geq 0$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n)^{j / k} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\gamma} j(\log n)^{1 / k}\right)^{+}\right)
$$

- We prove that when $y_{\delta_{k-j} \cdot n}^{t}<\frac{2}{\gamma} j(\log n)^{1 / k}\left(\right.$ good step $\left.\mathcal{G}_{j}^{t}\right)$, then

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathcal{G}_{j}^{t}\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2
$$

\square So, after $s=n \cdot \operatorname{polylog}(n)$ steps we get $\mathbf{E}\left[\Phi_{j}^{t+s} \mid \Phi_{0}^{t}=\mathcal{O}(n), \cap_{\tau \in[t, t+s)} \mathcal{G}_{j}^{\tau}\right]=\mathcal{O}(n)$.
\square Observe that when $\Phi_{0}^{t}=\mathcal{O}(n)$ then at most $\mathcal{O}\left(n \cdot e^{-\gamma z}\right)$ bins have load $\geq z$.

Technique 1: Super-exponential potential functions

- We define the following super-exponential potential functions for $0 \leq j<k$ and $t \geq 0$:

$$
\Phi_{j}^{t}:=\sum_{i=1}^{n} \exp \left(\gamma \cdot(\log n)^{j / k} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\gamma} j(\log n)^{1 / k}\right)^{+}\right)
$$

- We prove that when $y_{\delta_{k-j} \cdot n}^{t}<\frac{2}{\gamma} j(\log n)^{1 / k}\left(\right.$ good step $\left.\mathcal{G}_{j}^{t}\right)$, then

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathcal{G}_{j}^{t}\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2
$$

\square So, after $s=n \cdot \operatorname{polylog}(n)$ steps we get $\mathbf{E}\left[\Phi_{j}^{t+s} \mid \Phi_{0}^{t}=\mathcal{O}(n), \cap_{\tau \in[t, t+s)} \mathcal{G}_{j}^{\tau}\right]=\mathcal{O}(n)$.
\square Observe that when $\Phi_{0}^{t}=\mathcal{O}(n)$ then at most $\mathcal{O}\left(n \cdot e^{-\gamma z}\right)$ bins have load $\geq z$.
Similarly, when $\Phi_{j}^{t}=\mathcal{O}(n)$, then $y_{\delta_{k-j-1} \cdot n}<\frac{2}{\gamma}(j+1)(\log n)^{1 / k}$.

Proving $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$

Technique 2: Proving Φ_{j}^{t} is linear w.h.p.

Assume that $\mathbf{E}\left[\Phi_{j}^{\tau}\right]=\mathcal{O}(n)$ and \mathcal{G}_{j}^{τ} for all $\tau \in[t, t+n \cdot \operatorname{polylog}(n))$.

Technique 2: Proving Φ_{j}^{t} is linear w.h.p.

\square Assume that $\mathbf{E}\left[\Phi_{j}^{\tau}\right]=\mathcal{O}(n)$ and \mathcal{G}_{j}^{τ} for all $\tau \in[t, t+n \cdot \operatorname{polylog}(n))$.
\square Using Markov's inequality we get that w.h.p. $\Phi_{j}^{\tau}=\operatorname{poly}(n)$.

Technique 2: Proving Φ_{j}^{t} is linear w.h.p.

Assume that $\mathbf{E}\left[\Phi_{j}^{\tau}\right]=\mathcal{O}(n)$ and \mathcal{G}_{j}^{τ} for all $\tau \in[t, t+n \cdot \operatorname{polylog}(n))$.
U Using Markov's inequality we get that w.h.p. $\Phi_{j}^{\tau}=\operatorname{poly}(n)$.
We define Ψ_{j}^{t} as Φ_{j}^{t} with sufficiently smaller γ.

Technique 2: Proving Φ_{j}^{t} is linear w.h.p.

Assume that $\mathbf{E}\left[\Phi_{j}^{\tau}\right]=\mathcal{O}(n)$ and \mathcal{G}_{j}^{τ} for all $\tau \in[t, t+n \cdot \operatorname{polylog}(n))$.

- Using Markov's inequality we get that w.h.p. $\Phi_{j}^{\tau}=\operatorname{poly}(n)$.

We define Ψ_{j}^{t} as Φ_{j}^{t} with sufficiently smaller γ.
When $\Phi_{j}^{\tau}=\operatorname{poly}(n)$, then $\left|\Psi_{j}^{\tau+1}-\Psi_{j}^{\tau}\right|<n^{1 / 3}$.

Technique 2: Proving Φ_{j}^{t} is linear w.h.p.

Assume that $\mathbf{E}\left[\Phi_{j}^{\tau}\right]=\mathcal{O}(n)$ and \mathcal{G}_{j}^{τ} for all $\tau \in[t, t+n \cdot \operatorname{polylog}(n))$.

- Using Markov's inequality we get that w.h.p. $\Phi_{j}^{\tau}=\operatorname{poly}(n)$.
- We define Ψ_{j}^{t} as Φ_{j}^{t} with sufficiently smaller γ.

When $\Phi_{j}^{\tau}=\operatorname{poly}(n)$, then $\left|\Psi_{j}^{\tau+1}-\Psi_{j}^{\tau}\right|<n^{1 / 3}$.
\square Hence, we apply a bounded difference inequality to get that w.h.p. $\Psi_{j}^{\tau}=\mathcal{O}(n)$.

Conclusion

Summary of results:
1 Introduced a k-QuANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .
- Graphical allocations on dense expander graphs achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Conclusion

Summary of results:
Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .
- Graphical allocations on dense expander graphs achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Future work:

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .
- Graphical allocations on dense expander graphs achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Future work:
Prove lower bounds for adaptive k-QuAntile for $k \geq 2$.

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .
- Graphical allocations on dense expander graphs achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Future work:
Prove lower bounds for adaptive k-QUANTILE for $k \geq 2$.

- Prove similar upper bounds for k-Threshold.

Conclusion

Summary of results:

- Introduced a k-QUANTILE process which achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Proved a lower bound of $\Omega(\log n / \log \log n)$ for any adaptive 1-Threshold and 1-Quantile process (power of two queries).
- Implications:
- For $k=\Theta(\log \log n)$, we recover the $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$ for Two-Choice (power of two choices).
- Tighter upper bounds for d-Thinning and $(1+\beta)$ for β close to 1 .
- Graphical allocations on dense expander graphs achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Future work:
Prove lower bounds for adaptive k-QuAntile for $k \geq 2$.

- Prove similar upper bounds for k-Threshold.
- Analyse Two-Choice with noise.

Questions?

More visualisations: dimitrioslos.com/itcs22

Questions?

More visualisations: dimitrioslos.com/itcs22

Appendix

Appendix A: Detailed experimental results

($1+\beta$)-process,	k-QuANTILE				Two-Choice
for $\beta=1 / 2$	$k=1$	$k=2$	$k=3$	$k=4$	
20: 2%					
21: 7\%					
22: 9\%	8: 28%				
23: 26%	9: 42%				
24: 27%	10: 18%	4: 72\%			
25: 14%	11: 7\%	5: 26%	3: 46%	$\begin{aligned} & \mathbf{3}: 79 \% \\ & \mathbf{4}: 21 \% \end{aligned}$	3: 100\%
26: 6\%	12: 3\%	6: 2%			
27: 3\%	14: 1\%				
28: 4\%	15: 1%				
29: 1\%					
34: 1\%					

Table: Empirical distribution of the Gap for $n=10^{5}$ bins and $m=1000 \cdot n$ balls.

Appendix B: Random d-regular graphs

Figure: Average Gap for graphical allocations on d-regular graphs generated using [SW99] for $n \in\left\{10^{3}, 10^{4}, 5 \cdot 10^{4}\right\}$ bins and $m=1000 \cdot n$ balls.

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385.
- O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation, Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.
- O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab. 25 (2020), Paper No. 1, 13.
- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304.
- K. Iwama and A. Kawachi, Approximated two choices in randomized load balancing, Algorithms and Computation, Springer Berlin Heidelberg, 2005, pp. 545-557.

Bibliography II

- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542.
- D. Los, T. Sauerwald, and J. Sylvester, Balanced allocations: Caching and packing, twinning and thinning, 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'22), SIAM, 2022, pp. 1847-1874.
- M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory Comput. Syst. 32 (1999), no. 3, 361-386.
- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775.
- M. Raab and A. Steger, "Balls into bins"-a simple and tight analysis, 2nd International Workshop on Randomization and Computation (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170.
- A. Steger and N. C. Wormald, Generating random regular graphs quickly, Combinatorics, Probability and Computing 8 (1999), no. 4, 377-396.

Bibliography III

- Kunal Talwar and Udi Wieder, Balanced allocations: A simple proof for the heavily loaded case, 41st International Colloquium on Automata, Languages, and Programming (ICALP'14), vol. 8572, Springer, 2014, pp. 979-990.

