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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).
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■ Applications in hashing, load balancing and routing.
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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One-Choice and Two-Choice processes
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Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.
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Relaxing with outdated information

■ Allocate balls in batches of size b [BCE+12].

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.
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Our techniques
■ Interplay between (i) linear, (ii) quadratic and (iii) exponential potentials.
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Visualisations: dimitrioslos.com/halg22
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