
Naively sorting evolving data is optimal and robust

George Giakkoupis1, Marcos Kiwi2, Dimitrios Los1

1INRIA, France 2Universidad de Chile

1

Background

Background 2

Sorting with evolving data

■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].

■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.

■ More concretely, every sorting step is followed by b mixing steps.
▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices

and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (4, 6)
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (3, 4)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped.

We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

2 4 3 5 1 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (3, 4)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

2 3 4 5 1 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (3, 4)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

2 3 4 5 1 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (1, 2)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (1, 2)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (1, 2)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)

■ Aim: maintain an ordering πt which is close to the true ordering

▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Mixing step:
Swap (1, 2)
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|

▶ Total deviation: tdev(πt) =
∑

i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|

▶ Total deviation: tdev(πt) =
∑

i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i|

(within factor 2 of Kendall tau distance)

Background 3

Sorting with evolving data
■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.
▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and

swapped. We don’t learn which pair was swapped.

1 3 4 5 2 7 6
1 2 3 4 5 6 7

Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)

Background 3

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly.

For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:

▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)

▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)

▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)

▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:

selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12],

top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17],

minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model:

matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16],

PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21],

community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16],

shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
▶ different systems/features (comparison via A/B testing)
▶ tennis/chess players (comparison via H2H games)
▶ websites/songs/movies

■ Sorting is a critical component in other problems with evolving data:
selection [AKM+12], top-k [HLSZ17], minimum spanning trees [AKM+12], . . .

■ Further problems studied in the evolving data model: matching [KLM16], PageRank
computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest
paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], . . .

Background 4

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).

▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).

▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).

▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.

▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?

▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps
(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.

▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.

⇝ Quadratic time algorithms are optimal.
▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?

Background 5

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:

▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in
t = O(n2) steps.

▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n)

for any const b ≥ 1 in
t = O(n2) steps.

▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.

▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.

▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.

▶ For non-constant b, mdev = Θ(b log n).
■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when

∆ = Ω(log n)).
■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.

■ Analysis techniques based on:
▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.

▶ A technique for decoupling sorting and mixing steps.

Background 6

Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.

Background 6

Analysis

Analysis 7

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.

▶ Analysing sorting steps
▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work

▶ Why a variant using gaps does work
▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps

▶ Combining sorting and mixing steps
■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.

Analysis 8

Part A: The mdev = O(log n) and tdev = O(n log n)
bounds

Analysis 9

Why the normal exponential potential does not work

■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps.

Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs.

For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6, 7, 1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.

■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6, 7, 1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.

■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6, 7, 1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6, 7, 1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ...

and does not work for mixing
steps.

Analysis 10

Why the normal exponential potential does not work
■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6, 7, 1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [Φt+1|Φt] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.

Analysis 10

Adding gaps (I)

■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.

■ Sorted state: (
1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

→ lt+1 =
(

⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)

Analysis 11

Adding gaps (I)
■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
Analysis 11

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.

■ Since Φt is exponential,
Φt =

∑
j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates.

⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease

■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [Φt+1|Φt] ≤ Φt ·
(

1 − Ω
(

1
n

))
.

Analysis 12

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.

■ Main idea: Maintain a target array τt (initially τ0 = idn)
πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).

And, in a mixing step, swap the target positions of the items, i.e.,
πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).

■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).

And, in a mixing step, swap the target positions of the items, i.e.,
πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).

■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).

■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.

■ To preserve increasing distances needed for the sorting analysis, we require that
πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).

■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).

■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps.

Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.

■ Then, we bound
|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.

■ On the RHS, we bound
▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.

■ On the RHS, we bound
▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.

▶ the second term by analysing n weakly-dependent random walks, e.g., using
Ψt =

∑
i∈[n] eβ·|i−τ−1

t
(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks,

e.g., using
Ψt =

∑
i∈[n] eβ·|i−τ−1

t
(i)|.

Analysis 13

Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.
■ Main idea: Maintain a target array τt (initially τ0 = idn)

πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).
And, in a mixing step, swap the target positions of the items, i.e.,

πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).
■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.
Analysis 13

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k)

≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).

■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [Φt+kn|Φt] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.

Analysis 14

Part B: The tdev = O(n) bound

Analysis 15

Why the previous analysis does not extend
■ The previous analysis uses long intervals of length kn.
■ Problem: When k = o(log n), then mdev(τ) = ω(k).
■ For example, when k = Θ(1), it follows that mdev(τ) = Θ(log n/ log log n), and so the

previous upper bound does not guarantee a decrease

E [Φt+kn|Φt] ≤ n · e−Θ(1) · eΘ(log n/ log log n) = n · eΘ(log n/ log log n).

■ Obsrvation: We are assuming worst-case bound on displacement for all items in τ .
■ Solution: Reset targets only for items with small displacements (those below

O(k2/3)).
▶ Small displacements: handle as in previous analysis.
▶ Large displacements: show that on aggregate they don’t contribute much.

■ We prove a concentration inequality (c.f. [LS22]) showing that

Pr
[

Φt ≤ n · eO(k2/3)
]

≥ 1 − n−2.

which implies that aggregate contribution of large displacements is n · e−Ω(k1/3).
Analysis 16

Putting it all together
■ We repeat for Θ(log log log n) iterations.
■ In iteration i, we set ki+1 = (ki)2/3.

t′0 t0 t1 t2 ti−1 ti ti+1 tΘ(log log logn)

n2 · (b+ 1) n logn n logn n log2/3 n nki nk
2/3
i

.

Φ = poly(n)

Φ̃t0 ≤ n2

Φ̃t1 ≤ n · eO((logn)2/3)

Φ̃t2 ≤ n · eO((logn)4/9)

Φ̃ti ≤ n · eO(k
2/3
i

)

Φ̃ti+1 ≤ n · eO(k
4/9
i

)

Φ̃tΘ(log log log n)
≤ O(n)

Sum of large displacements:

n · e−Ω((logn)1/3) + n · e−Ω((logn)2/9) + . . .+ n · e−Ω(k
1/3
i

) + . . .

Analysis 17

Conclusions

Conclusions 18

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown

■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.
⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation
distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev

for any const b ≥ 1.
⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation
distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).

⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation
distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).

⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions:

(i) mixing steps with a perturbation
distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).

⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF

and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).

⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:

■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).

■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.

■ Apply analysis techniques to related problems.

Conclusions 19

Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.

Conclusions 19

For more visualisations, see: team.inria.fr/wide/papers/focs24

Conclusions 20

https://dimitrioslos.com/focs24

Bibliography I
▶ Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin,

Algorithms on evolving graphs, 3rd Innovations in Theoretical Computer Science
Conference (ITCS’12), 2012, pp. 149–160.

▶ Aris Anagnostopoulos, Jakub Lacki, Silvio Lattanzi, Stefano Leonardi, and Mohammad
Mahdian, Community detection on evolving graphs, Annual Conference on Neural
Information Processing Systems (NeurIPS’16), 2016, pp. 3522–3530.

▶ Aditya Acharya and David M. Mount, Optimally tracking labels on an evolving tree,
34th Canadian Conference on Computational Geometry (CCCG’22), 2022, pp. 1–8.

▶ Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel, Mixing times
of the biased card shuffling and the asymmetric exclusion process, Trans. American
Mathematical Society 357 (2005), no. 8, 3013–3029.

▶ Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal, Pagerank on an
evolving graph, 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’12), 2012, pp. 24–32.

Conclusions 21

Bibliography II
▶ Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich, and

Timothy Johnson, Optimally sorting evolving data, 45th International Colloquium on
Automata, Languages, and Programming (ICALP’18), 2018, pp. 81:1–81:13.

▶ , Quadratic time algorithms appear to be optimal for sorting evolving data, 20th
Workshop on Algorithm Engineering and Experiments (ALENEX’18), 2018, pp. 87–96.

▶ Persi Diaconis and Arun Ram, Analysis of systematic scan Metropolis algorithms using
Iwahori-Hecke algebra techniques, Michigan Mathematical Journal 48 (2000), no. 1, 157
– 190.

▶ Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio, Efficient densest subgraph
computation in evolving graphs, 24th International Conference on World Wide Web
(WWW’15), ACM, 2015, pp. 300–310.

▶ Qin Huang, Xingwu Liu, Xiaoming Sun, and Jialin Zhang, Partial sorting problem on
evolving data, Algorithmica 79 (2017), no. 3, 960–983.

Conclusions 22

Bibliography III
▶ Varun Kanade, Nikos Leonardos, and Frédéric Magniez, Stable matching with evolving

preferences, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, (APPROX/RANDOM’16), LIPIcs, vol. 60, 2016,
pp. 36:1–36:13.

▶ Dimitrios Los and Thomas Sauerwald, Balanced allocations with incomplete
information: The power of two queries, Proc. 13th Innovations in Theoretical Computer
Science Conference, ITCS, 2022, pp. 103:1–103:23.

▶ Mohammad Mahdian, Algorithms on evolving data sets, Talk given at ICERM/Brown
Workshop on Stochastic Graph Models, March 17–21, 2014.

▶ Dingheng Mo and Siqiang Luo, Agenda: Robust personalized pageranks in evolving
graphs, 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), 2021, pp. 1315–1324.

Conclusions 23

Bibliography IV
▶ Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi, Efficient pagerank

tracking in evolving networks, Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’15), 2015, pp. 875–884.

▶ Yiming Zou, Gang Zeng, Yuyi Wang, Xingwu Liu, Xiaoming Sun, Jialin Zhang, and
Qiang Li, Shortest paths on evolving graphs, 5th International Conference on
Computational Social Networks (CSoNet’16), Springer, 2016, pp. 1–13.

Conclusions 24

	Background
	Analysis
	Part A: The mdev = O(log n) and tdev = O(n log n) bounds
	Part B: The tdev= O(n) bound

	Conclusions

	anm0:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

