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Sorting with evolving data

■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM+12].
■ As the sorting algorithm is executing, the input is evolving.
■ More concretely, every sorting step is followed by b mixing steps.

▶ Sorting step: algorithm chooses a pair of indices and compares their values.

▶ Mixing step: a pair of items of adjacent rank is sampled uniformly at random, and
swapped. We don’t learn which pair was swapped.

4 2 3 7 1 5 6
1 2 3 4 5 6 7

Sorting step:
Compare (1, 2)
Sorting step:

Swap
Sorting step:
Compare (4, 6)
Sorting step:

Swap
Sorting step:
Compare (3, 4)
Sorting step:
No swap

Mixing step:
Swap (3, 4)
Mixing step:
Swap (1, 2)

■ Aim: maintain an ordering πt which is close to the true ordering
▶ Maximum deviation: mdev(πt) = maxi∈[n] |πt(i) − i|
▶ Total deviation: tdev(πt) =

∑
i∈[n] |πt(i) − i| (within factor 2 of Kendall tau distance)
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Motivation

■ This problem can be used to model several rankings where comparisons are
expensive/costly. For instance, among:
▶ political candidates (comparison via debates/polls)
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Previous results

■ Anagnostopoulos et al. [AKM+12] proved that QuickSort achieves
w.h.p. mdev = O(log n) and tdev = O(n log n).
▶ A more refined version of QuickSort achieves w.h.p. tdev = O(n log log n).
▶ For any sorting algorithm, tdev = Ω(n).
▶ Conjecture: For any const b ≥ 1, there exists an algorithms which matches this.

■ Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that
Insertion-Sort for b = 1 achieves w.h.p. tdev = O(n) in O(n2) steps.
⇝ Quadratic time algorithms are optimal.

▶ Interleaved with QuickSort converges in O(n log n) steps.
▶ Proof tailored for b = 1. Open problem: What happens for b > 1?
▶ Besa Vial et al. [BVDE+18b] observed bounds extend to more powerful mixing steps

(e.g. hot-spot adversary)?

■ Mahdian [Mah14] proposed Naive-Sort which in each step samples a pair of adjacent
items; and sort them if they are out of order.
▶ Open problem: Does Naive-Sort achieve the optimal mdev and tdev?
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Our results

■ Main result:
▶ Naive-Sort achieves optimal mdev = O(log n) and tdev = O(n) for any const b ≥ 1 in

t = O(n2) steps.
▶ Resolves conjectures/open problems in [AKM+12, BVDE+18a, Mah14].

■ These bounds hold in generalised settings:
▶ Mixing steps where dispacement follows a distribution with finite MGF.
▶ Requiring only that a 1/(b + 1) fraction of sorting steps, every n steps.
▶ For non-constant b, mdev = Θ(b log n).

■ Starting from an ordering with mdev(π0) = ∆, it converges in O(n · ∆) steps (when
∆ = Ω(log n)).

■ By interleaving with QuickSort, it converges in O(n log n) steps.
■ Analysis techniques based on:

▶ An exponential potential function with gaps.
▶ A technique for decoupling sorting and mixing steps.
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Analysis outline

■ Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
▶ Analysing sorting steps

▶ Why the normal exponential potential does not work
▶ Why a variant using gaps does work

▶ Analysing mixing steps
▶ Combining sorting and mixing steps

■ Part B: (Brief) outline for the tdev = O(n) bound.
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Part A: The mdev = O(log n) and tdev = O(n log n)
bounds
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Why the normal exponential potential does not work

■ The exponential potential function with smoothing parameter α is defined as

Φt =
∑
i∈[n]

(
eα·|i−πt(i)| − 1

)
.

■ Assume only sorting steps. Recall that Naive-Sort tries to sort items in adjacent
positions.

■ Problem: There could be very few sortable pairs. For example,

πt = (4, 5, 6,7,1, 2, 3)

■ All items in the first sorted block contribute the same to Φt.
■ BUT only the head of a block decreases in expectation.
■ So, the potential satisfies

E [ Φt+1|Φt ] = Φt ·
(

1 − Θ
(

1
n2

))
.

■ Can only be used to prove sorting in O(n3) steps ... and does not work for mixing
steps.
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Adding gaps (I)

■ So, how can we handle sorted blocks?

πt = (4, 5, 6, 7, 1, 2, 3)

■ Main idea: Add n · (d − 1) gaps to make distances non-uniform.

πt = (6, 2, 5, 7, 1, 4, 3) →
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
,

so that no item has a gap to its left/right if its target is to the left/right.
■ Sorted state: (

1
1
, ⊥, 2

2
, ⊥, 3

3
, ⊥, 4

4
, ⊥, 5

5
, ⊥, 6

6
, ⊥, 7

7

)
.

■ Swapping values (2, 6) gives

lt =
(

⊥
1

, ⊥
0

, ⊥
2

, ⊥
0

, 6
3
, 2

0
, ⊥

4
, ⊥

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
→ lt+1 =

(
⊥
1

, ⊥
0

, 2
2
, ⊥

0
, ⊥

3
, ⊥

0
, ⊥

4
, 6

0
, 5

5
, 7

0
, 1

6
, 4

0
, 3

7

)
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Adding gaps (II)
■ Returning to the previous example

πt = (4, 5, 6, 7, 1, 2, 3)

■ Now, with the gaps, we have that

ℓt =

(
⊥
1
,⊥
0
,⊥
2
, 4
0
, 5
3
, 6
0
, 7
4
, 1
0
, 2
5
, 3
0
,⊥
6
,⊥
0
,⊥
7

)

■ and all distances are increasing in a sorted block.
■ Since Φt is exponential,

Φt =
∑

j:ℓt(j) ̸=⊥

eα|d·ℓt(j)−j|,

the contribution of the head of the block dominates. ⇝ overall decrease
■ So, in a sorting step, we can show that

E [ Φt+1|Φt ] ≤ Φt ·
(

1 − Ω
(

1
n

))
.
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Handling mixing steps
■ Our aim is to decouple sorting and mixing steps.

■ Main idea: Maintain a target array τt (initially τ0 = idn)
πt = (4, 1, 3, 5, 6, 2, 7) τt = (1, 2, 3, 4, 5, 6, 7).

And, in a mixing step, swap the target positions of the items, i.e.,
πt+1 = (3, 1, 4, 5, 6, 2, 7) τt+1 = (1, 2, 4, 3, 5, 6, 7).

■ This way, the potential does not change, i.e., Φt+1 = Φt.
■ To preserve increasing distances needed for the sorting analysis, we require that

πt(i) < πt(i + 1) ⇒ τt(πt(i)) < τt(πt(i + 1)).
■ We enforce this by performing successive swaps. Also do not increase Φt.
■ Then, we bound

|πt(i) − i| ≤ |πt(i) − τt(πt(i))| + |τt(πt(i)) − i|.
■ On the RHS, we bound

▶ the first term using the analysis involving Φt.
▶ the second term by analysing n weakly-dependent random walks, e.g., using

Ψt =
∑

i∈[n] eβ·|i−τ−1
t

(i)|.

Analysis 13
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Combining the two analyses
■ In kn steps (for k = Ω(log n)), we have that

max
i∈[n]

|τt(i) − i| = O
(√

k log n
)

.

■ In these steps, the potential changes by

E
[

Φ′
t+kn

∣∣Φt

]
≤ Φt ·

(
1 − Ω

(
1
n

))kn

≤ Φt · e−Ω(k) ≤ n · eα∆t · e−Ω(k),

where ∆t = mdev(πt).
■ By “resetting” the targets, for k = Ω(∆t + log n) we have that

E [ Φt+kn|Φt ] ≤ n · eO(
√

(∆t+log n)·log n),

and so
mdev(πt+kn) = O(

√
(∆t + log n) · log n).

■ By applying iteratively, after m = Ω(n · (∆0 + log n)) steps w.h.p.
mdev(πm) = O(log n) and tdev(πm) = O(n log n).

Convergence time
bounds are tight.

Bounds hold for
relaxed mixing steps.
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Part B: The tdev = O(n) bound
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Why the previous analysis does not extend
■ The previous analysis uses long intervals of length kn.
■ Problem: When k = o(log n), then mdev(τ) = ω(k).
■ For example, when k = Θ(1), it follows that mdev(τ) = Θ(log n/ log log n), and so the

previous upper bound does not guarantee a decrease

E [ Φt+kn|Φt ] ≤ n · e−Θ(1) · eΘ(log n/ log log n) = n · eΘ(log n/ log log n).

■ Obsrvation: We are assuming worst-case bound on displacement for all items in τ .
■ Solution: Reset targets only for items with small displacements (those below

O(k2/3)).
▶ Small displacements: handle as in previous analysis.
▶ Large displacements: show that on aggregate they don’t contribute much.

■ We prove a concentration inequality (c.f. [LS22]) showing that

Pr
[

Φt ≤ n · eO(k2/3)
]

≥ 1 − n−2.

which implies that aggregate contribution of large displacements is n · e−Ω(k1/3).
Analysis 16



Putting it all together
■ We repeat for Θ(log log log n) iterations.
■ In iteration i, we set ki+1 = (ki)2/3.

t′0 t0 t1 t2 ti−1 ti ti+1 tΘ(log log logn)

n2 · (b+ 1) n logn n logn n log2/3 n nki nk
2/3
i

. . . . . .

Φ = poly(n)

Φ̃t0 ≤ n2

Φ̃t1 ≤ n · eO((logn)2/3)

Φ̃t2 ≤ n · eO((logn)4/9)

Φ̃ti ≤ n · eO(k
2/3
i

)

Φ̃ti+1 ≤ n · eO(k
4/9
i

)

Φ̃tΘ(log log log n)
≤ O(n)

Sum of large displacements:

n · e−Ω((logn)1/3) + n · e−Ω((logn)2/9) + . . .+ n · e−Ω(k
1/3
i

) + . . .
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Summary and open problems

In this work, we have shown
■ Naive-Sort achieves the optimal mdev and tdev for any const b ≥ 1.

⇝ Resolving conjectures/open problems in [AKM+12, BVDE+18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation

distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
⇝ Naive-Sort is robust.

Several directions for future work:
■ Handle erroneous comparisons (see biased card shuffling [DR00, BBHM05]).
■ Use Naive-Sort to other problems with evolving data.
■ Apply analysis techniques to related problems.
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For more visualisations, see: team.inria.fr/wide/papers/focs24
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