Naively sorting evolving data is optimal and robust

George Giakkoupis¹, Marcos Kiwi², <u>Dimitrios Los</u>¹

¹INRIA, France ²Universidad de Chile

[Background](#page-1-0)

■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].

■ Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12]. ■ As the sorting algorithm is *executing*, the input is *evolving*.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
	- ▶ Sorting step: algorithm chooses a pair of indices

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
	- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
	- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
	- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
	- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- **Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [\[AKM](#page-143-0)+12].**
	- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*. (12) **Aim:** maintain and α maintain and α maintain and α maintain is *executing*, the input is *evolving*.

Nexty *sorting* step is followed by *b* mixing steps.

Igorithm chooses a pair of indices and compares t
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*. (34) **Alternative matrices**

(34) Approximates the metal is evolving and Vandin [AKM⁺12].

(36) $\frac{1}{2}$ wery *sorting* step is followed by *b* mixing steps.

1 lgorithm chooses a pair of indices and compares their val
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

Aim: maintain an ordering π_t which is close to the true ordering

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

1 3 4 5 2 7 6 1 2 3 4 5 6 7 Mixing step: Swap (1, 2) Sorting step Compare (4 (1(3No swapSwap , 6)24 (34)

Aim: maintain an ordering π_t which is close to the true ordering

► Maximum deviation: mdev $(π_t) = max_{i ∈ [n]} |π_t(i) - i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM+12]$ $[AKM+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

1 3 4 5 2 7 6 1 2 3 4 5 6 7

Aim: maintain an ordering π_t which is close to the true ordering

► Maximum deviation: mdev $(π_t) = max_{i ∈ [n]} |π_t(i) - i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM^+12]$ $[AKM^+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

1 3 4 5 2 7 6 1 2 3 4 5 6 7

Aim: maintain an ordering π_t which is close to the true ordering

- **►** Maximum deviation: mdev $(π_t) = max_{i ∈ [n]} |π_t(i) i|$
- **►** Total deviation: $\text{tdev}(\pi_t) = \sum_{i \in [n]} |\pi_t(i) i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin $[AKM^+12]$ $[AKM^+12]$. As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b* mixing steps.
	- ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
	- ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

Aim: maintain an ordering π_t which is close to the true ordering

- **►** Maximum deviation: mdev $(π_t) = max_{i ∈ [n]} |π_t(i) i|$
- **►** Total deviation: $\text{tdev}(\pi_t) = \sum_{i \in [n]} |\pi_t(i) i|$ (within factor 2 of Kendall tau distance)

■ This problem can be used to model several rankings where comparisons are expensive/costly.

■ This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

▶ political candidates (comparison via debates/polls)

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data:

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: *selection* [\[AKM](#page-143-0)⁺12],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top-k$ [\[HLSZ17\]](#page-144-0),
This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- \blacktriangleright different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

Further problems studied in the evolving data model:

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

■ Further problems studied in the evolving data model: *matching* [\[KLM16\]](#page-145-0),

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

■ Further problems studied in the evolving data model: *matching* [\[KLM16\]](#page-145-0), *PageRank computation* [\[BKMU12,](#page-143-1) [OMK15,](#page-146-0) [ML21\]](#page-145-1),

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

■ Further problems studied in the evolving data model: *matching* [\[KLM16\]](#page-145-0), *PageRank computation* [\[BKMU12,](#page-143-1) [OMK15,](#page-146-0) [ML21\]](#page-145-1), *community detection* [\[ALL](#page-143-2)+16],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: $selection$ [\[AKM](#page-143-0)⁺12], $top\$ k [\[HLSZ17\]](#page-144-0), $minimum$ $spanning$ $trees$ [AKM⁺12], ...

■ Further problems studied in the evolving data model: *matching* [\[KLM16\]](#page-145-0), *PageRank computation* [\[BKMU12,](#page-143-1) [OMK15,](#page-146-0) [ML21\]](#page-145-1), *community detection* [\[ALL](#page-143-2)⁺16], *shortest paths* [\[ZZW](#page-146-1)⁺16], *densest subgraph computation* [\[ELS15\]](#page-144-1), *tracking labels* [\[AM22\]](#page-143-3), . . .

Anagnostopoulos et al. [\[AKM](#page-143-0)⁺12] proved that QUICKSORT achieves w.h.p. mdev = $O(\log n)$ and tdev = $O(n \log n)$.

A more *refined version* of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.

- \blacktriangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- ▶ For any sorting algorithm, tdev = Ω(*n*).

- A more *refined version* of QUICKSORT achieves w.h.p. $t \cdot d$ ev = $O(n \log \log n)$.
- ▶ For any sorting algorithm, tdev = Ω(*n*).
- ▶ *Conjecture:* For any const $b \geq 1$, there exists an algorithms which matches this.

Anagnostopoulos et al. $[AKM⁺12]$ $[AKM⁺12]$ proved that QUICKSORT achieves w.h.p. mdev = $O(\log n)$ and tdev = $O(n \log n)$.

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- ▶ For any sorting algorithm, tdev = Ω(*n*).
- ▶ *Conjecture:* For any const $b \geq 1$, there exists an algorithms which matches this.

Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps.

Anagnostopoulos et al. $[AKM+12]$ $[AKM+12]$ proved that QUICKSORT achieves w.h.p. mdev = $O(\log n)$ and tdev = $O(n \log n)$.

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.

Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps. \sim Quadratic time algorithms are optimal.

Anagnostopoulos et al. $[AKM+12]$ $[AKM+12]$ proved that QUICKSORT achieves w.h.p. mdev = $O(\log n)$ and tdev = $O(n \log n)$.

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.

Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps. \sim Quadratic time algorithms are optimal.

Interleaved with QUICKSORT converges in $O(n \log n)$ steps.

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps. \sim Quadratic time algorithms are optimal.
	-
	- Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
	- **•** Proof tailored for $b = 1$. *Open problem:* What happens for $b > 1$?

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps.
	- \sim Quadratic time algorithms are optimal.
	- Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
	- **•** Proof tailored for $b = 1$. *Open problem:* What happens for $b > 1$?
	- ▶ Besa Vial et al. [\[BVDE](#page-144-3)⁺18b] *observed* bounds extend to more powerful mixing steps (e.g. *hot-spot adversary*)?

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps.
	- \sim Quadratic time algorithms are optimal.
	- Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
	- **•** Proof tailored for $b = 1$. *Open problem:* What happens for $b > 1$?
	- **► Besa Vial et al.** [\[BVDE](#page-144-3)⁺18b] *observed* bounds extend to more powerful mixing steps (e.g. *hot-spot adversary*)?
- Mahdian [\[Mah14\]](#page-145-2) proposed NAIVE-SORT which in each step samples a pair of *adjacent* items; and sort them if they are out of order.

- \triangleright A more *refined version* of QUICKSORT achieves w.h.p. tdev = $O(n \log \log n)$.
- **▶ For any sorting algorithm, tdev =** $\Omega(n)$ **.**
- \triangleright *Conjecture:* For any const $b > 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [\[BVDE](#page-144-2)+18a] showed that INSERTION-SORT for $b = 1$ achieves w.h.p. tdev = $O(n)$ in $O(n^2)$ steps.
	- \sim Quadratic time algorithms are optimal.
	- Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
	- **•** Proof tailored for $b = 1$. *Open problem:* What happens for $b > 1$?
	- ▶ Besa Vial et al. [\[BVDE](#page-144-3)⁺18b] *observed* bounds extend to more powerful mixing steps (e.g. *hot-spot adversary*)?
- Mahdian [\[Mah14\]](#page-145-2) proposed NAIVE-SORT which in each step samples a pair of *adjacent* items; and sort them if they are out of order.
	- ▶ *Open problem:* Does NAIVE-SORT achieve the optimal mdev and tdev?

■ Main result:

■ Main result:

 \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$

■ Main result:

▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b \ge 1$ in $t = O(n^2)$ steps.

■ Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

■ Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

■ These bounds hold in generalised settings:

■ Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

■ These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.

■ Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

■ These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.

■ Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- \blacktriangleright Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
- **For** *non-constant* b , mdev = $\Theta(b \log n)$.

Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
- **For** *non-constant* b , mdev = $\Theta(b \log n)$.

Starting from an ordering with mdev(π_0) = Δ , it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)).$

Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).

These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
- **For** *non-constant* b , mdev = $\Theta(b \log n)$.
- Starting from an ordering with mdev(π_0) = Δ , it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)).$
	- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.

Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).
- These bounds hold in generalised settings:
	- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
	- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
	- **For** *non-constant* b , mdev = $\Theta(b \log n)$.
- Starting from an ordering with mdev(π_0) = Δ , it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)).$
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:

Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).
- These bounds hold in generalised settings:
	- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
	- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
	- **For** *non-constant* b , mdev = $\Theta(b \log n)$.
- Starting from an ordering with mdev(π_0) = Δ , it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)).$
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:
	- ▶ An exponential potential function with gaps.

Main result:

- \triangleright NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = $O(n)$ for any const $b > 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-2)⁺18a, [Mah14\]](#page-145-2).
- These bounds hold in generalised settings:
	- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
	- **•** Requiring only that a $1/(b+1)$ fraction of sorting steps, every *n* steps.
	- **For** *non-constant* b , mdev = $\Theta(b \log n)$.
- Starting from an ordering with mdev(π_0) = Δ , it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)).$
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:
	- ▶ An exponential potential function with gaps.
	- ▶ A technique for decoupling sorting and mixing steps.

[Analysis](#page-68-0)

Analysis outline

Analysis outline

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

Analysis outline

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds. ▶ Analysing *sorting steps*
- **Part A**: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.
	- ▶ Analysing *sorting steps*
		- ▶ Why the normal exponential potential does not work

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

▶ Analysing *sorting steps*

- ▶ Why the normal exponential potential does not work
- ▶ Why a *variant* using gaps does work

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing *sorting steps*
	- ▶ Why the normal exponential potential does not work
	- ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing *sorting steps*
	- ▶ Why the normal exponential potential does not work
	- ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*
- ▶ Combining sorting and mixing steps

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing *sorting steps*
	- ▶ Why the normal exponential potential does not work
	- ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*
- ▶ Combining sorting and mixing steps

Part B: (Brief) outline for the tdev = $O(n)$ bound.

[Part A: The](#page-77-0) mdev = $O(\log n)$ **and** tdev = $O(n \log n)$ **[bounds](#page-77-0)**

The exponential potential function with smoothing parameter α **is defined as**

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

The exponential potential function with smoothing parameter α **is defined as**

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

■ Assume *only* sorting steps.

The exponential potential function with smoothing parameter α **is defined as**

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

■ Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.

The exponential potential function with smoothing parameter α **is defined as**

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.

■ **Problem:** There could be very *few* sortable pairs.

The exponential potential function with smoothing parameter α **is defined as**

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\pi_t = (4, 5, 6, \mathbf{7}, \mathbf{1}, 2, 3)
$$

The exponential potential function with smoothing parameter α is defined as

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\overrightarrow{\pi_t = (4, 5, 6, 7, 1, 2, 3)}
$$

 \blacksquare *All* items in the first sorted block contribute the same to Φ_t .

The exponential potential function with smoothing parameter α is defined as

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\overrightarrow{\pi_t = (4, 5, 6, 7, 1, 2, 3)}
$$

All items in the first sorted block contribute the same to Φ_t . BUT *only* the head of a block decreases in expectation.

The exponential potential function with smoothing parameter α is defined as

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\overrightarrow{\pi_t = (4, 5, 6, 7, 1, 2, 3)}
$$

- All items in the first sorted block contribute the same to Φ_t . BUT *only* the head of a block decreases in expectation.
- So, the potential satisfies

$$
\mathbf{E}\left[\,\Phi_{t+1}|\Phi_t\,\right]=\Phi_t\cdot\left(1-\Theta\left(\frac{1}{n^2}\right)\right).
$$

The exponential potential function with smoothing parameter α is defined as

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\overrightarrow{\pi_t = (4, 5, 6, 7, 1, 2, 3)}
$$

- All items in the first sorted block contribute the same to Φ_t .
- BUT *only* the head of a block decreases in expectation.
- So, the potential satisfies

$$
\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] = \Phi_t \cdot \left(1 - \Theta\left(\frac{1}{n^2}\right)\right).
$$

■ Can only be used to prove sorting in $O(n^3)$ steps ...

The exponential potential function with smoothing parameter α is defined as

$$
\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).
$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$
\pi_t = \underbrace{(4,5,6,7,1,2,3)}
$$

- All items in the first sorted block contribute the same to Φ_t .
- BUT *only* the head of a block decreases in expectation.
- So, the potential satisfies

$$
\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] = \Phi_t \cdot \left(1 - \Theta\left(\frac{1}{n^2}\right)\right).
$$

■ Can only be used to prove sorting in $O(n^3)$ steps ... and does not work for mixing steps. [Analysis](#page-68-0) 10

■ So, how can we handle *sorted blocks*?

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ **Main idea:** Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$
\pi_t = (6, 2, 5, 7, 1, 4, 3) \rightarrow \left(\underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, 6, 2, \underline{1}, \underline{1}, 5, 7, 1, 4, 3, 7 \right),
$$

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ **Main idea:** Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$
\pi_t = (6, 2, 5, 7, 1, 4, 3) \rightarrow \left(\underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, 6, 2, \underline{1}, \underline{1}, 5, 7, \underline{1}, 4, 3, 7\right),
$$

so that no item has a gap to its *left/right* if its target is to the *left/right*.

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ **Main idea:** Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$
\pi_t = (6, 2, 5, 7, 1, 4, 3) \rightarrow \left(\underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, 6, 2, \underline{1}, \underline{1}, 5, 7, 1, 4, 3, 7 \right),
$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$
\left(1, \frac{1}{2}, \frac{2}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \frac{4}{4}, \frac{1}{5}, \frac{5}{5}, \frac{1}{6}, \frac{6}{7}, \frac{1}{7}\right).
$$

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ **Main idea:** Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$
\pi_t = (6, 2, 5, 7, 1, 4, 3) \rightarrow \left(\underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, 6, 2, \underline{1}, \underline{1}, 5, 7, \underline{1}, 4, 3, 7\right),
$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$
\left(1, \frac{1}{2}, \frac{2}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \frac{4}{4}, \frac{1}{5}, \frac{5}{5}, \frac{1}{6}, \frac{6}{7}, \frac{1}{7}\right).
$$

Swapping values $(2, 6)$ gives

$$
l_t=\left(\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{1},\mathbf{6},\mathbf{2},\mathbf{1},\mathbf{1},\mathbf{5},7,\mathbf{1},4,\mathbf{3}\right)
$$

[Analysis](#page-68-0) 11

■ So, how can we handle *sorted blocks*?

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ **Main idea:** Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$
\pi_t = (6, 2, 5, 7, 1, 4, 3) \rightarrow \left(\underline{1}, \underline{1}, \underline{1}, \underline{1}, \underline{1}, 6, 2, \underline{1}, \underline{1}, 5, 7, \underline{1}, 4, 3, 7\right),
$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$
\left(1, \frac{1}{2}, \frac{2}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \frac{4}{4}, \frac{1}{5}, \frac{5}{5}, \frac{1}{6}, \frac{6}{7}, \frac{1}{7}\right).
$$

Swapping values $(2, 6)$ gives

$$
l_t=\left(\underline{\bot},\bot,\underline{\bot},\bot,\underbrace{6,2},\underline{\bot},\bot,\underbrace{5,7},\underbrace{1,4,3}_{6},7,4,\underbrace{3}_{7}\right)\rightarrow l_{t+1}=\left(\underline{\bot},\bot,\underbrace{2},\bot,\underline{\bot},\bot,\underline{\bot},6,\underbrace{5,7},\underbrace{1,4,3}_{6}\right)
$$

[Analysis](#page-68-0) 11

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\underbrace{\underline{1}}_{1}, \underline{1}, \underbrace{1}_{2}, \underbrace{1, 5, 6, 7}_{3}, 1, \underbrace{2, 3, \underline{1}}_{5}, \underline{1}, \underline{1}, \underline{1}}_{6}\right)
$$

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{5}{3}, \frac{6}{4}, \frac{7}{4}, \frac{1}{5}, \frac{2}{6}, \frac{3}{4}, \frac{1}{4}, \frac{1}{7} \right)
$$

■ and all distances are increasing in a *sorted block*.

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\underline{\underline{1}}, \underline{\underline{1}}, \underline{\underline{1}}, \underline{\underline{1}}, \overbrace{4, \underbrace{5, 6, 7}_3, 1, \underbrace{2}_5, 3, \underline{\underline{1}}, \underline{1}, \underline{1}}_6, \underline{\underline{1}}\right)
$$

■ and all distances are increasing in a *sorted block*. \blacksquare Since Φ_t is exponential,

$$
\Phi_t = \sum_{j:\ell_t(j)\neq \perp} e^{\alpha |d\cdot \ell_t(j)-j|},
$$

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{5}{3}, \frac{6}{4}, \frac{7}{4}, \frac{1}{5}, \frac{2}{6}, \frac{3}{4}, \frac{1}{4}, \frac{1}{7} \right)
$$

■ and all distances are increasing in a *sorted block*. \blacksquare Since Φ_t is exponential,

$$
\Phi_t = \sum_{j:\ell_t(j)\neq \perp} e^{\alpha |d \cdot \ell_t(j) - j|},
$$

the contribution of the *head* of the block dominates.

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{5}{3}, \frac{6}{4}, \frac{7}{4}, \frac{1}{5}, \frac{2}{6}, \frac{3}{4}, \frac{1}{4}, \frac{1}{7} \right)
$$

■ and all distances are increasing in a *sorted block*. \blacksquare Since Φ_t is exponential,

$$
\Phi_t = \sum_{j:\ell_t(j)\neq \perp} e^{\alpha |d \cdot \ell_t(j) - j|},
$$

the contribution of the *head* of the block dominates. \sim overall decrease

■ Returning to the previous example

$$
\overrightarrow{\pi_t = (4,5,6,7,1,2,3)}
$$

■ Now, with the gaps, we have that

$$
\ell_t = \left(\frac{1}{1}, \frac{1}{2}, \frac{1}{4}, \frac{5}{3}, \frac{6}{4}, \frac{7}{4}, \frac{1}{5}, \frac{2}{6}, \frac{3}{4}, \frac{1}{4}, \frac{1}{7} \right)
$$

■ and all distances are increasing in a *sorted block*. \blacksquare Since Φ_t is exponential,

$$
\Phi_t = \sum_{j:\ell_t(j)\neq \perp} e^{\alpha |d\cdot \ell_t(j)-j|},
$$

the contribution of the *head* of the block dominates. \sim overall decrease ■ So, in a sorting step, we can show that

$$
\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] \leq \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right).
$$

[Analysis](#page-68-0) 12

■ Our aim is to decouple sorting and mixing steps.

■ Our aim is to decouple sorting and mixing steps.

•• Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4,1,3,5,6,2,7) \qquad \tau_t = (1,2,3,4,5,6,7).
$$

■ Our aim is to decouple sorting and mixing steps.

•• Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4,1,3,5,6,2,7) \qquad \tau_t = (1,2,3,4,5,6,7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

■ Our aim is to decouple sorting and mixing steps.

•• Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4,1,3,5,6,2,7) \qquad \tau_t = (1,2,3,4,5,6,7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7) \quad \tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).
$$
■ Our aim is to decouple sorting and mixing steps.

•• Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4,1,3,5,6,2,7) \qquad \tau_t = (1,2,3,4,5,6,7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = ({\bf 3}, 1, {\bf 4}, 5, 6, 2, 7) \quad \tau_{t+1} = (1, 2, {\bf 4}, {\bf 3}, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$.

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \tau_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \tau_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

We enforce this by performing successive swaps.

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \pi_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that $\pi_t(i) < \pi_t(i+1) \implies \tau_t(\pi_t(i)) < \pi_t(\pi_t(i+1)).$

We enforce this by performing successive swaps. Also *do not increase* Φ_t .

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \pi_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

We enforce this by performing successive swaps. Also *do not increase* Φ_t . Then, we bound

$$
|\pi_t(i) - i| \leq |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.
$$

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \tau_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

We enforce this by performing successive swaps. Also *do not increase* Φ_t . Then, we bound

$$
|\pi_t(i) - i| \leq |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.
$$

On the RHS, we bound

 \blacktriangleright the first term using the analysis involving Φ_t .

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \pi_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

We enforce this by performing successive swaps. Also *do not increase* Φ_t . Then, we bound

$$
|\pi_t(i) - i| \leq |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.
$$

On the RHS, we bound

- \blacktriangleright the first term using the analysis involving Φ_t .
- ▶ the second term by analysing *n weakly-dependent random walks*,

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$
\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).
$$

And, in a mixing step, swap the target positions of the items, i.e.,

$$
\pi_{t+1} = (3, 1, 4, 5, 6, 2, 7) \quad \pi_{t+1} = (1, 2, 4, 3, 5, 6, 7).
$$

This way, the potential *does not change*, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$
\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).
$$

We enforce this by performing successive swaps. Also *do not increase* Φ_t . Then, we bound

$$
|\pi_t(i) - i| \leq |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.
$$

On the RHS, we bound

- \blacktriangleright the first term using the analysis involving Φ_t .
- \triangleright the second term by analysing *n weakly-dependent random walks*, e.g., using $\Psi_t = \sum_{i \in [n]} e^{\beta \cdot |i - \tau_t^{-1}(i)|}.$ [Analysis](#page-68-0) $\begin{array}{c} \bullet \bullet \circ \Box \circ \Box \end{array}$ 13

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\left.\right]\leq\Phi_t\cdot\left(1-\Omega\left(\frac{1}{n}\right)\right)^{kn}
$$

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\left.\right]\leq \Phi_t\cdot\left(1-\Omega\left(\frac{1}{n}\right)\right)^{kn}\leq \Phi_t\cdot e^{-\Omega(k)}
$$

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\right] \leq \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \leq \Phi_t \cdot e^{-\Omega(k)} \leq n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$.

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\left.\right]\leq \Phi_t\cdot\left(1-\Omega\left(\frac{1}{n}\right)\right)^{kn}\leq \Phi_t\cdot e^{-\Omega(k)}\leq n\cdot e^{\alpha\Delta_t}\cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$. **E** By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$
\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \leq n \cdot e^{O(\sqrt{(\Delta_t + \log n) \cdot \log n})},
$$

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\right] \leq \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \leq \Phi_t \cdot e^{-\Omega(k)} \leq n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$. **E** By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that √

$$
\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \leq n \cdot e^{O(\sqrt{(\Delta_t + \log n) \cdot \log n})},
$$

and so

$$
\mathrm{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).
$$

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

■ In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\right] \leq \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \leq \Phi_t \cdot e^{-\Omega(k)} \leq n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that √

$$
\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \le n \cdot e^{O(\sqrt{(\Delta_t + \log n) \cdot \log n})},
$$

and so

$$
\mathrm{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).
$$

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p. $\text{mdev}(\pi_m) = O(\log n)$ and $\text{tdev}(\pi_m) = O(n \log n)$.

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\left.\right]\leq \Phi_t\cdot\left(1-\Omega\left(\frac{1}{n}\right)\right)^{kn}\leq \Phi_t\cdot e^{-\Omega(k)}\leq n\cdot e^{\alpha\Delta_t}\cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$
\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \leq n \cdot e^{O(\sqrt{(\Delta_t + \log n) \cdot \log n})},
$$

and so

$$
\mathrm{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).
$$

Convergence time bounds are tight.

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p. $\text{mdev}(\pi_m) = O(\log n)$ and $\text{tdev}(\pi_m) = O(n \log n)$.

In kn steps (for $k = \Omega(\log n)$), we have that

$$
\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).
$$

In these steps, the potential changes by

$$
\mathbf{E}\left[\left.\Phi'_{t+kn}\right|\Phi_t\left.\right]\leq \Phi_t\cdot\left(1-\Omega\left(\frac{1}{n}\right)\right)^{kn}\leq \Phi_t\cdot e^{-\Omega(k)}\leq n\cdot e^{\alpha\Delta_t}\cdot e^{-\Omega(k)},
$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$
\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \leq n \cdot e^{O(\sqrt{(\Delta_t + \log n) \cdot \log n})},
$$

and so

$$
\mathrm{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).
$$

Convergence time bounds are tight.

Bounds hold for relaxed mixing steps.

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p.

 $\text{mdev}(\pi_m) = O(\log n)$ and $\text{tdev}(\pi_m) = O(n \log n)$.

Part B: The tdev = $O(n)$ bound

Why the previous analysis does not extend

The previous analysis uses *long* intervals of length kn.

Problem: When $k = o(\log n)$, then mdev(τ) = $\omega(k)$.

For example, when $k = \Theta(1)$, it follows that $m \cdot \text{dev}(\tau) = \Theta(\log n / \log \log n)$, and so the previous upper bound *does not* guarantee a decrease

 $\mathbf{E}\left[\Phi_{t+kn}|\Phi_t\right] \leq n \cdot e^{-\Theta(1)} \cdot e^{\Theta(\log n/\log \log n)} = n \cdot e^{\Theta(\log n/\log \log n)}.$

Obsrvation: We are assuming worst-case bound on displacement for all items in τ .

Solution: *Reset* targets only for items with small displacements (those below $O(k^{2/3})$).

▶ *Small displacements*: handle as in previous analysis.

▶ *Large displacements*: show that on aggregate they don't contribute much.

We prove a concentration inequality (c.f. $[LS22]$) showing that

$$
\mathbf{Pr}\left[\Phi_t \le n \cdot e^{O(k^{2/3})}\right] \ge 1 - n^{-2}.
$$

which implies that *aggregate* contribution of large displacements is $n \cdot e^{-\Omega(k^{1/3})}$.

Putting it all together

We repeat for $\Theta(\log \log \log n)$ iterations.

In iteration *i*, we set $k_{i+1} = (k_i)^{2/3}$.

[Conclusions](#page-128-0)

In this work, we have shown

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \geq 1$.

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1).

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \geq 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1). ■ The analysis works for relaxed conditions:

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \geq 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1).

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \geq 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1).

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$.

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1).

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$.

⇝ Naive-Sort is *robust*.

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1). The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$. ⇝ Naive-Sort is *robust*.

Several directions for future work:

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1). The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$. ⇝ Naive-Sort is *robust*.

Several directions for future work:

■ Handle erroneous comparisons (see *biased card shuffling* [\[DR00,](#page-144-1) [BBHM05\]](#page-143-1)).

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1). The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$. ⇝ Naive-Sort is *robust*.

Several directions for future work:

- Handle erroneous comparisons (see *biased card shuffling* [\[DR00,](#page-144-1) [BBHM05\]](#page-143-1)).
- Use NAIVE-SORT to other problems with evolving data.

In this work, we have shown

E NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightarrow Resolving *conjectures/open problems* in [\[AKM](#page-143-0)⁺12, [BVDE](#page-144-0)⁺18a, [Mah14\]](#page-145-1). The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and *(ii)* fraction of sorting steps is $1/(b+1)$. ⇝ Naive-Sort is *robust*.

Several directions for future work:

- Handle erroneous comparisons (see *biased card shuffling* [\[DR00,](#page-144-1) [BBHM05\]](#page-143-1)).
- Use NAIVE-SORT to other problems with evolving data.
- Apply *analysis techniques* to related problems.

For more visualisations, see: [team.inria.fr/wide/papers/focs24](https://dimitrioslos.com/focs24)

Bibliography I

- ▶ Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin, *Algorithms on evolving graphs*, 3rd Innovations in Theoretical Computer Science Conference (ITCS'12), 2012, pp. 149–160.
- ▶ Aris Anagnostopoulos, Jakub Lacki, Silvio Lattanzi, Stefano Leonardi, and Mohammad Mahdian, *Community detection on evolving graphs*, Annual Conference on Neural Information Processing Systems (NeurIPS'16), 2016, pp. 3522–3530.
- ▶ Aditya Acharya and David M. Mount, *Optimally tracking labels on an evolving tree*, 34th Canadian Conference on Computational Geometry (CCCG'22), 2022, pp. 1–8.
- ▶ Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel, *Mixing times of the biased card shuffling and the asymmetric exclusion process*, Trans. American Mathematical Society **357** (2005), no. 8, 3013–3029.
- ▶ Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal, *Pagerank on an evolving graph*, 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), 2012, pp. 24–32.
Bibliography II

- ▶ Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson, *Optimally sorting evolving data*, 45th International Colloquium on Automata, Languages, and Programming (ICALP'18), 2018, pp. 81:1–81:13.
- ▶ , *Quadratic time algorithms appear to be optimal for sorting evolving data*, 20th Workshop on Algorithm Engineering and Experiments (ALENEX'18), 2018, pp. 87–96.
- ▶ Persi Diaconis and Arun Ram, *Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques*, Michigan Mathematical Journal **48** (2000), no. 1, 157 $-190.$
- ▶ Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio, *Efficient densest subgraph computation in evolving graphs*, 24th International Conference on World Wide Web (WWW'15), ACM, 2015, pp. 300–310.
- ▶ Qin Huang, Xingwu Liu, Xiaoming Sun, and Jialin Zhang, *Partial sorting problem on evolving data*, Algorithmica **79** (2017), no. 3, 960–983.

Bibliography III

- ▶ Varun Kanade, Nikos Leonardos, and Frédéric Magniez, *Stable matching with evolving preferences*, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, (APPROX/RANDOM'16), LIPIcs, vol. 60, 2016, pp. 36:1–36:13.
- ▶ Dimitrios Los and Thomas Sauerwald, *Balanced allocations with incomplete information: The power of two queries*, Proc. 13th Innovations in Theoretical Computer Science Conference, ITCS, 2022, pp. 103:1–103:23.
- ▶ Mohammad Mahdian, *Algorithms on evolving data sets*, Talk given at ICERM/Brown Workshop on Stochastic Graph Models, March 17–21, 2014.
- ▶ Dingheng Mo and Siqiang Luo, *Agenda: Robust personalized pageranks in evolving graphs*, 30th ACM International Conference on Information and Knowledge Management (CIKM '21), 2021, pp. 1315–1324.

Bibliography IV

- ▶ Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi, *Efficient pagerank tracking in evolving networks*, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'15), 2015, pp. 875–884.
- ▶ Yiming Zou, Gang Zeng, Yuyi Wang, Xingwu Liu, Xiaoming Sun, Jialin Zhang, and Qiang Li, *Shortest paths on evolving graphs*, 5th International Conference on Computational Social Networks (CSoNet'16), Springer, 2016, pp. 1–13.