Naively sorting evolving data is optimal and robust

George Giakkoupis¹, Marcos Kiwi², <u>Dimitrios Los</u>¹

¹INRIA, France ²Universidad de Chile

Background

Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].

Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
As the sorting algorithm is *executing*, the input is *evolving*.

- \blacksquare Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM^+12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
 As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
 As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
 As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

Aim: maintain an ordering π_t which is close to the true ordering

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
 As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

Aim: maintain an ordering π_t which is close to the true ordering

▶ Maximum deviation: $mdev(\pi_t) = max_{i \in [n]} |\pi_t(i) - i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

$$1 \ 3 \ 4 \ 5 \ 2 \ 7 \ 6 \ 7$$

Aim: maintain an ordering π_t which is close to the true ordering

▶ Maximum deviation: $mdev(\pi_t) = max_{i \in [n]} |\pi_t(i) - i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
- As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

$$1 \ 3 \ 4 \ 5 \ 2 \ 7 \ 6 \ 7$$

Aim: maintain an ordering π_t which is close to the true ordering

- ▶ Maximum deviation: $mdev(\pi_t) = \max_{i \in [n]} |\pi_t(i) i|$
- ▶ Total deviation: $tdev(\pi_t) = \sum_{i \in [n]} |\pi_t(i) i|$

- Introduced by Anagnostopoulos, Kumar, Mahdian, Upfal and Vandin [AKM⁺12].
 As the sorting algorithm is *executing*, the input is *evolving*.
- More concretely, every *sorting* step is followed by *b mixing* steps.
 - ▶ Sorting step: algorithm chooses a pair of indices and compares their values.
 - ▶ Mixing step: a pair of items of adjacent *rank* is sampled uniformly at random, and swapped. We don't learn which pair was swapped.

Aim: maintain an ordering π_t which is close to the true ordering

- ▶ Maximum deviation: $mdev(\pi_t) = \max_{i \in [n]} |\pi_t(i) i|$
- ► Total deviation: $\operatorname{tdev}(\pi_t) = \sum_{i \in [n]} |\pi_t(i) i|$ (within factor 2 of Kendall tau distance)

This problem can be used to model several rankings where comparisons are expensive/costly.

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

▶ political candidates (comparison via debates/polls)

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data:

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- ▶ political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: *selection* [AKM⁺12],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- \blacktriangleright websites/songs/movies

Sorting is a critical component in other problems with evolving data: *selection* [AKM⁺12], *top-k* [HLSZ17],
This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

Further problems studied in the evolving data model:

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

Further problems studied in the evolving data model: matching [KLM16],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

Further problems studied in the evolving data model: *matching* [KLM16], *PageRank* computation [BKMU12, OMK15, ML21],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

Further problems studied in the evolving data model: *matching* [KLM16], *PageRank* computation [BKMU12, OMK15, ML21], community detection [ALL⁺16],

This problem can be used to model several rankings where comparisons are expensive/costly. For instance, among:

- political candidates (comparison via debates/polls)
- ▶ different systems/features (comparison via A/B testing)
- ▶ tennis/chess players (comparison via H2H games)
- ▶ websites/songs/movies

Sorting is a critical component in other problems with evolving data: selection [AKM⁺12], top-k [HLSZ17], minimum spanning trees [AKM⁺12], ...

■ Further problems studied in the evolving data model: matching [KLM16], PageRank computation [BKMU12, OMK15, ML21], community detection [ALL+16], shortest paths [ZZW+16], densest subgraph computation [ELS15], tracking labels [AM22], ...

- Anagnostopoulos et al. [AKM⁺12] proved that QUICKSORT achieves w.h.p. mdev = $O(\log n)$ and tdev = $O(n \log n)$.
 - ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.

Anagnostopoulos et al. [AKM⁺12] proved that QUICKSORT achieves w.h.p. $mdev = O(\log n)$ and $tdev = O(n \log n)$.

- A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.

Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE⁺18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.

 \rightsquigarrow Quadratic time algorithms are optimal.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE⁺18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.
 - \rightsquigarrow Quadratic time algorithms are optimal.
 - ▶ Interleaved with QUICKSORT converges in $O(n \log n)$ steps.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE⁺18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.
 - \rightsquigarrow Quadratic time algorithms are optimal.
 - ▶ Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
 - ▶ Proof tailored for b = 1. *Open problem*: What happens for b > 1?

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.
 - \rightsquigarrow Quadratic time algorithms are optimal.
 - ▶ Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
 - ▶ Proof tailored for b = 1. *Open problem:* What happens for b > 1?
 - Besa Vial et al. [BVDE⁺18b] observed bounds extend to more powerful mixing steps (e.g. hot-spot adversary)?

- A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.
 - \rightsquigarrow Quadratic time algorithms are optimal.
 - ▶ Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
 - ▶ Proof tailored for b = 1. *Open problem:* What happens for b > 1?
 - Besa Vial et al. [BVDE⁺18b] observed bounds extend to more powerful mixing steps (e.g. hot-spot adversary)?
- Mahdian [Mah14] proposed NAIVE-SORT which in each step samples a pair of *adjacent* items; and sort them if they are out of order.

- ▶ A more refined version of QUICKSORT achieves w.h.p. $tdev = O(n \log \log n)$.
- ▶ For any sorting algorithm, $tdev = \Omega(n)$.
- ▶ Conjecture: For any const $b \ge 1$, there exists an algorithms which matches this.
- Besa Vial, Devanny, Eppstein, Goodrich and Johnson [BVDE+18a] showed that INSERTION-SORT for b = 1 achieves w.h.p. tdev = O(n) in $O(n^2)$ steps.
 - \rightsquigarrow Quadratic time algorithms are optimal.
 - ▶ Interleaved with QUICKSORT converges in $O(n \log n)$ steps.
 - ▶ Proof tailored for b = 1. *Open problem*: What happens for b > 1?
 - Besa Vial et al. [BVDE⁺18b] observed bounds extend to more powerful mixing steps (e.g. hot-spot adversary)?
- Mahdian [Mah14] proposed NAIVE-SORT which in each step samples a pair of *adjacent* items; and sort them if they are out of order.
 - ▶ *Open problem:* Does NAIVE-SORT achieve the optimal mdev and tdev?

Main result:

Main result:

▶ NAIVE-SORT achieves optimal $mdev = O(\log n)$ and tdev = O(n)

Main result:

▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.

Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

These bounds hold in generalised settings:

Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

These bounds hold in generalised settings:

▶ Mixing steps where dispacement follows a distribution with finite MGF.

Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.

Main result:

- ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
- ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

These bounds hold in generalised settings:

- ▶ Mixing steps where dispacement follows a distribution with finite MGF.
- ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
- ▶ For non-constant b, $mdev = \Theta(b \log n)$.

- Main result:
 - ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
 - ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
 - These bounds hold in generalised settings:
 - ▶ Mixing steps where dispacement follows a distribution with finite MGF.
 - ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
 - ▶ For non-constant b, $mdev = \Theta(b \log n)$.

Starting from an ordering with $mdev(\pi_0) = \Delta$, it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)$).

- Main result:
 - ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
 - ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
 - These bounds hold in generalised settings:
 - ▶ Mixing steps where dispacement follows a distribution with finite MGF.
 - ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
 - ▶ For non-constant b, $mdev = \Theta(b \log n)$.
- Starting from an ordering with $mdev(\pi_0) = \Delta$, it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)$).
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.

- Main result:
 - ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
 - ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
 - These bounds hold in generalised settings:
 - ▶ Mixing steps where dispacement follows a distribution with finite MGF.
 - ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
 - ▶ For non-constant b, $mdev = \Theta(b \log n)$.
- Starting from an ordering with $mdev(\pi_0) = \Delta$, it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)$).
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:

- Main result:
 - ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
 - ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
 - These bounds hold in generalised settings:
 - ▶ Mixing steps where dispacement follows a distribution with finite MGF.
 - ▶ Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
 - ▶ For non-constant b, $mdev = \Theta(b \log n)$.
- Starting from an ordering with $mdev(\pi_0) = \Delta$, it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)$).
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:
 - ▶ An exponential potential function with gaps.

- Main result:
 - ▶ NAIVE-SORT achieves optimal mdev = $O(\log n)$ and tdev = O(n) for any const $b \ge 1$ in $t = O(n^2)$ steps.
 - ▶ Resolves *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
 - These bounds hold in generalised settings:
 - ▶ Mixing steps where dispacement follows a distribution with finite MGF.
 - Requiring only that a 1/(b+1) fraction of sorting steps, every n steps.
 - ▶ For non-constant b, $mdev = \Theta(b \log n)$.
- Starting from an ordering with $mdev(\pi_0) = \Delta$, it converges in $O(n \cdot \Delta)$ steps (when $\Delta = \Omega(\log n)$).
- By interleaving with QUICKSORT, it converges in $O(n \log n)$ steps.
- Analysis techniques based on:
 - ▶ An exponential potential function with gaps.
 - ▶ A technique for decoupling sorting and mixing steps.

Analysis

Analysis

Analysis outline

Analysis outline

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

Analysis outline

Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
Analysing sorting steps
- Part A: Outline for the mdev = O(log n) and tdev = O(n log n) bounds.
 ▶ Analysing sorting steps
 - ▶ Why the normal exponential potential does not work

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing sorting steps
 - ▶ Why the normal exponential potential does not work
 - ▶ Why a *variant* using gaps does work

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing sorting steps
 - ▶ Why the normal exponential potential does not work
 - ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing sorting steps
 - ▶ Why the normal exponential potential does not work
 - ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*
- ▶ Combining sorting and mixing steps

Part A: Outline for the mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds.

- ▶ Analysing sorting steps
 - ▶ Why the normal exponential potential does not work
 - ▶ Why a *variant* using gaps does work
- ▶ Analysing *mixing steps*
- Combining sorting and mixing steps

Part B: (Brief) outline for the tdev = O(n) bound.

Part A: The mdev = $O(\log n)$ and tdev = $O(n \log n)$ bounds

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

Assume *only* sorting steps.

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.

Problem: There could be very *few* sortable pairs.

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, \mathbf{7}, \mathbf{1}, 2, 3)$$

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

All items in the first sorted block contribute the same to Φ_t .

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

All items in the first sorted block contribute the same to Φ_t . BUT only the head of a block decreases in expectation.

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

- All items in the first sorted block contribute the same to Φ_t .
- **BUT** only the head of a block decreases in expectation.
- So, the potential satisfies

$$\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] = \Phi_t \cdot \left(1 - \Theta\left(\frac{1}{n^2}\right)\right).$$

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

- All items in the first sorted block contribute the same to Φ_t .
- **BUT** only the head of a block decreases in expectation.
- So, the potential satisfies

$$\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] = \Phi_t \cdot \left(1 - \Theta\left(\frac{1}{n^2}\right)\right).$$

Can only be used to prove sorting in $O(n^3)$ steps ...

The exponential potential function with smoothing parameter α is defined as

$$\Phi_t = \sum_{i \in [n]} \left(e^{\alpha \cdot |i - \pi_t(i)|} - 1 \right).$$

- Assume *only* sorting steps. Recall that NAIVE-SORT tries to sort items in adjacent positions.
- **Problem:** There could be very *few* sortable pairs. For example,

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

- All items in the first sorted block contribute the same to Φ_t .
- **BUT** only the head of a block decreases in expectation.
- So, the potential satisfies

$$\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] = \Phi_t \cdot \left(1 - \Theta\left(\frac{1}{n^2}\right)\right).$$

Can only be used to prove sorting in $O(n^3)$ steps ... and does not work for mixing steps.

Analysis

So, how can we handle *sorted blocks*?

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Main idea: Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$\pi_t = (6, 2, 5, 7, 1, 4, 3) \quad
ightarrow \left(\pm \pm \pm \pm \pm \pm 5, 7, 1, 4, 3 \right) \quad
ightarrow \left(\pm \pm \pm \pm 5, 7, 1, 4, 3, 5, 7, 1, 4, 3, 7 \right),$$

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Main idea: Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$\pi_t = (6, 2, 5, 7, 1, 4, 3) \quad \rightarrow \quad \left(\underline{\downarrow}, \underline{\bot}, \underline{\downarrow}, \underline{\bot}, \underline{6}, 2, \underline{\downarrow}, \underline{\bot}, \underline{5}, 7, \underline{1}, 4, 3 \right),$$

so that no item has a gap to its *left/right* if its target is to the *left/right*.

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Main idea: Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$\pi_t = (6, 2, 5, 7, 1, 4, 3) \quad \rightarrow \quad \left(\underbrace{\bot}_1, \bot, \underbrace{\bot}_2, \bot, \underbrace{6}_3, 2, \underbrace{\bot}_4, \bot, \underbrace{5}_5, 7, \underbrace{1}_6, 4, \underbrace{3}_7 \right),$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$\left({1\atop {\scriptscriptstyle 1}}, \bot, {2\atop {\scriptscriptstyle 2}}, \bot, {3\atop {\scriptscriptstyle 3}}, \bot, {4\atop {\scriptscriptstyle 4}}, \bot, {5\atop {\scriptscriptstyle 5}}, \bot, {6\atop {\scriptscriptstyle 6}}, \bot, {7\atop {\scriptscriptstyle 7}}
ight).$$

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Main idea: Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$\pi_t = (6, 2, 5, 7, 1, 4, 3) \quad \rightarrow \quad \left(\underbrace{\bot}_1, \bot, \underbrace{\bot}_2, \bot, \underbrace{6}_3, 2, \underbrace{\bot}_4, \bot, \underbrace{5}_5, 7, \underbrace{1}_6, 4, \underbrace{3}_7 \right),$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$\left({1\atop {}_1}, {\perp}, {2\atop {}_2}, {\perp}, {3\atop {}_3}, {\perp}, {4\atop {}_4}, {\perp}, {5\atop {}_5}, {\perp}, {6\atop {}_6}, {\perp}, {7\over {}_7}
ight).$$

Swapping values (2, 6) gives

$$l_t = \left(\underline{\bot}, \underline{\bot}, \underline{\bot}, \underline{\bot}, \underline{\bullet}, \frac{\mathbf{6}}{3}, \mathbf{2}, \underline{\bot}, \underline{\bot}, 5, 7, \underline{1}, 4, \underline{3}_{7} \right)$$

Analysis

So, how can we handle *sorted blocks*?

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Main idea: Add $n \cdot (d-1)$ gaps to make distances non-uniform.

$$\pi_t = (6, 2, 5, 7, 1, 4, 3) \quad \rightarrow \quad \left(\underbrace{\bot}_1, \bot, \underbrace{\bot}_2, \bot, \underbrace{6}_3, 2, \underbrace{\bot}_4, \bot, \underbrace{5}_5, 7, \underbrace{1}_6, 4, \underbrace{3}_7 \right),$$

so that no item has a gap to its *left/right* if its target is to the *left/right*. Sorted state:

$$\left({1\atop {\scriptscriptstyle 1}}, \bot, {2\atop {\scriptscriptstyle 2}}, \bot, {3\atop {\scriptscriptstyle 3}}, \bot, {4\atop {\scriptscriptstyle 4}}, \bot, {5\atop {\scriptscriptstyle 5}}, \bot, {6\atop {\scriptscriptstyle 6}}, \bot, {7\atop {\scriptscriptstyle 7}}
ight)$$
 .

Swapping values (2, 6) gives

$$l_t = \left(\underbrace{\downarrow}_1, \underbrace{\downarrow}_2, \underbrace{\downarrow}_2, \underbrace{\downarrow}_3, \underbrace{1}_4, \underbrace{\downarrow}_4, \underbrace{\downarrow}_5, 7, \underbrace{1}_6, 4, \underbrace{3}_7 \right) \rightarrow l_{t+1} = \left(\underbrace{\downarrow}_1, \underbrace{\downarrow}_2, \underbrace{\downarrow}_2, \underbrace{\downarrow}_3, \underbrace{\downarrow}_4, \underbrace{6}_5, 7, \underbrace{1}_6, 4, \underbrace{3}_7 \right)$$

Analysis

Returning to the previous example

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Returning to the previous example

$$\pi_t = (\overline{4, 5, 6, 7, 1, 2, 3})$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_{1}, \bot, \underbrace{1}_{2}, 4, \underbrace{5, 6, 7}_{3}, 1, \underbrace{2}_{5}, 3, \underbrace{1}_{6}, \bot, \underbrace{1}_{7} \right)$$

Returning to the previous example

$$\pi_t = (\overline{4, 5, 6, 7, 1, 2, 3})$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_{1}, \bot, \underbrace{1}_{2}, 4, \underbrace{5, 6, 7}_{3}, 1, \underbrace{2}_{5}, 3, \underbrace{1}_{6}, \bot, \underbrace{1}_{7} \right)$$

and all distances are increasing in a *sorted block*.

Returning to the previous example

$$\pi_t = (\overline{4, 5, 6, 7, 1, 2, 3})$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_1, \bot, \underbrace{1}_2, 4, \underbrace{5}_3, 6, 7, 1, \underbrace{2}_5, 3, \underbrace{1}_6, \bot, \underbrace{1}_7\right)$$

and all distances are increasing in a sorted block.
Since Φ_t is exponential,

$$\Phi_t = \sum_{j:\ell_t(j) \neq \bot} e^{\alpha |d \cdot \ell_t(j) - j|},$$

Returning to the previous example

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_1, \bot, \underbrace{1}_2, 4, \underbrace{5, 6, 7, 1, 2}_3, 3, \underbrace{1}_6, \bot, \underbrace{1}_7\right)$$

and all distances are increasing in a sorted block.
Since Φ_t is exponential,

$$\Phi_t = \sum_{j:\ell_t(j) \neq \bot} e^{\alpha |d \cdot \ell_t(j) - j|},$$

the contribution of the *head* of the block dominates.

Returning to the previous example

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_1, \bot, \underbrace{1}_2, 4, \underbrace{5}_3, 6, 7, 1, \underbrace{2}_5, 3, \underbrace{1}_6, \bot, \underbrace{1}_7\right)$$

and all distances are increasing in a sorted block.
Since Φ_t is exponential,

$$\Phi_t = \sum_{j:\ell_t(j) \neq \bot} e^{\alpha |d \cdot \ell_t(j) - j|},$$

the contribution of the *head* of the block dominates. \rightarrow overall decrease

Returning to the previous example

$$\pi_t = (4, 5, 6, 7, 1, 2, 3)$$

Now, with the gaps, we have that

$$\ell_t = \left(\underbrace{1}_1, \bot, \underbrace{1}_2, 4, \underbrace{5}_3, 6, 7, 1, \underbrace{2}_5, 3, \underbrace{1}_6, \bot, \underbrace{1}_7\right)$$

and all distances are increasing in a sorted block.
Since Φ_t is exponential,

$$\Phi_t = \sum_{j:\ell_t(j) \neq \bot} e^{\alpha |d \cdot \ell_t(j) - j|},$$

the contribution of the *head* of the block dominates. → overall decrease So, in a sorting step, we can show that

$$\mathbf{E}\left[\Phi_{t+1}|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right).$$

Analysis

Our aim is to decouple sorting and mixing steps.

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7) \qquad \tau_t = (1, 2, 3, 4, 5, 6, 7).$$

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$
Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$.

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$$

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that $\pi_t(i) < \pi_t(i+1) \implies \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$

We enforce this by performing successive swaps.

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that $\pi_t(i) < \pi_t(i+1) \implies \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$

We enforce this by performing successive swaps. Also do not increase Φ_t .

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$$

We enforce this by performing successive swaps. Also do not increase Φ_t . Then, we bound

$$|\pi_t(i) - i| \le |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.$$

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$$

We enforce this by performing successive swaps. Also do not increase Φ_t . Then, we bound

$$|\pi_t(i) - i| \le |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.$$

On the RHS, we bound

▶ the first term using the analysis involving Φ_t .

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$$

We enforce this by performing successive swaps. Also do not increase Φ_t . Then, we bound

$$|\pi_t(i) - i| \le |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.$$

On the RHS, we bound

- ▶ the first term using the analysis involving Φ_t .
- \blacktriangleright the second term by analysing *n* weakly-dependent random walks,

Our aim is to decouple sorting and mixing steps.

Main idea: Maintain a *target array* τ_t (initially $\tau_0 = id_n$)

$$\pi_t = (4, 1, 3, 5, 6, 2, 7)$$
 $\tau_t = (1, 2, 3, 4, 5, 6, 7).$

And, in a mixing step, swap the target positions of the items, i.e.,

$$\pi_{t+1} = (\mathbf{3}, 1, \mathbf{4}, 5, 6, 2, 7)$$
 $\tau_{t+1} = (1, 2, \mathbf{4}, \mathbf{3}, 5, 6, 7).$

This way, the potential does not change, i.e., $\Phi_{t+1} = \Phi_t$. To preserve increasing distances needed for the sorting analysis, we require that

$$\pi_t(i) < \pi_t(i+1) \quad \Rightarrow \quad \tau_t(\pi_t(i)) < \tau_t(\pi_t(i+1)).$$

We enforce this by performing successive swaps. Also do not increase Φ_t . Then, we bound

$$|\pi_t(i) - i| \le |\pi_t(i) - \tau_t(\pi_t(i))| + |\tau_t(\pi_t(i)) - i|.$$

On the RHS, we bound

- ▶ the first term using the analysis involving Φ_t .
- ▶ the second term by analysing *n* weakly-dependent random walks, e.g., using $\Psi_t = \sum_{i \in [n]} e^{\beta \cdot |i \tau_t^{-1}(i)|}.$

In kn steps (for $k = \Omega(\log n)$), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn}$$

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_{t}\right] \leq \Phi_{t} \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \leq \Phi_{t} \cdot e^{-\Omega(k)}$$

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$.

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$\mathbf{E}\left[\Phi_{t+kn}|\Phi_{t}\right] \leq n \cdot e^{O(\sqrt{(\Delta_{t}+\log n) \cdot \log n})},$$

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$\mathbf{E}\left[\Phi_{t+kn}|\Phi_{t}\right] \leq n \cdot e^{O(\sqrt{(\Delta_{t}+\log n) \cdot \log n})},$$

and so

$$\operatorname{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).$$

In kn steps (for
$$k = \Omega(\log n)$$
), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$\mathbf{E}\left[\Phi_{t+kn}|\Phi_{t}\right] \leq n \cdot e^{O(\sqrt{(\Delta_{t}+\log n) \cdot \log n})}$$

and so

$$\operatorname{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).$$

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p. $mdev(\pi_m) = O(\log n)$ and $tdev(\pi_m) = O(n \log n)$.

In
$$kn$$
 steps (for $k = \Omega(\log n)$), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$\mathbf{E}\left[\Phi_{t+kn}|\Phi_{t}\right] \leq n \cdot e^{O(\sqrt{(\Delta_{t}+\log n) \cdot \log n})}$$

and so

$$\operatorname{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).$$

Convergence time bounds are tight.

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p. $mdev(\pi_m) = O(\log n)$ and $tdev(\pi_m) = O(n \log n)$.

In
$$kn$$
 steps (for $k = \Omega(\log n)$), we have that

$$\max_{i \in [n]} |\tau_t(i) - i| = O\left(\sqrt{k \log n}\right).$$

In these steps, the potential changes by

$$\mathbf{E}\left[\Phi_{t+kn}'|\Phi_t\right] \le \Phi_t \cdot \left(1 - \Omega\left(\frac{1}{n}\right)\right)^{kn} \le \Phi_t \cdot e^{-\Omega(k)} \le n \cdot e^{\alpha \Delta_t} \cdot e^{-\Omega(k)},$$

where $\Delta_t = \text{mdev}(\pi_t)$. By "resetting" the targets, for $k = \Omega(\Delta_t + \log n)$ we have that

$$\mathbf{E}\left[\left.\Phi_{t+kn}|\Phi_{t}\right.\right] \leq n \cdot e^{O(\sqrt{(\Delta_{t}+\log n) \cdot \log n})}$$

and so

$$\operatorname{mdev}(\pi_{t+kn}) = O(\sqrt{(\Delta_t + \log n) \cdot \log n}).$$

Convergence time bounds are tight.

Bounds hold for relaxed mixing steps.

By applying *iteratively*, after $m = \Omega(n \cdot (\Delta_0 + \log n))$ steps w.h.p.

 $\operatorname{mdev}(\pi_m) = O(\log n)$ and $\operatorname{tdev}(\pi_m) = O(n \log n)$.

Part B: The tdev = O(n) bound

Why the previous analysis does not extend

The previous analysis uses long intervals of length kn.

Problem: When $k = o(\log n)$, then $mdev(\tau) = \omega(k)$.

For example, when $k = \Theta(1)$, it follows that $mdev(\tau) = \Theta(\log n / \log \log n)$, and so the previous upper bound *does not* guarantee a decrease

 $\mathbf{E}\left[\Phi_{t+kn}|\Phi_{t}\right] \leq n \cdot e^{-\Theta(1)} \cdot e^{\Theta(\log n/\log \log n)} = n \cdot e^{\Theta(\log n/\log \log n)}.$

Obsrvation: We are assuming worst-case bound on displacement for *all* items in τ .

Solution: Reset targets only for items with small displacements (those below $O(k^{2/3})$).

▶ *Small displacements*: handle as in previous analysis.

▶ Large displacements: show that on aggregate they don't contribute much.

We prove a concentration inequality (c.f. [LS22]) showing that

$$\mathbf{Pr}\left[\Phi_t \le n \cdot e^{O(k^{2/3})}\right] \ge 1 - n^{-2}.$$

which implies that aggregate contribution of large displacements is $n \cdot e^{-\Omega(k^{1/3})}$.

Putting it all together

We repeat for $\Theta(\log \log \log n)$ iterations.

In iteration i, we set $k_{i+1} = (k_i)^{2/3}$.

Conclusions

In this work, we have shown

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$.

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightsquigarrow Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const b ≥ 1.
→ Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
■ The analysis works for relaxed conditions:

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightsquigarrow Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightsquigarrow Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b+1).

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const $b \ge 1$. \rightsquigarrow Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].

The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b+1). \rightarrow NAIVE-SORT is *robust*.

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const b ≥ 1.
→ Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
→ NAIVE-SORT is *robust*.

Several directions for future work:

In this work, we have shown

■ NAIVE-SORT achieves the *optimal* mdev and tdev for any const b ≥ 1.
→ Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
■ The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).

 \rightsquigarrow NAIVE-SORT is *robust*.

Several directions for future work:

Handle erroneous comparisons (see *biased card shuffling* [DR00, BBHM05]).

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const b ≥ 1.
→ Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b + 1).
→ NAIVE-SORT is *robust*.

Several directions for future work:

- Handle erroneous comparisons (see *biased card shuffling* [DR00, BBHM05]).
- Use NAIVE-SORT to other problems with evolving data.

In this work, we have shown

NAIVE-SORT achieves the *optimal* mdev and tdev for any const b ≥ 1.
→ Resolving *conjectures/open problems* in [AKM⁺12, BVDE⁺18a, Mah14].
The analysis works for relaxed conditions: (i) mixing steps with a perturbation distribution with finite MGF and (ii) fraction of sorting steps is 1/(b+1).
→ NAIVE-SORT is *robust*.

Several directions for future work:

- Handle erroneous comparisons (see *biased card shuffling* [DR00, BBHM05]).
- Use NAIVE-SORT to other problems with evolving data.
- Apply *analysis techniques* to related problems.

For more visualisations, see: team.inria.fr/wide/papers/focs24

Bibliography I

- Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, and Fabio Vandin, Algorithms on evolving graphs, 3rd Innovations in Theoretical Computer Science Conference (ITCS'12), 2012, pp. 149–160.
- Aris Anagnostopoulos, Jakub Lacki, Silvio Lattanzi, Stefano Leonardi, and Mohammad Mahdian, *Community detection on evolving graphs*, Annual Conference on Neural Information Processing Systems (NeurIPS'16), 2016, pp. 3522–3530.
- ▶ Aditya Acharya and David M. Mount, *Optimally tracking labels on an evolving tree*, 34th Canadian Conference on Computational Geometry (CCCG'22), 2022, pp. 1–8.
- Itai Benjamini, Noam Berger, Christopher Hoffman, and Elchanan Mossel, Mixing times of the biased card shuffling and the asymmetric exclusion process, Trans. American Mathematical Society 357 (2005), no. 8, 3013–3029.
- Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal, Pagerank on an evolving graph, 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), 2012, pp. 24–32.
Bibliography II

- ▶ Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson, *Optimally sorting evolving data*, 45th International Colloquium on Automata, Languages, and Programming (ICALP'18), 2018, pp. 81:1–81:13.
- Quadratic time algorithms appear to be optimal for sorting evolving data, 20th Workshop on Algorithm Engineering and Experiments (ALENEX'18), 2018, pp. 87–96.
- Persi Diaconis and Arun Ram, Analysis of systematic scan Metropolis algorithms using Iwahori-Hecke algebra techniques, Michigan Mathematical Journal 48 (2000), no. 1, 157 – 190.
- Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio, Efficient densest subgraph computation in evolving graphs, 24th International Conference on World Wide Web (WWW'15), ACM, 2015, pp. 300–310.
- Qin Huang, Xingwu Liu, Xiaoming Sun, and Jialin Zhang, Partial sorting problem on evolving data, Algorithmica 79 (2017), no. 3, 960–983.

Bibliography III

- Varun Kanade, Nikos Leonardos, and Frédéric Magniez, Stable matching with evolving preferences, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, (APPROX/RANDOM'16), LIPIcs, vol. 60, 2016, pp. 36:1–36:13.
- Dimitrios Los and Thomas Sauerwald, Balanced allocations with incomplete information: The power of two queries, Proc. 13th Innovations in Theoretical Computer Science Conference, ITCS, 2022, pp. 103:1–103:23.
- ▶ Mohammad Mahdian, Algorithms on evolving data sets, Talk given at ICERM/Brown Workshop on Stochastic Graph Models, March 17–21, 2014.
- Dingheng Mo and Siqiang Luo, Agenda: Robust personalized pageranks in evolving graphs, 30th ACM International Conference on Information and Knowledge Management (CIKM '21), 2021, pp. 1315–1324.

Bibliography IV

- ▶ Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi, *Efficient pagerank tracking in evolving networks*, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'15), 2015, pp. 875–884.
- Yiming Zou, Gang Zeng, Yuyi Wang, Xingwu Liu, Xiaoming Sun, Jialin Zhang, and Qiang Li, *Shortest paths on evolving graphs*, 5th International Conference on Computational Social Networks (CSoNet'16), Springer, 2016, pp. 1–13.